libwebp/src/enc/histogram.c

510 lines
18 KiB
C
Raw Normal View History

// Copyright 2012 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#include <math.h>
#include <stdio.h>
#include "./backward_references.h"
#include "./histogram.h"
// A lookup table for small values of log(int) to be used in entropy
// computation.
//
// ", ".join(["%.16ff" % x for x in [0.0]+[log(x) for x in range(1, 256)]])
static const float kLogTable[] = {
0.0000000000000000f, 0.0000000000000000f, 0.6931471805599453f,
1.0986122886681098f, 1.3862943611198906f, 1.6094379124341003f,
1.7917594692280550f, 1.9459101490553132f, 2.0794415416798357f,
2.1972245773362196f, 2.3025850929940459f, 2.3978952727983707f,
2.4849066497880004f, 2.5649493574615367f, 2.6390573296152584f,
2.7080502011022101f, 2.7725887222397811f, 2.8332133440562162f,
2.8903717578961645f, 2.9444389791664403f, 2.9957322735539909f,
3.0445224377234230f, 3.0910424533583161f, 3.1354942159291497f,
3.1780538303479458f, 3.2188758248682006f, 3.2580965380214821f,
3.2958368660043291f, 3.3322045101752038f, 3.3672958299864741f,
3.4011973816621555f, 3.4339872044851463f, 3.4657359027997265f,
3.4965075614664802f, 3.5263605246161616f, 3.5553480614894135f,
3.5835189384561099f, 3.6109179126442243f, 3.6375861597263857f,
3.6635616461296463f, 3.6888794541139363f, 3.7135720667043080f,
3.7376696182833684f, 3.7612001156935624f, 3.7841896339182610f,
3.8066624897703196f, 3.8286413964890951f, 3.8501476017100584f,
3.8712010109078911f, 3.8918202981106265f, 3.9120230054281460f,
3.9318256327243257f, 3.9512437185814275f, 3.9702919135521220f,
3.9889840465642745f, 4.0073331852324712f, 4.0253516907351496f,
4.0430512678345503f, 4.0604430105464191f, 4.0775374439057197f,
4.0943445622221004f, 4.1108738641733114f, 4.1271343850450917f,
4.1431347263915326f, 4.1588830833596715f, 4.1743872698956368f,
4.1896547420264252f, 4.2046926193909657f, 4.2195077051761070f,
4.2341065045972597f, 4.2484952420493594f, 4.2626798770413155f,
4.2766661190160553f, 4.2904594411483910f, 4.3040650932041702f,
4.3174881135363101f, 4.3307333402863311f, 4.3438054218536841f,
4.3567088266895917f, 4.3694478524670215f, 4.3820266346738812f,
4.3944491546724391f, 4.4067192472642533f, 4.4188406077965983f,
4.4308167988433134f, 4.4426512564903167f, 4.4543472962535073f,
4.4659081186545837f, 4.4773368144782069f, 4.4886363697321396f,
4.4998096703302650f, 4.5108595065168497f, 4.5217885770490405f,
4.5325994931532563f, 4.5432947822700038f, 4.5538768916005408f,
4.5643481914678361f, 4.5747109785033828f, 4.5849674786705723f,
4.5951198501345898f, 4.6051701859880918f, 4.6151205168412597f,
4.6249728132842707f, 4.6347289882296359f, 4.6443908991413725f,
4.6539603501575231f, 4.6634390941120669f, 4.6728288344619058f,
4.6821312271242199f, 4.6913478822291435f, 4.7004803657924166f,
4.7095302013123339f, 4.7184988712950942f, 4.7273878187123408f,
4.7361984483944957f, 4.7449321283632502f, 4.7535901911063645f,
4.7621739347977563f, 4.7706846244656651f, 4.7791234931115296f,
