libwebp/src/enc/histogram.c

769 lines
26 KiB
C
Raw Normal View History

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../utils/utils.h"
#define MAX_COST 1.e38
// Number of partitions for the three dominant (literal, red and blue) symbol
// costs.
#define NUM_PARTITIONS 4
// The size of the bin-hash corresponding to the three dominant costs.
#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
static void HistogramClear(VP8LHistogram* const p) {
memset(p->literal_, 0, sizeof(p->literal_));
memset(p->red_, 0, sizeof(p->red_));
memset(p->blue_, 0, sizeof(p->blue_));
memset(p->alpha_, 0, sizeof(p->alpha_));
memset(p->distance_, 0, sizeof(p->distance_));
p->bit_cost_ = 0;
}
void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
VP8LHistogram* const histo) {
int i;
for (i = 0; i < refs->size; ++i) {
VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
}
}
void VP8LHistogramCreate(VP8LHistogram* const p,
const VP8LBackwardRefs* const refs,
int palette_code_bits) {
if (palette_code_bits >= 0) {
p->palette_code_bits_ = palette_code_bits;
}
HistogramClear(p);
VP8LHistogramStoreRefs(refs, p);
}
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
p->palette_code_bits_ = palette_code_bits;
HistogramClear(p);
}
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
int i;
VP8LHistogramSet* set;
VP8LHistogram* bulk;
const uint64_t total_size = sizeof(*set)
+ (uint64_t)size * sizeof(*set->histograms)
+ (uint64_t)size * sizeof(**set->histograms);
uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
if (memory == NULL) return NULL;
set = (VP8LHistogramSet*)memory;
memory += sizeof(*set);
set->histograms = (VP8LHistogram**)memory;
memory += size * sizeof(*set->histograms);
bulk = (VP8LHistogram*)memory;
set->max_size = size;
set->size = size;
for (i = 0; i < size; ++i) {
set->histograms[i] = bulk + i;
VP8LHistogramInit(set->histograms[i], cache_bits);
}
return set;
}
// -----------------------------------------------------------------------------
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
const PixOrCopy* const v) {
if (PixOrCopyIsLiteral(v)) {
++histo->alpha_[PixOrCopyLiteral(v, 3)];
++histo->red_[PixOrCopyLiteral(v, 2)];
++histo->literal_[PixOrCopyLiteral(v, 1)];
++histo->blue_[PixOrCopyLiteral(v, 0)];
} else if (PixOrCopyIsCacheIdx(v)) {
int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
++histo->literal_[literal_ix];
} else {
int code, extra_bits;
VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
++histo->literal_[256 + code];
VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
++histo->distance_[code];
}
}
static WEBP_INLINE double BitsEntropyRefine(int nonzeros, int sum, int max_val,
double retval) {
double mix;
if (nonzeros < 5) {
if (nonzeros <= 1) {
return 0;
}
// Two symbols, they will be 0 and 1 in a Huffman code.
// Let's mix in a bit of entropy to favor good clustering when
// distributions of these are combined.
if (nonzeros == 2) {
return 0.99 * sum + 0.01 * retval;
}
// No matter what the entropy says, we cannot be better than min_limit
// with Huffman coding. I am mixing a bit of entropy into the
// min_limit since it produces much better (~0.5 %) compression results
// perhaps because of better entropy clustering.
if (nonzeros == 3) {
mix = 0.95;
} else {
mix = 0.7; // nonzeros == 4.
}
} else {
mix = 0.627;
}
{
double min_limit = 2 * sum - max_val;
min_limit = mix * min_limit + (1.0 - mix) * retval;
return (retval < min_limit) ? min_limit : retval;
}
}
static double BitsEntropy(const int* const array, int n) {
double retval = 0.;
int sum = 0;
int nonzeros = 0;
int max_val = 0;
int i;
for (i = 0; i < n; ++i) {
if (array[i] != 0) {
sum += array[i];
++nonzeros;
retval -= VP8LFastSLog2(array[i]);
if (max_val < array[i]) {
max_val = array[i];
}
}
}
retval += VP8LFastSLog2(sum);
return BitsEntropyRefine(nonzeros, sum, max_val, retval);
}
static double BitsEntropyCombined(const int* const X, const int* const Y,
int n) {
double retval = 0.;
int sum = 0;
int nonzeros = 0;
int max_val = 0;
int i;
for (i = 0; i < n; ++i) {
const int xy = X[i] + Y[i];
if (xy != 0) {
sum += xy;
++nonzeros;
retval -= VP8LFastSLog2(xy);
if (max_val < xy) {
max_val = xy;
}
}
}
retval += VP8LFastSLog2(sum);
return BitsEntropyRefine(nonzeros, sum, max_val, retval);
}
static WEBP_INLINE double InitialHuffmanCost(void) {
// Small bias because Huffman code length is typically not stored in
// full length.
