quant_levels_dec_utils.c,cosmetics: rm struct member '_' suffix

This is a follow up to:
ee8e8c62 Fix member naming for VP8LHistogram

This better matches Google style and clears some clang-tidy warnings.

Change-Id: Ia4ce0fd0095f76f7edbc0fc6fe7f625e0d8bc6df
This commit is contained in:
James Zern 2025-04-14 12:34:42 -07:00
parent 1ed4654dc0
commit a99d0e6f04

View File

@ -43,30 +43,30 @@ static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
#endif
typedef struct {
int width_, height_; // dimension
int stride_; // stride in bytes
int row_; // current input row being processed
uint8_t* src_; // input pointer
uint8_t* dst_; // output pointer
int width, height; // dimension
int stride; // stride in bytes
int row; // current input row being processed
uint8_t* src; // input pointer
uint8_t* dst; // output pointer
int radius_; // filter radius (=delay)
int scale_; // normalization factor, in FIX bits precision
int radius; // filter radius (=delay)
int scale; // normalization factor, in FIX bits precision
void* mem_; // all memory
void* mem; // all memory
// various scratch buffers
uint16_t* start_;
uint16_t* cur_;
uint16_t* end_;
uint16_t* top_;
uint16_t* average_;
uint16_t* start;
uint16_t* cur;
uint16_t* end;
uint16_t* top;
uint16_t* average;
// input levels distribution
int num_levels_; // number of quantized levels
int min_, max_; // min and max level values
int min_level_dist_; // smallest distance between two consecutive levels
int num_levels; // number of quantized levels
int min, max; // min and max level values
int min_level_dist; // smallest distance between two consecutive levels
int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory
int16_t* correction; // size = 1 + 2*LUT_SIZE -> ~4k memory
} SmoothParams;
//------------------------------------------------------------------------------
@ -79,11 +79,11 @@ static WEBP_INLINE uint8_t clip_8b(int v) {
// vertical accumulation
static void VFilter(SmoothParams* const p) {
const uint8_t* src = p->src_;
const int w = p->width_;
uint16_t* const cur = p->cur_;
const uint16_t* const top = p->top_;
uint16_t* const out = p->end_;
const uint8_t* src = p->src;
const int w = p->width;
uint16_t* const cur = p->cur;
const uint16_t* const top = p->top;
uint16_t* const out = p->end;
uint16_t sum = 0; // all arithmetic is modulo 16bit
int x;
@ -95,24 +95,24 @@ static void VFilter(SmoothParams* const p) {
cur[x] = new_value;
}
// move input pointers one row down
p->top_ = p->cur_;
p->cur_ += w;
if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over
p->top = p->cur;
p->cur += w;
if (p->cur == p->end) p->cur = p->start; // roll-over
// We replicate edges, as it's somewhat easier as a boundary condition.
// That's why we don't update the 'src' pointer on top/bottom area:
if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
p->src_ += p->stride_;
if (p->row >= 0 && p->row < p->height - 1) {
p->src += p->stride;
}
}
// horizontal accumulation. We use mirror replication of missing pixels, as it's
// a little easier to implement (surprisingly).
static void HFilter(SmoothParams* const p) {
const uint16_t* const in = p->end_;
uint16_t* const out = p->average_;
const uint32_t scale = p->scale_;
const int w = p->width_;
const int r = p->radius_;
const uint16_t* const in = p->end;
uint16_t* const out = p->average;
const uint32_t scale = p->scale;
const int w = p->width;
const int r = p->radius;
int x;
for (x = 0; x <= r; ++x) { // left mirroring
@ -132,17 +132,17 @@ static void HFilter(SmoothParams* const p) {
// emit one filtered output row
static void ApplyFilter(SmoothParams* const p) {
const uint16_t* const average = p->average_;
const int w = p->width_;
const int16_t* const correction = p->correction_;
const uint16_t* const average = p->average;
const int w = p->width;
const int16_t* const correction = p->correction;
#if defined(USE_DITHERING)
const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
const uint8_t* const dither = kOrderedDither[p->row % DSIZE];
#endif
uint8_t* const dst = p->dst_;
uint8_t* const dst = p->dst;
int x;
