The convergence algo is noticeably faster and more accurate.
Try it with: 'cwebp -size xxxxx -pass 8 ...' or 'cwebp -psnr 39 -pass 8 ...'
for instance
Allow full-looping with TokenBuffer case, and make the non-TokenBuffer
case match too.
In case Partition0 is likely to overflow, retry encoding with harder
limits on max_i4_header_bits_.
This CL should make -partition_limit option somewhat useless,
since the fix made automatically (albeit in a non-optimal way yet).
Change-Id: I46fde3564188b13b89d4cb69f847a5f24b8c735b
* fix VP8FixedCostsI4ÆÅ table
(the constant cost '211' was erronenously included)
* use the rd-score for '211' correctly (calling SetRDScore() for good)
* count partition0 bits separately during rd-opt
No meaningful difference in rd-curve.
Change-Id: I6c49a150cf28928d9a92c32fff097600d7145ca4
use of uint8_t type was causing error like:
src/dsp/upsampling.c:223:1: internal compiler error: in vect_determine_vectorization_factor, at tree-vect-loop.c:349
with gcc 4.6.3
Change-Id: Ieb6189a1375c47fc4ff992e6c09b34a7f1f605da
When -mt is used, the analysis pass will be split in two
and each halves performed in parallel. This gives a 5%-9% speed-up.
This was a good occasion to revamp the iterator and analysis-loop
code. As a result, the default (non-mt) behaviour is a tad (~1%) faster.
Change-Id: Id0828c2ebe2e968db8ca227da80af591d6a4055f
-pass 2 can be useful sometimes. More passes usually don't help more.
This change is a step toward being able to re-code the whole picture
with varying parameter (when token buffer is used).
Change-Id: Ia2538e2069a53c080e2ad248c18a1e04623a9304
* move yuv_in_/out_* scratch buffers to iterator
* add y_top_/uv_top_ shortcuts in iterator
That's ~3k of stack size instead of heap.
But it allows having several iterators work in parallel.
Change-Id: I6a437c0f2ef1e5d398c1d6a2fd4974fa0869f0c1
in_bits is const. Trying to apply bswap on it, one gets the error message:
error: read-only variable 'in_bits' used as 'asm' output
Change-Id: I0bef494b822c83d8ea87b1938b0e486d94de4742
We use the 'do not blend' option for creating independent frames.
We also mark the already independent frames as 'do not blend'.
This bounds the maximum number of frames that need to be decoded to
decode a given frame, thus leading to a much better decoding performance.
Change-Id: I7cef98af2b53751ec36993fd2bd54f7f4c4aad2b
The C-version gets ~7-8% slower in order to match the SSE2
output exactly. The old (now off-by-1) code is kept under
the WEBP_YUV_USE_TABLE flag for reference.
(note that calc rounding precision is slightly better ~= +0.02dB)
on ARM-neon, we somehow recover the ~4% speed that was lost by mimicking
the initial C-version (see https://gerrit.chromium.org/gerrit/#/c/41610)
Change-Id: Ia4363c5ed9b4c9edff5d932b002e57bb7814bf6f
If 'top' was meant to be NULL, then bottom and top can be
swapped. Logic is simpler.
+ fix compilation in non-FANCY_UPSAMPLING mode
Change-Id: I7c62bbb59454017f072c0945d1ff2d24d89286ff
Doesn't work with WIC
+ redirect some info messages from stdout to stderr
+ fix the error reporting upon output-writing error
Change-Id: I92b8bd7a15e656a3f3cdfbf56299f024e39453f8
Marking certain frames as "do not blend" helps avoiding alpha-blending
at decode/render time.
It also helps inserting I-frames (frames which can be independently
decoded) into the animation.
Change-Id: Iaa222805db88d2f1c81104ce9d882e7c7ff8cfdb
Also created variant VP8LPrefixEncodeBits that returns the
code & extra_bits only.
There's no impact on compression density and compression speed.
Change-Id: I2cafdd3438ac9270cd72ad9d57b383cdddfdfa4c