static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
static const double kSmallBias = 9.1;
return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
}
static WEBP_INLINE double HuffmanCostRefine(int streak, int val) {
double retval;
if (streak > 3) {
if (val == 0) {
retval = 1.5625 + 0.234375 * streak;
} else {
retval = 2.578125 + 0.703125 * streak;
}
} else {
if (val == 0) {
retval = 1.796875 * streak;
} else {
retval = 3.28125 * streak;
}
}
return retval;
}
// Returns the cost encode the rle-encoded entropy code.
// The constants in this function are experimental.
static double HuffmanCost(const int* const population, int length) {
int streak = 0;
int i = 0;
double retval = InitialHuffmanCost();
for (; i < length - 1; ++i) {
++streak;
if (population[i] == population[i + 1]) {
continue;
}
retval += HuffmanCostRefine(streak, population[i]);
streak = 0;
}
retval += HuffmanCostRefine(++streak, population[i]);
return retval;
}
static double HuffmanCostCombined(const int* const X, const int* const Y,
int length) {
int streak = 0;
int i = 0;
double retval = InitialHuffmanCost();
for (; i < length - 1; ++i) {
const int xy = X[i] + Y[i];
const int xy_next = X[i + 1] + Y[i + 1];
++streak;
if (xy == xy_next) {
continue;
}
retval += HuffmanCostRefine(streak, xy);
streak = 0;
}
retval += HuffmanCostRefine(++streak, X[i] + Y[i]);
return retval;
}
static double PopulationCost(const int* const population, int length) {
return BitsEntropy(population, length) + HuffmanCost(population, length);
}
static double GetCombinedEntropy(const int* const X, const int* const Y,
int length) {
return BitsEntropyCombined(X, Y, length) + HuffmanCostCombined(X, Y, length);
}
static double ExtraCost(const int* const population, int length) {
int i;
double cost = 0.;
for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
return cost;
}
static double ExtraCostCombined(const int* const X, const int* const Y,
int length) {
int i;
double cost = 0.;
for (i = 2; i < length - 2; ++i) {
const int xy = X[i + 2] + Y[i + 2];
cost += (i >> 1) * xy;
}
return cost;
}
// Estimates the Entropy + Huffman + other block overhead size cost.
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
return
PopulationCost(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_))
+ PopulationCost(p->red_, 256)
+ PopulationCost(p->blue_, 256)
+ PopulationCost(p->alpha_, 256)
+ PopulationCost(p->distance_, NUM_DISTANCE_CODES)
+ ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
+ ExtraCost(p->distance_, NUM_DISTANCE_CODES);
}
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
return
BitsEntropy(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_))
+ BitsEntropy(p->red_, 256)
+ BitsEntropy(p->blue_, 256)
+ BitsEntropy(p->alpha_, 256)
+ BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
+ ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
+ ExtraCost(p->distance_, NUM_DISTANCE_CODES);
}
// -----------------------------------------------------------------------------
// Various histogram combine/cost-eval functions
// Adds 'in' histogram to 'out'
static void HistogramAdd(const VP8LHistogram* const in,
VP8LHistogram* const out) {
int i;
for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
out->literal_[i] += in->literal_[i];
}
for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
out->distance_[i] += in->distance_[i];
}
for (i = 0; i < 256; ++i) {
out->red_[i] += in->red_[i];
out->blue_[i] += in->blue_[i];
out->alpha_[i] += in->alpha_[i];
}
}
static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
const VP8LHistogram* const b,
double cost_threshold,
double* cost) {
const int palette_code_bits =
(a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ :
b->palette_code_bits_;
*cost += GetCombinedEntropy(a->literal_, b->literal_,
VP8LHistogramNumCodes(palette_code_bits));
*cost += ExtraCostCombined(a->literal_ + 256, b->literal_ + 256,
NUM_LENGTH_CODES);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->red_, b->red_, 256);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->blue_, b->blue_, 256);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->alpha_, b->alpha_, 256);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES);
*cost += ExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
if (*cost > cost_threshold) return 0;
return 1;
}
// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
// to the threshold value 'cost_threshold'. The score returned is
// Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
// Since the previous score passed is 'cost_threshold', we only need to compare
// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
// early.