4.7874917427820458f, 4.7957905455967413f, 4.8040210447332568f,
4.8121843553724171f, 4.8202815656050371f, 4.8283137373023015f,
4.8362819069514780f, 4.8441870864585912f, 4.8520302639196169f,
4.8598124043616719f, 4.8675344504555822f, 4.8751973232011512f,
4.8828019225863706f, 4.8903491282217537f, 4.8978397999509111f,
4.9052747784384296f, 4.9126548857360524f, 4.9199809258281251f,
4.9272536851572051f, 4.9344739331306915f, 4.9416424226093039f,
4.9487598903781684f, 4.9558270576012609f, 4.9628446302599070f,
4.9698132995760007f, 4.9767337424205742f, 4.9836066217083363f,
4.9904325867787360f, 4.9972122737641147f, 5.0039463059454592f,
5.0106352940962555f, 5.0172798368149243f, 5.0238805208462765f,
5.0304379213924353f, 5.0369526024136295f, 5.0434251169192468f,
5.0498560072495371f, 5.0562458053483077f, 5.0625950330269669f,
5.0689042022202315f, 5.0751738152338266f, 5.0814043649844631f,
5.0875963352323836f, 5.0937502008067623f, 5.0998664278241987f,
5.1059454739005803f, 5.1119877883565437f, 5.1179938124167554f,
5.1239639794032588f, 5.1298987149230735f, 5.1357984370502621f,
5.1416635565026603f, 5.1474944768134527f, 5.1532915944977793f,
5.1590552992145291f, 5.1647859739235145f, 5.1704839950381514f,
5.1761497325738288f, 5.1817835502920850f, 5.1873858058407549f,
5.1929568508902104f, 5.1984970312658261f, 5.2040066870767951f,
5.2094861528414214f, 5.2149357576089859f, 5.2203558250783244f,
5.2257466737132017f, 5.2311086168545868f, 5.2364419628299492f,
5.2417470150596426f, 5.2470240721604862f, 5.2522734280466299f,
5.2574953720277815f, 5.2626901889048856f, 5.2678581590633282f,
5.2729995585637468f, 5.2781146592305168f, 5.2832037287379885f,
5.2882670306945352f, 5.2933048247244923f, 5.2983173665480363f,
5.3033049080590757f, 5.3082676974012051f, 5.3132059790417872f,
5.3181199938442161f, 5.3230099791384085f, 5.3278761687895813f,
5.3327187932653688f, 5.3375380797013179f, 5.3423342519648109f,
5.3471075307174685f, 5.3518581334760666f, 5.3565862746720123f,
5.3612921657094255f, 5.3659760150218512f, 5.3706380281276624f,
5.3752784076841653f, 5.3798973535404597f, 5.3844950627890888f,
5.3890717298165010f, 5.3936275463523620f, 5.3981627015177525f,
5.4026773818722793f, 5.4071717714601188f, 5.4116460518550396f,
5.4161004022044201f, 5.4205349992722862f, 5.4249500174814029f,
5.4293456289544411f, 5.4337220035542400f, 5.4380793089231956f,
5.4424177105217932f, 5.4467373716663099f, 5.4510384535657002f,
5.4553211153577017f, 5.4595855141441589f, 5.4638318050256105f,
5.4680601411351315f, 5.4722706736714750f, 5.4764635519315110f,
5.4806389233419912f, 5.4847969334906548f, 5.4889377261566867f,
5.4930614433405482f, 5.4971682252932021f, 5.5012582105447274f,
5.5053315359323625f, 5.5093883366279774f, 5.5134287461649825f,
5.5174528964647074f, 5.5214609178622460f, 5.5254529391317835f,
5.5294290875114234f, 5.5333894887275203f, 5.5373342670185366f,
5.5412635451584258f,
};
// Faster logarithm for small integers, with the property of log(0) == 0.
