The registers and instructions are quite different to 32bit
and the assembly code needs a rewrite.
more info: http://people.linaro.org/~rikuvoipio/aarch64-talk/
Change-Id: Id75dbc1b7bf47f43a426ba2831f25bb8fa252c4f
add TransformDC special case, and make the switch function inlined.
Recovers a few of the CPU lost during the addition of TransformAC3
(only on ARM)
Change-Id: I21c1f0c6a9cb9d1dfc1e307b4f473a2791273bd6
WHT is somewhat a special case: no sharpen[] bias, etc.
Will be useful in a later CL when precision of input is changed.
Change-Id: I851b06deb94abdfc1ef00acafb8aa731801b4299
This is in preparation for a future change where input will
be 16bit instead of 12bit
No speed diff observed.
Note that the NEON implementation was using 32bit calc already.
Change-Id: If06935db5c56a77fc9cefcb2dec617483f5f62b4
* remove the sharpening for non luma-AC coeffs
* adjust the bias a little bit to compensate for this
Using the multiply-by-reciprocal doesn't always give the same result
as the exact divide, given the QFIX fixed-point precision we use.
-> removed few now-unneeded SSE2 instructions (and checked for
bit-exactness using -noasm)
Change-Id: Ib68057cbdd69c4e589af56a01a8e7085db762c24
-> helps debanding (sky, gradients, etc.)
This dithering can only be triggered when using -preset photo
or -pre 2 (as a preprocessing). Everything is unchanged otherwise.
Note that this change is likely to make the perceived PSNR/SSIM drop
since we're altering the input internally.
Change-Id: Id8d4326245d9b828141de162c94ba381b1fa5813
use of uint8_t type was causing error like:
src/dsp/upsampling.c:223:1: internal compiler error: in vect_determine_vectorization_factor, at tree-vect-loop.c:349
with gcc 4.6.3
Change-Id: Ieb6189a1375c47fc4ff992e6c09b34a7f1f605da
The C-version gets ~7-8% slower in order to match the SSE2
output exactly. The old (now off-by-1) code is kept under
the WEBP_YUV_USE_TABLE flag for reference.
(note that calc rounding precision is slightly better ~= +0.02dB)
on ARM-neon, we somehow recover the ~4% speed that was lost by mimicking
the initial C-version (see https://gerrit.chromium.org/gerrit/#/c/41610)
Change-Id: Ia4363c5ed9b4c9edff5d932b002e57bb7814bf6f
If 'top' was meant to be NULL, then bottom and top can be
swapped. Logic is simpler.
+ fix compilation in non-FANCY_UPSAMPLING mode
Change-Id: I7c62bbb59454017f072c0945d1ff2d24d89286ff
Also created variant VP8LPrefixEncodeBits that returns the
code & extra_bits only.
There's no impact on compression density and compression speed.
Change-Id: I2cafdd3438ac9270cd72ad9d57b383cdddfdfa4c
This speeds up WebP lossless decoding by 20%. In particular, the
photographic images get 35% speedup.
Change-Id: Idb94750342a140ec05df52c07e12be4bba335adc
rather than symlink the webm/vpx terms, use the same header as libvpx to
reference in-tree files
based on the discussion in:
https://codereview.chromium.org/12771026/
Change-Id: Ia3067ecddefaa7ee01550136e00f7b3f086d4af4
* "declaration of ‘index’ shadows a global declaration [-Wshadow]"
* "signed and unsigned type in conditional expression [-Wsign-compare]"
Change-Id: I891182d919b18b6c84048486e0385027bd93b57d
Earlier such images were using roughly 9 * width * height bytes for
decoding. Now, they take 6 * width * height memory.
Change-Id: Ie4a681ca5074d96d64f30b2597fafdca648dd8f7
no precision loss observed
speed is not really faster (0.5% at max), as forward-WHT isn't called often.
also: replaced a "int << 3" (undefined by C-spec) by a "int * 8"
( supersedes https://gerrit.chromium.org/gerrit/#/c/48739/ )
Change-Id: I2d980ec2f20f4ff6be5636105ff4f1c70ffde401
Saturation was done on input coeff, not quantized one.
This saturation is not absolutely needed: output of FTransformWHT
is in range [-16320, 16321]. At quality 100, max quantization steps is 8,
so the maximal range used by QuantizeBlock() is [-2040, 2040].
But there's some extra bias (mtx->bias_[] and mtx->sharpen_[]) so
it's better to leave this saturation check for now.
addresses issue #145
Change-Id: I4b14f71cdc80c46f9eaadb2a4e8e03d396879d28
subdirectories with more than one target can have the install targets
run in parallel with make -jN. group the shared headers in one place to
produce a common install target.