static double HistogramAddEval(const VP8LHistogram* const a,
const VP8LHistogram* const b,
VP8LHistogram* const out,
double cost_threshold) {
double cost = 0;
const double sum_cost = a->bit_cost_ + b->bit_cost_;
int i;
cost_threshold += sum_cost;
if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
out->literal_[i] = a->literal_[i] + b->literal_[i];
}
for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
out->distance_[i] = a->distance_[i] + b->distance_[i];
}
for (i = 0; i < 256; ++i) {
out->red_[i] = a->red_[i] + b->red_[i];
out->blue_[i] = a->blue_[i] + b->blue_[i];
out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
}
out->palette_code_bits_ = (a->palette_code_bits_ > b->palette_code_bits_) ?
a->palette_code_bits_ : b->palette_code_bits_;
out->bit_cost_ = cost;
}
return cost - sum_cost;
}
// Same as HistogramAddEval(), except that the resulting histogram
// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
// the term C(b) which is constant over all the evaluations.
static double HistogramAddThresh(const VP8LHistogram* const a,
const VP8LHistogram* const b,
double cost_threshold) {
double cost = -a->bit_cost_;
GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
return cost;
}
// -----------------------------------------------------------------------------
// The structure to keep track of cost range for the three dominant entropy
// symbols.
// TODO(skal): Evaluate if float can be used here instead of double for
// representing the entropy costs.
typedef struct {
double literal_max_;
double literal_min_;
double red_max_;
double red_min_;
double blue_max_;
double blue_min_;
} DominantCostRange;
static void DominantCostRangeInit(DominantCostRange* const c) {
c->literal_max_ = 0.;
c->literal_min_ = MAX_COST;
c->red_max_ = 0.;
c->red_min_ = MAX_COST;
c->blue_max_ = 0.;
c->blue_min_ = MAX_COST;
}
static void UpdateDominantCostRange(
const VP8LHistogram* const h, DominantCostRange* const c) {
if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
}
static void UpdateHistogramCost(VP8LHistogram* const h) {
const double alpha_cost = PopulationCost(h->alpha_, 256);
const double distance_cost =
PopulationCost(h->distance_, NUM_DISTANCE_CODES) +
ExtraCost(h->distance_, NUM_DISTANCE_CODES);
const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
h->literal_cost_ = PopulationCost(h->literal_, num_codes) +
ExtraCost(h->literal_ + 256, NUM_LENGTH_CODES);
h->red_cost_ = PopulationCost(h->red_, 256);
h->blue_cost_ = PopulationCost(h->blue_, 256);
h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
alpha_cost + distance_cost;
}
static int GetBinIdForEntropy(double min, double max, double val) {
const double range = max - min + 1e-6;
const double delta = val - min;
return (int)(NUM_PARTITIONS * delta / range);
}
// TODO(vikasa): Evaluate, if there's any correlation between red & blue.
static int GetHistoBinIndex(
const VP8LHistogram* const h, const DominantCostRange* const c) {
const int bin_id =
GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_) +
NUM_PARTITIONS * GetBinIdForEntropy(c->red_min_, c->red_max_,
h->red_cost_) +
NUM_PARTITIONS * NUM_PARTITIONS * GetBinIdForEntropy(c->literal_min_,
c->literal_max_,
h->literal_cost_);
assert(bin_id < BIN_SIZE);
return bin_id;
}
// Construct the histograms from backward references.
static void HistogramBuild(
int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
VP8LHistogramSet* const init_histo) {
int i;
int x = 0, y = 0;
const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
VP8LHistogram** const histograms = init_histo->histograms;
assert(histo_bits > 0);
// Construct the Histo from a given backward references.
for (i = 0; i < backward_refs->size; ++i) {
const PixOrCopy* const v = &backward_refs->refs[i];
const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
x += PixOrCopyLength(v);
while (x >= xsize) {
x -= xsize;
++y;
}
}
}
// Compute the histogram aggregate bit_cost.
static void HistogramAnalyze(
VP8LHistogramSet* const init_histo, VP8LHistogramSet* const histo_image) {
int i;
const int histo_size = init_histo->size;
VP8LHistogram** const histograms = init_histo->histograms;
for (i = 0; i < histo_size; ++i) {
VP8LHistogram* const histo = histograms[i];
histo->bit_cost_ = VP8LHistogramEstimateBits(histo);
// Copy histograms from init_histo[] to histo_image[].