static WEBP_INLINE double FastLog(int v) {
if (v < (int)(sizeof(kLogTable) / sizeof(kLogTable[0]))) {
return kLogTable[v];
}
return log(v);
}
void VP8LConvertPopulationCountTableToBitEstimates(
int num_symbols,
const int* const population_counts,
double* const output) {
int sum = 0;
int nonzeros = 0;
int i;
for (i = 0; i < num_symbols; ++i) {
sum += population_counts[i];
if (population_counts[i] > 0) {
++nonzeros;
}
}
if (nonzeros <= 1) {
memset(output, 0, num_symbols * sizeof(*output));
return;
}
{
const double log2sum = log2(sum);
for (i = 0; i < num_symbols; ++i) {
if (population_counts[i] == 0) {
output[i] = log2sum;
} else {
output[i] = log2sum - log2(population_counts[i]);
}
}
}
}
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const p,
const PixOrCopy v) {
if (PixOrCopyIsLiteral(&v)) {
++p->alpha_[PixOrCopyLiteral(&v, 3)];
++p->red_[PixOrCopyLiteral(&v, 2)];
++p->literal_[PixOrCopyLiteral(&v, 1)];
++p->blue_[PixOrCopyLiteral(&v, 0)];
} else if (PixOrCopyIsPaletteIx(&v)) {
int literal_ix = 256 + kLengthCodes + PixOrCopyPaletteIx(&v);
++p->literal_[literal_ix];
} else {
int code, extra_bits_count, extra_bits_value;
PrefixEncode(PixOrCopyLength(&v),
&code, &extra_bits_count, &extra_bits_value);
++p->literal_[256 + code];
PrefixEncode(PixOrCopyDistance(&v),
&code, &extra_bits_count, &extra_bits_value);
++p->distance_[code];
}
}
void VP8LHistogramCreate(VP8LHistogram* const p,
const PixOrCopy* const literal_and_length,
int n_literal_and_length) {
int i;
VP8LHistogramClear(p);
for (i = 0; i < n_literal_and_length; ++i) {
VP8LHistogramAddSinglePixOrCopy(p, literal_and_length[i]);
}
}
double VP8LShannonEntropy(const int* const array, int n) {
int i;
double retval = 0;
int sum = 0;
for (i = 0; i < n; ++i) {
if (array[i] != 0) {
sum += array[i];
retval += array[i] * FastLog(array[i]);
}
}
retval -= sum * FastLog(sum);
retval *= -1.4426950408889634; // 1.0 / -FastLog(2);
return retval;
}
static double BitsEntropy(const int* const array, int n) {
double retval = 0;
int sum = 0;
int nonzeros = 0;
int max_val = 0;
int i;
double mix;
for (i = 0; i < n; ++i) {
if (array[i] != 0) {
sum += array[i];
++nonzeros;
retval += array[i] * FastLog(array[i]);
if (max_val < array[i]) {
max_val = array[i];
}
}
}
retval -= sum * FastLog(sum);
retval *= -1.4426950408889634; // 1.0 / -Log(2);
mix = 0.627;
if (nonzeros < 5) {
if (nonzeros <= 1) {
return 0;
}
// Two symbols, they will be 0 and 1 in a Huffman code.
// Let's mix in a bit of entropy to favor good clustering when
// distributions of these are combined.
if (nonzeros == 2) {
return 0.99 * sum + 0.01 * retval;
}
// No matter what the entropy says, we cannot be better than min_limit
// with Huffman coding. I am mixing a bit of entropy into the
// min_limit since it produces much better (~0.5 %) compression results
// perhaps because of better entropy clustering.
if (nonzeros == 3) {
mix = 0.95;
} else {
mix = 0.7; // nonzeros == 4.
}
}
{
double min_limit = 2 * sum - max_val;
min_limit = mix * min_limit + (1.0 - mix) * retval;
if (retval < min_limit) {
return min_limit;
}
}
return retval;
}
double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p)) +
BitsEntropy(&p->red_[0], 256) +
BitsEntropy(&p->blue_[0], 256) +
BitsEntropy(&p->alpha_[0], 256) +
BitsEntropy(&p->distance_[0], DISTANCE_CODES_MAX);
// Compute the extra bits cost.
size_t i;
for (i = 2; i < kLengthCodes - 2; ++i) {
retval +=
(i >> 1) * p->literal_[256 + i + 2];
}
for (i = 2; i < DISTANCE_CODES_MAX - 2; ++i) {
retval += (i >> 1) * p->distance_[i + 2];
}
return retval;
}
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
return VP8LHistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p);
}
// Returns the cost encode the rle-encoded entropy code.