for (x = 0; x < w; ++x) {
const int v = dst[x];
if (v < p->max_ && v > p->min_) {
if (v < p->max && v > p->min) {
const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
#if defined(USE_DITHERING)
dst[x] = clip_8b(c + dither[x % DSIZE]);
@ -151,7 +151,7 @@ static void ApplyFilter(SmoothParams* const p) {
#endif
}
}
p->dst_ += p->stride_; // advance output pointer
p->dst += p->stride; // advance output pointer
}
//------------------------------------------------------------------------------
@ -183,28 +183,28 @@ static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
static void CountLevels(SmoothParams* const p) {
int i, j, last_level;
uint8_t used_levels[256] = { 0 };
const uint8_t* data = p->src_;
p->min_ = 255;
p->max_ = 0;
for (j = 0; j < p->height_; ++j) {
for (i = 0; i < p->width_; ++i) {
const uint8_t* data = p->src;
p->min = 255;
p->max = 0;
for (j = 0; j < p->height; ++j) {
for (i = 0; i < p->width; ++i) {
const int v = data[i];
if (v < p->min_) p->min_ = v;
if (v > p->max_) p->max_ = v;
if (v < p->min) p->min = v;
if (v > p->max) p->max = v;
used_levels[v] = 1;
}
data += p->stride_;
data += p->stride;
}
// Compute the mininum distance between two non-zero levels.
p->min_level_dist_ = p->max_ - p->min_;
p->min_level_dist = p->max - p->min;
last_level = -1;
for (i = 0; i < 256; ++i) {
if (used_levels[i]) {
++p->num_levels_;
++p->num_levels;
if (last_level >= 0) {
const int level_dist = i - last_level;
if (level_dist < p->min_level_dist_) {
p->min_level_dist_ = level_dist;
if (level_dist < p->min_level_dist) {
p->min_level_dist = level_dist;
}
}
last_level = i;
@ -217,46 +217,46 @@ static int InitParams(uint8_t* const data, int width, int height, int stride,
int radius, SmoothParams* const p) {
const int R = 2 * radius + 1; // total size of the kernel
const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
const size_t size_m = width * sizeof(*p->average_);
const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start);
const size_t size_m = width * sizeof(*p->average);
const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction);
const size_t total_size = size_scratch_m + size_m + size_lut;
uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
if (mem == NULL) return 0;
p->mem_ = (void*)mem;
p->mem = (void*)mem;
p->start_ = (uint16_t*)mem;
p->cur_ = p->start_;
p->end_ = p->start_ + R * width;
p->top_ = p->end_ - width;
memset(p->top_, 0, width * sizeof(*p->top_));
p->start = (uint16_t*)mem;
p->cur = p->start;
p->end = p->start + R * width;
p->top = p->end - width;
memset(p->top, 0, width * sizeof(*p->top));
mem += size_scratch_m;
p->average_ = (uint16_t*)mem;
p->average = (uint16_t*)mem;
mem += size_m;
p->width_ = width;
p->height_ = height;
p->stride_ = stride;
p->src_ = data;
p->dst_ = data;
p->radius_ = radius;
p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant
p->row_ = -radius;
p->width = width;
p->height = height;
p->stride = stride;
p->src = data;
p->dst = data;
p->radius = radius;
p->scale = (1 << (FIX + LFIX)) / (R * R); // normalization constant
p->row = -radius;
// analyze the input distribution so we can best-fit the threshold
CountLevels(p);
// correction table
p->correction_ = ((int16_t*)mem) + LUT_SIZE;
InitCorrectionLUT(p->correction_, p->min_level_dist_);
p->correction = ((int16_t*)mem) + LUT_SIZE;
InitCorrectionLUT(p->correction, p->min_level_dist);
return 1;
}
static void CleanupParams(SmoothParams* const p) {
WebPSafeFree(p->mem_);
WebPSafeFree(p->mem);
}
int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
@ -274,12 +274,12 @@ int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
SmoothParams p;
memset(&p, 0, sizeof(p));
if (!InitParams(data, width, height, stride, radius, &p)) return 0;
if (p.num_levels_ > 2) {
for (; p.row_ < p.height_; ++p.row_) {
if (p.num_levels > 2) {
for (; p.row < p.height; ++p.row) {
VFilter(&p); // accumulate average of input
// Need to wait few rows in order to prime the filter,
// before emitting some output.
if (p.row_ >= p.radius_) {
if (p.row >= p.radius) {
HFilter(&p);
ApplyFilter(&p);
}