*histo_image->histograms[i] = *histo;
}
}
// Partition Histograms to different entropy bins for three dominant (literal,
// red and blue) symbol costs and compute the histogram aggregate bit_cost.
static void HistogramAnalyzeBin(
VP8LHistogramSet* const init_histo, VP8LHistogramSet* const histo_image,
int16_t* const bin_map) {
int i;
const int histo_size = init_histo->size;
VP8LHistogram** const histograms = init_histo->histograms;
const int bin_depth = init_histo->size + 1;
DominantCostRange cost_range;
DominantCostRangeInit(&cost_range);
// Analyze the dominant (literal, red and blue) entropy costs.
for (i = 0; i < histo_size; ++i) {
VP8LHistogram* const histo = histograms[i];
UpdateHistogramCost(histo);
// Copy histograms from init_histo[] to histo_image[].
*histo_image->histograms[i] = *histo;
UpdateDominantCostRange(histo, &cost_range);
}
// bin-hash histograms on three of the dominant (literal, red and blue)
// symbol costs.
for (i = 0; i < histo_size; ++i) {
int num_histos;
VP8LHistogram* const histo = histograms[i];
const int16_t bin_id = (int16_t)GetHistoBinIndex(histo, &cost_range);
const int bin_offset = bin_id * bin_depth;
// bin_map[n][0] for every bin 'n' maintains the counter for the number of
// histograms in that bin.
// Get and increment the num_histos in that bin.
num_histos = ++bin_map[bin_offset];
assert(bin_offset + num_histos < bin_depth * BIN_SIZE);
// Add histogram i'th index at num_histos (last) position in the bin_map.
bin_map[bin_offset + num_histos] = i;
}
}
// Compact the histogram set by moving the valid one left in the set to the
// head and moving the ones that have been merged to other histograms towards
// the end.
// TODO(vikasa): Evaluate if this method can be avoided by altering the code
// logic of HistogramCombineBin main loop.
static void HistogramCompactBins(VP8LHistogramSet* const histo_image) {
int start = 0;
int end = histo_image->size - 1;
while (start < end) {
while (start <= end &&
histo_image->histograms[start] != NULL &&
histo_image->histograms[start]->bit_cost_ != 0.) {
++start;
}
while (start <= end &&
histo_image->histograms[end]->bit_cost_ == 0.) {
histo_image->histograms[end] = NULL;
--end;
}
if (start < end) {
assert(histo_image->histograms[start] != NULL);
assert(histo_image->histograms[end] != NULL);
*histo_image->histograms[start] = *histo_image->histograms[end];
histo_image->histograms[end] = NULL;
--end;
}
}
histo_image->size = end + 1;
}
static void HistogramCombineBin(VP8LHistogramSet* const histo_image,
VP8LHistogram* const histos,
int bin_depth,
int16_t* const bin_map) {
int bin_id;
VP8LHistogram* cur_combo = histos;
for (bin_id = 0; bin_id < BIN_SIZE; ++bin_id) {
const int bin_offset = bin_id * bin_depth;
const int num_histos = bin_map[bin_offset];
const int idx1 = bin_map[bin_offset + 1];
int n;
for (n = 2; n <= num_histos; ++n) {
const int idx2 = bin_map[bin_offset + n];
const double bit_cost_idx2 = histo_image->histograms[idx2]->bit_cost_;
if (bit_cost_idx2 > 0.) {
const double bit_cost_thresh = -bit_cost_idx2 * 0.1;
const double curr_cost_diff =
HistogramAddEval(histo_image->histograms[idx1],
histo_image->histograms[idx2],
cur_combo, bit_cost_thresh);
if (curr_cost_diff < bit_cost_thresh) {
*histo_image->histograms[idx1] = *cur_combo;
histo_image->histograms[idx2]->bit_cost_ = 0.;
}
}
}
}
HistogramCompactBins(histo_image);
}
static uint32_t MyRand(uint32_t *seed) {
*seed *= 16807U;
if (*seed == 0) {
*seed = 1;
}
return *seed;
}
static void HistogramCombine(VP8LHistogramSet* const histo_image,
VP8LHistogram* const histos, int quality) {
int iter;
uint32_t seed = 0;
int tries_with_no_success = 0;
int histo_image_size = histo_image->size;
const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
const int outer_iters = histo_image_size * iter_mult;
const int num_pairs = histo_image_size / 2;
const int num_tries_no_success = outer_iters / 2;
const int min_cluster_size = 2;
VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
// Collapse similar histograms in 'histo_image'.
for (iter = 0;
iter < outer_iters && histo_image_size >= min_cluster_size;
++iter) {
double best_cost_diff = 0.;
int best_idx1 = -1, best_idx2 = 1;
int j;
const int num_tries =
(num_pairs < histo_image_size) ? num_pairs : histo_image_size;
seed += iter;
for (j = 0; j < num_tries; ++j) {
double curr_cost_diff;
// Choose two histograms at random and try to combine them.
const uint32_t idx1 = MyRand(&seed) % histo_image_size;
const uint32_t tmp = (j & 7) + 1;
const uint32_t diff =
(tmp < 3) ? tmp : MyRand(&seed) % (histo_image_size - 1);
const uint32_t idx2 = (idx1 + diff + 1) % histo_image_size;
if (idx1 == idx2) {
continue;
}
// Calculate cost reduction on combining.
curr_cost_diff = HistogramAddEval(histo_image->histograms[idx1],
histo_image->histograms[idx2],
cur_combo, best_cost_diff);
if (curr_cost_diff < best_cost_diff) { // found a better pair?