// The constants in this function are experimental.
static double HuffmanCost(const int* const population, int length) {
// Small bias because Huffman code length is typically not stored in
// full length.
static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
static const double kSmallBias = 9.1;
double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
int streak = 0;
int i = 0;
for (; i < length - 1; ++i) {
++streak;
if (population[i] == population[i + 1]) {
continue;
}
last_streak_hack:
// population[i] points now to the symbol in the streak of same values.
if (streak > 3) {
if (population[i] == 0) {
retval += 1.5625 + 0.234375 * streak;
} else {
retval += 2.578125 + 0.703125 * streak;
}
} else {
if (population[i] == 0) {
retval += 1.796875 * streak;
} else {
retval += 3.28125 * streak;
}
}
streak = 0;
}
if (i == length - 1) {
++streak;
goto last_streak_hack;
}
return retval;
}
double VP8LHistogramEstimateBitsHeader(const VP8LHistogram* const p) {
return HuffmanCost(&p->alpha_[0], 256) +
HuffmanCost(&p->red_[0], 256) +
HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
HuffmanCost(&p->blue_[0], 256) +
HuffmanCost(&p->distance_[0], DISTANCE_CODES_MAX);
}
int VP8LHistogramBuildImage(int xsize, int ysize,
int histobits, int palettebits,
const PixOrCopy* backward_refs,
int backward_refs_size,
VP8LHistogram*** image_arg, int* image_size) {
int histo_xsize = histobits ? (xsize + (1 << histobits) - 1) >> histobits : 1;
int histo_ysize = histobits ? (ysize + (1 << histobits) - 1) >> histobits : 1;
int i;
int x = 0;
int y = 0;
VP8LHistogram** image;
*image_arg = NULL;
*image_size = histo_xsize * histo_ysize;
image = (VP8LHistogram**)calloc(*image_size, sizeof(*image));
if (image == NULL) {
return 0;
}
for (i = 0; i < *image_size; ++i) {
image[i] = (VP8LHistogram*)malloc(sizeof(*image[i]));
if (!image[i]) {
int k;
for (k = 0; k < *image_size; ++k) {
free(image[k]);
}
free(image);
return 0;
}
VP8LHistogramInit(image[i], palettebits);
}
// x and y trace the position in the image.
for (i = 0; i < backward_refs_size; ++i) {
const PixOrCopy v = backward_refs[i];
const int ix =
histobits ? (y >> histobits) * histo_xsize + (x >> histobits) : 0;
VP8LHistogramAddSinglePixOrCopy(image[ix], v);
x += PixOrCopyLength(&v);
while (x >= xsize) {
x -= xsize;
++y;
}
}
*image_arg = image;
return 1;
}
int VP8LHistogramCombine(VP8LHistogram** in, int in_size, int quality,
VP8LHistogram*** out_arg, int* out_size) {
int ok = 0;
int i;
unsigned int seed = 0;
int tries_with_no_success = 0;
int inner_iters = 10 + quality / 2;
int iter;
double* bit_costs = (double*)malloc(in_size * sizeof(*bit_costs));
VP8LHistogram** out = (VP8LHistogram**)calloc(in_size, sizeof(*out));
*out_arg = out;
*out_size = in_size;
if (bit_costs == NULL || out == NULL) {
goto Error;
}
// Copy
for (i = 0; i < in_size; ++i) {
VP8LHistogram* new_histo = (VP8LHistogram*)malloc(sizeof(*new_histo));
if (new_histo == NULL) {
goto Error;
}
*new_histo = *(in[i]);
out[i] = new_histo;
bit_costs[i] = VP8LHistogramEstimateBits(out[i]);
}
// Collapse similar histograms.
for (iter = 0; iter < in_size * 3 && *out_size >= 2; ++iter) {
double best_val = 0;
int best_ix0 = 0;
int best_ix1 = 0;
// Try a few times.
