diff --git a/src/utils/quant_levels_dec_utils.c b/src/utils/quant_levels_dec_utils.c index 97e78937..8336108d 100644 --- a/src/utils/quant_levels_dec_utils.c +++ b/src/utils/quant_levels_dec_utils.c @@ -43,30 +43,30 @@ static const uint8_t kOrderedDither[DSIZE][DSIZE] = { #endif typedef struct { - int width_, height_; // dimension - int stride_; // stride in bytes - int row_; // current input row being processed - uint8_t* src_; // input pointer - uint8_t* dst_; // output pointer + int width, height; // dimension + int stride; // stride in bytes + int row; // current input row being processed + uint8_t* src; // input pointer + uint8_t* dst; // output pointer - int radius_; // filter radius (=delay) - int scale_; // normalization factor, in FIX bits precision + int radius; // filter radius (=delay) + int scale; // normalization factor, in FIX bits precision - void* mem_; // all memory + void* mem; // all memory // various scratch buffers - uint16_t* start_; - uint16_t* cur_; - uint16_t* end_; - uint16_t* top_; - uint16_t* average_; + uint16_t* start; + uint16_t* cur; + uint16_t* end; + uint16_t* top; + uint16_t* average; // input levels distribution - int num_levels_; // number of quantized levels - int min_, max_; // min and max level values - int min_level_dist_; // smallest distance between two consecutive levels + int num_levels; // number of quantized levels + int min, max; // min and max level values + int min_level_dist; // smallest distance between two consecutive levels - int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory + int16_t* correction; // size = 1 + 2*LUT_SIZE -> ~4k memory } SmoothParams; //------------------------------------------------------------------------------ @@ -79,11 +79,11 @@ static WEBP_INLINE uint8_t clip_8b(int v) { // vertical accumulation static void VFilter(SmoothParams* const p) { - const uint8_t* src = p->src_; - const int w = p->width_; - uint16_t* const cur = p->cur_; - const uint16_t* const top = p->top_; - uint16_t* const out = p->end_; + const uint8_t* src = p->src; + const int w = p->width; + uint16_t* const cur = p->cur; + const uint16_t* const top = p->top; + uint16_t* const out = p->end; uint16_t sum = 0; // all arithmetic is modulo 16bit int x; @@ -95,24 +95,24 @@ static void VFilter(SmoothParams* const p) { cur[x] = new_value; } // move input pointers one row down - p->top_ = p->cur_; - p->cur_ += w; - if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over + p->top = p->cur; + p->cur += w; + if (p->cur == p->end) p->cur = p->start; // roll-over // We replicate edges, as it's somewhat easier as a boundary condition. // That's why we don't update the 'src' pointer on top/bottom area: - if (p->row_ >= 0 && p->row_ < p->height_ - 1) { - p->src_ += p->stride_; + if (p->row >= 0 && p->row < p->height - 1) { + p->src += p->stride; } } // horizontal accumulation. We use mirror replication of missing pixels, as it's // a little easier to implement (surprisingly). static void HFilter(SmoothParams* const p) { - const uint16_t* const in = p->end_; - uint16_t* const out = p->average_; - const uint32_t scale = p->scale_; - const int w = p->width_; - const int r = p->radius_; + const uint16_t* const in = p->end; + uint16_t* const out = p->average; + const uint32_t scale = p->scale; + const int w = p->width; + const int r = p->radius; int x; for (x = 0; x <= r; ++x) { // left mirroring @@ -132,17 +132,17 @@ static void HFilter(SmoothParams* const p) { // emit one filtered output row static void ApplyFilter(SmoothParams* const p) { - const uint16_t* const average = p->average_; - const int w = p->width_; - const int16_t* const correction = p->correction_; + const uint16_t* const average = p->average; + const int w = p->width; + const int16_t* const correction = p->correction; #if defined(USE_DITHERING) - const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE]; + const uint8_t* const dither = kOrderedDither[p->row % DSIZE]; #endif - uint8_t* const dst = p->dst_; + uint8_t* const dst = p->dst; int x; for (x = 0; x < w; ++x) { const int v = dst[x]; - if (v < p->max_ && v > p->min_) { + if (v < p->max && v > p->min) { const int c = (v << DFIX) + correction[average[x] - (v << LFIX)]; #if defined(USE_DITHERING) dst[x] = clip_8b(c + dither[x % DSIZE]); @@ -151,7 +151,7 @@ static void ApplyFilter(SmoothParams* const p) { #endif } } - p->dst_ += p->stride_; // advance output pointer + p->dst += p->stride; // advance output pointer } //------------------------------------------------------------------------------ @@ -183,28 +183,28 @@ static void InitCorrectionLUT(int16_t* const lut, int min_dist) { static void CountLevels(SmoothParams* const p) { int i, j, last_level; uint8_t used_levels[256] = { 0 }; - const uint8_t* data = p->src_; - p->min_ = 255; - p->max_ = 0; - for (j = 0; j < p->height_; ++j) { - for (i = 0; i < p->width_; ++i) { + const uint8_t* data = p->src; + p->min = 255; + p->max = 0; + for (j = 0; j < p->height; ++j) { + for (i = 0; i < p->width; ++i) { const int v = data[i]; - if (v < p->min_) p->min_ = v; - if (v > p->max_) p->max_ = v; + if (v < p->min) p->min = v; + if (v > p->max) p->max = v; used_levels[v] = 1; } - data += p->stride_; + data += p->stride; } // Compute the mininum distance between two non-zero levels. - p->min_level_dist_ = p->max_ - p->min_; + p->min_level_dist = p->max - p->min; last_level = -1; for (i = 0; i < 256; ++i) { if (used_levels[i]) { - ++p->num_levels_; + ++p->num_levels; if (last_level >= 0) { const int level_dist = i - last_level; - if (level_dist < p->min_level_dist_) { - p->min_level_dist_ = level_dist; + if (level_dist < p->min_level_dist) { + p->min_level_dist = level_dist; } } last_level = i; @@ -217,46 +217,46 @@ static int InitParams(uint8_t* const data, int width, int height, int stride, int radius, SmoothParams* const p) { const int R = 2 * radius + 1; // total size of the kernel - const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_); - const size_t size_m = width * sizeof(*p->average_); - const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_); + const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start); + const size_t size_m = width * sizeof(*p->average); + const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction); const size_t total_size = size_scratch_m + size_m + size_lut; uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size); if (mem == NULL) return 0; - p->mem_ = (void*)mem; + p->mem = (void*)mem; - p->start_ = (uint16_t*)mem; - p->cur_ = p->start_; - p->end_ = p->start_ + R * width; - p->top_ = p->end_ - width; - memset(p->top_, 0, width * sizeof(*p->top_)); + p->start = (uint16_t*)mem; + p->cur = p->start; + p->end = p->start + R * width; + p->top = p->end - width; + memset(p->top, 0, width * sizeof(*p->top)); mem += size_scratch_m; - p->average_ = (uint16_t*)mem; + p->average = (uint16_t*)mem; mem += size_m; - p->width_ = width; - p->height_ = height; - p->stride_ = stride; - p->src_ = data; - p->dst_ = data; - p->radius_ = radius; - p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant - p->row_ = -radius; + p->width = width; + p->height = height; + p->stride = stride; + p->src = data; + p->dst = data; + p->radius = radius; + p->scale = (1 << (FIX + LFIX)) / (R * R); // normalization constant + p->row = -radius; // analyze the input distribution so we can best-fit the threshold CountLevels(p); // correction table - p->correction_ = ((int16_t*)mem) + LUT_SIZE; - InitCorrectionLUT(p->correction_, p->min_level_dist_); + p->correction = ((int16_t*)mem) + LUT_SIZE; + InitCorrectionLUT(p->correction, p->min_level_dist); return 1; } static void CleanupParams(SmoothParams* const p) { - WebPSafeFree(p->mem_); + WebPSafeFree(p->mem); } int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride, @@ -274,12 +274,12 @@ int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride, SmoothParams p; memset(&p, 0, sizeof(p)); if (!InitParams(data, width, height, stride, radius, &p)) return 0; - if (p.num_levels_ > 2) { - for (; p.row_ < p.height_; ++p.row_) { + if (p.num_levels > 2) { + for (; p.row < p.height; ++p.row) { VFilter(&p); // accumulate average of input // Need to wait few rows in order to prime the filter, // before emitting some output. - if (p.row_ >= p.radius_) { + if (p.row >= p.radius) { HFilter(&p); ApplyFilter(&p); }