{ // swap cur/best combo histograms
VP8LHistogram* const tmp_histo = cur_combo;
cur_combo = best_combo;
best_combo = tmp_histo;
}
best_cost_diff = curr_cost_diff;
best_idx1 = idx1;
best_idx2 = idx2;
}
}
if (best_idx1 >= 0) {
*histo_image->histograms[best_idx1] = *best_combo;
// swap best_idx2 slot with last one (which is now unused)
--histo_image_size;
if (best_idx2 != histo_image_size) {
histo_image->histograms[best_idx2] =
histo_image->histograms[histo_image_size];
histo_image->histograms[histo_image_size] = NULL;
}
tries_with_no_success = 0;
}
if (++tries_with_no_success >= num_tries_no_success) {
break;
}
}
histo_image->size = histo_image_size;
}
// -----------------------------------------------------------------------------
// Histogram refinement
// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRemap(const VP8LHistogramSet* const init_histo,
const VP8LHistogramSet* const histo_image,
uint16_t* const symbols) {
int i;
for (i = 0; i < init_histo->size; ++i) {
int best_out = 0;
double best_bits = HistogramAddThresh(histo_image->histograms[0],
init_histo->histograms[i], MAX_COST);
int k;
for (k = 1; k < histo_image->size; ++k) {
const double cur_bits = HistogramAddThresh(histo_image->histograms[k],
init_histo->histograms[i],
best_bits);
if (cur_bits < best_bits) {
best_bits = cur_bits;
best_out = k;
}
}
symbols[i] = best_out;
}
// Recompute each out based on raw and symbols.
for (i = 0; i < histo_image->size; ++i) {
HistogramClear(histo_image->histograms[i]);
}
for (i = 0; i < init_histo->size; ++i) {
HistogramAdd(init_histo->histograms[i],
histo_image->histograms[symbols[i]]);
}
}
int VP8LGetHistoImageSymbols(int xsize, int ysize,
const VP8LBackwardRefs* const refs,
int quality, int histo_bits, int cache_bits,
VP8LHistogramSet* const histo_image,
uint16_t* const histogram_symbols) {
int ok = 0;
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
const int histo_image_raw_size = histo_xsize * histo_ysize;
// The bin_map for every bin follows following semantics:
// bin_map[n][0] = num_histo; // The number of histograms in that bin.
// bin_map[n][1] = index of first histogram in that bin;
// bin_map[n][num_histo] = index of last histogram in that bin;
// bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = un-used indices.
const int bin_depth = histo_image_raw_size + 1;
int16_t* bin_map = NULL;
VP8LHistogram* const histos =
(VP8LHistogram*)WebPSafeMalloc(2ULL, sizeof(*histos));
VP8LHistogramSet* const init_histo =
VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
if (init_histo == NULL || histos == NULL) {
goto Error;
}
// Don't attempt linear bin-partition heuristic for:
// Histograms of small sizes, as bin_map will be very sparse and;
// Higher qualities (> 90), to preserve the compression gains at those
// quality settings.
if (init_histo->size > 2 * BIN_SIZE && quality < 90) {
const int bin_map_size = (uint64_t)bin_depth * BIN_SIZE;
bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map));
if (bin_map == NULL) goto Error;
}
// Construct the histogram from backward references.
HistogramBuild(xsize, histo_bits, refs, init_histo);
if (bin_map != NULL) {
HistogramAnalyzeBin(init_histo, histo_image, bin_map);
HistogramCombineBin(histo_image, histos, bin_depth, bin_map);
} else {
HistogramAnalyze(init_histo, histo_image);
}
// Collapse similar histograms.
HistogramCombine(histo_image, histos, quality);
// Find the optimal map from original histograms to the final ones.
HistogramRemap(init_histo, histo_image, histogram_symbols);
ok = 1;
Error:
WebPSafeFree(bin_map);
WebPSafeFree(init_histo);
WebPSafeFree(histos);
return ok;
}