int k;
for (k = 0; k < inner_iters; ++k) {
// Choose two, build a combo out of them.
double cost_val;
VP8LHistogram* combo;
int ix0 = rand_r(&seed) % *out_size;
int ix1;
int diff = ((k & 7) + 1) % (*out_size - 1);
if (diff >= 3) {
diff = rand_r(&seed) % (*out_size - 1);
}
ix1 = (ix0 + diff + 1) % *out_size;
if (ix0 == ix1) {
continue;
}
combo = (VP8LHistogram*)malloc(sizeof(*combo));
if (combo == NULL) {
goto Error;
}
*combo = *out[ix0];
VP8LHistogramAdd(combo, out[ix1]);
cost_val =
VP8LHistogramEstimateBits(combo) - bit_costs[ix0] - bit_costs[ix1];
if (best_val > cost_val) {
best_val = cost_val;
best_ix0 = ix0;
best_ix1 = ix1;
}
free(combo);
}
if (best_val < 0.0) {
VP8LHistogramAdd(out[best_ix0], out[best_ix1]);
bit_costs[best_ix0] =
best_val + bit_costs[best_ix0] + bit_costs[best_ix1];
// Erase (*out)[best_ix1]
free(out[best_ix1]);
memmove(&out[best_ix1], &out[best_ix1 + 1],
(*out_size - best_ix1 - 1) * sizeof(out[0]));
memmove(&bit_costs[best_ix1], &bit_costs[best_ix1 + 1],
(*out_size - best_ix1 - 1) * sizeof(bit_costs[0]));
--(*out_size);
tries_with_no_success = 0;
}
if (++tries_with_no_success >= 50) {
break;
}
}
ok = 1;
Error:
free(bit_costs);
if (!ok) {
if (out) {
int i;
for (i = 0; i < *out_size; ++i) {
free(out[i]);
}
free(out);
}
}
return ok;
}
// What is the bit cost of moving square_histogram from
// cur_symbol to candidate_symbol.
static double HistogramDistance(const VP8LHistogram* const square_histogram,
int cur_symbol,
int candidate_symbol,
VP8LHistogram** candidate_histograms) {
double new_bit_cost;
double previous_bit_cost;
VP8LHistogram modified;
if (cur_symbol == candidate_symbol) {
return 0; // Going nowhere. No savings.
}
previous_bit_cost =
VP8LHistogramEstimateBits(candidate_histograms[candidate_symbol]);
if (cur_symbol != -1) {
previous_bit_cost +=
VP8LHistogramEstimateBits(candidate_histograms[cur_symbol]);
}
// Compute the bit cost of the histogram where the data moves to.
modified = *candidate_histograms[candidate_symbol];
VP8LHistogramAdd(&modified, square_histogram);
new_bit_cost = VP8LHistogramEstimateBits(&modified);
// Compute the bit cost of the histogram where the data moves away.
if (cur_symbol != -1) {
modified = *candidate_histograms[cur_symbol];
VP8LHistogramRemove(&modified, square_histogram);
new_bit_cost += VP8LHistogramEstimateBits(&modified);
}
return new_bit_cost - previous_bit_cost;
}
void VP8LHistogramRefine(VP8LHistogram** raw, int raw_size,
uint32_t* symbols, int out_size, VP8LHistogram** out) {
int i;
// Find the best 'out' histogram for each of the raw histograms
for (i = 0; i < raw_size; ++i) {
int best_out = 0;
double best_bits = HistogramDistance(raw[i], symbols[i], 0, out);
int k;
for (k = 1; k < out_size; ++k) {
double cur_bits = HistogramDistance(raw[i], symbols[i], k, out);
if (cur_bits < best_bits) {
best_bits = cur_bits;
best_out = k;
}
}
symbols[i] = best_out;
}
// Recompute each out based on raw and symbols.
for (i = 0; i < out_size; ++i) {
VP8LHistogramClear(out[i]);
}
for (i = 0; i < raw_size; ++i) {
VP8LHistogramAdd(out[symbols[i]], raw[i]);
}
}