Change-Id: I1f3aa338a8ee6d681de1e5d0b2c6244d2c3d5451
Reported to eventually be 4% on ARM
(see https://code.google.com/p/webp/issues/detail?id=134 for details)
We might activate it selectively later...
Output values is not bitwise the same as the LUT-based
version, but difference is only +/-1 at max.
Change-Id: I1cc790ff4459885ed2ae2e72f31c5f3740095f07
larger values are still dealt with in the .cc
~5% faster encoding
Output size is slightly different (variably), because of
different floating-point calculation ordering.
Change-Id: I6ede18b09c753997cf78aa1199a807d9ddb5d4b4
* add SSE2 variant for lossless
* speed-up TransformColor calls using specialized TransformColorBlue/Red
* Fuse the Shannon Entropy calls to compute it for X and X+Y simultaneously.
This latter changes the output size a little bit.
Change-Id: Ie5df94da78bf51a58da859c9099b56340da9ec89
This flag will make the code use no uint64, no asm, and no fancy
trick, but instead aim at being as simple and straightforward as
possible.
Main use is to help emscripten generate proper JS code.
More code needs to be simplified later.
Also: tune the BITS values to be 24 and make use of WEBP_RIGHT_JUSTIFY
Here are the typical timing for decoding a large image:
ARM7-a:
dwebp_justify_32_neon Time to decode picture: 3.280s
dwebp_justify_24_neon Time to decode picture: 2.640s
dwebp_justify_16_neon Time to decode picture: 2.723s
dwebp_justify_8_neon Time to decode picture: 2.802s
dwebp_justify_32 Time to decode picture: 4.264s
dwebp_justify_24 Time to decode picture: 3.696s
dwebp_justify_16 Time to decode picture: 3.779s
dwebp_justify_8 Time to decode picture: 3.834s
dwebp_32_neon Time to decode picture: 4.010s
dwebp_24_neon Time to decode picture: 2.725s
dwebp_16_neon Time to decode picture: 2.852s
dwebp_8_neon Time to decode picture: 2.778s
dwebp_32 Time to decode picture: 4.587s
dwebp_24 Time to decode picture: 3.800s
dwebp_16 Time to decode picture: 3.902s
dwebp_8 Time to decode picture: 3.815s
REFERENCE (HEAD) Time to decode picture: 3.818s
x86_64:
dwebp_justify_32 Time to decode picture: 0.473s
dwebp_justify_24 Time to decode picture: 0.434s
dwebp_justify_16 Time to decode picture: 0.450s
dwebp_justify_8 Time to decode picture: 0.467s
dwebp_32 Time to decode picture: 0.474s
dwebp_24 Time to decode picture: 0.468s
dwebp_16 Time to decode picture: 0.468s
dwebp_8 Time to decode picture: 0.481s
REFERENCE (HEAD) Time to decode picture: 0.436s
i386:
dwebp_justify_32 Time to decode picture: 0.723s
dwebp_justify_24 Time to decode picture: 0.618s
dwebp_justify_16 Time to decode picture: 0.626s
dwebp_justify_8 Time to decode picture: 0.651s
dwebp_32 Time to decode picture: 0.744s
dwebp_24 Time to decode picture: 0.627s
dwebp_16 Time to decode picture: 0.642s
dwebp_8 Time to decode picture: 0.642s
Change-Id: Ie56c7235733a24f94fbfc2e4351aae36ec39c225
store values to a temporary variable before calling functions that take
vector types.
removes non-standard constructs such as:
(uint8x8x2_t){{ a, b }}
fixing:
src/dsp/upsampling_neon.c:69:32: error: macro "vst2_u8" passed 3
arguments, but takes just 2
Change-Id: Ib4368e16e3a3efac18024f02be94e76243ade2dc
Fixes: https://code.google.com/p/webp/issues/detail?id=140
- along the lines of the SSE chroma upsampling.
Total speedup is ~30%.
4% speed loss on YuvToRgbXX conversion using tables instead
of 14-bit fixed precision. TODO(later): investigate, and compare
to x86.
see http://code.google.com/p/webp/issues/detail?id=134
Change-Id: Idc2261037cd13b4553ca20ecc4c4007099c37009
When the config option '--enable-libwebpdecoder' is specified, the
lean decoder library 'libwebpdecoder' will be created in addition to
libwebp. Also dwebp binary will be linked to libwebpdecoder, if this
config option is specified.
Change-Id: I9de3e149b59c9a8390fae2ba660941749640e54a