mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-31 10:26:10 +01:00 
			
		
		
		
	In nand_davinci_readecc(), select the correct NANDF<n>ECC register based on CONFIG_SYS_NAND_CS rather than hardcoding the choice of NANDF1ECC. This allows 1-bit hardware ECC to work with chip select other than CS2. Note this now matches the usage in nand_davinci_enable_hwecc(), which already had the correct handling, and allows refactoring to a single function encapsulating the register read. Without this fix, writing NAND pages to a chip not wired to CS2 would result in in the ECC calculation always returning FFFFFF for each 512-byte segment, and reading back a correctly written page (one with ECC intact) would always fail. With this fix, the ECC is written and verified correctly. Signed-off-by: Laurence Withers <lwithers@guralp.com> Signed-off-by: Scott Wood <scottwood@freescale.com>
		
			
				
	
	
		
			649 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			649 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * NAND driver for TI DaVinci based boards.
 | |
|  *
 | |
|  * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
 | |
|  *
 | |
|  * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * linux/drivers/mtd/nand/nand_davinci.c
 | |
|  *
 | |
|  * NAND Flash Driver
 | |
|  *
 | |
|  * Copyright (C) 2006 Texas Instruments.
 | |
|  *
 | |
|  * ----------------------------------------------------------------------------
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, write to the Free Software
 | |
|  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  * ----------------------------------------------------------------------------
 | |
|  *
 | |
|  *  Overview:
 | |
|  *   This is a device driver for the NAND flash device found on the
 | |
|  *   DaVinci board which utilizes the Samsung k9k2g08 part.
 | |
|  *
 | |
|  Modifications:
 | |
|  ver. 1.0: Feb 2005, Vinod/Sudhakar
 | |
|  -
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <asm/io.h>
 | |
| #include <nand.h>
 | |
| #include <asm/arch/nand_defs.h>
 | |
| #include <asm/arch/emif_defs.h>
 | |
| 
 | |
| /* Definitions for 4-bit hardware ECC */
 | |
| #define NAND_TIMEOUT			10240
 | |
| #define NAND_ECC_BUSY			0xC
 | |
| #define NAND_4BITECC_MASK		0x03FF03FF
 | |
| #define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
 | |
| #define ECC_STATE_NO_ERR		0x0
 | |
| #define ECC_STATE_TOO_MANY_ERRS		0x1
 | |
| #define ECC_STATE_ERR_CORR_COMP_P	0x2
 | |
| #define ECC_STATE_ERR_CORR_COMP_N	0x3
 | |
| 
 | |
| /*
 | |
|  * Exploit the little endianness of the ARM to do multi-byte transfers
 | |
|  * per device read. This can perform over twice as quickly as individual
 | |
|  * byte transfers when buffer alignment is conducive.
 | |
|  *
 | |
|  * NOTE: This only works if the NAND is not connected to the 2 LSBs of
 | |
|  * the address bus. On Davinci EVM platforms this has always been true.
 | |
|  */
 | |
| static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	const u32 *nand = chip->IO_ADDR_R;
 | |
| 
 | |
| 	/* Make sure that buf is 32 bit aligned */
 | |
| 	if (((int)buf & 0x3) != 0) {
 | |
| 		if (((int)buf & 0x1) != 0) {
 | |
| 			if (len) {
 | |
| 				*buf = readb(nand);
 | |
| 				buf += 1;
 | |
| 				len--;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (((int)buf & 0x3) != 0) {
 | |
| 			if (len >= 2) {
 | |
| 				*(u16 *)buf = readw(nand);
 | |
| 				buf += 2;
 | |
| 				len -= 2;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* copy aligned data */
 | |
| 	while (len >= 4) {
 | |
| 		*(u32 *)buf = __raw_readl(nand);
 | |
| 		buf += 4;
 | |
| 		len -= 4;
 | |
| 	}
 | |
| 
 | |
| 	/* mop up any remaining bytes */
 | |
| 	if (len) {
 | |
| 		if (len >= 2) {
 | |
| 			*(u16 *)buf = readw(nand);
 | |
| 			buf += 2;
 | |
| 			len -= 2;
 | |
| 		}
 | |
| 
 | |
| 		if (len)
 | |
| 			*buf = readb(nand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 | |
| 				   int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	const u32 *nand = chip->IO_ADDR_W;
 | |
| 
 | |
| 	/* Make sure that buf is 32 bit aligned */
 | |
| 	if (((int)buf & 0x3) != 0) {
 | |
| 		if (((int)buf & 0x1) != 0) {
 | |
| 			if (len) {
 | |
| 				writeb(*buf, nand);
 | |
| 				buf += 1;
 | |
| 				len--;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (((int)buf & 0x3) != 0) {
 | |
| 			if (len >= 2) {
 | |
| 				writew(*(u16 *)buf, nand);
 | |
| 				buf += 2;
 | |
| 				len -= 2;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* copy aligned data */
 | |
| 	while (len >= 4) {
 | |
| 		__raw_writel(*(u32 *)buf, nand);
 | |
| 		buf += 4;
 | |
| 		len -= 4;
 | |
| 	}
 | |
| 
 | |
| 	/* mop up any remaining bytes */
 | |
| 	if (len) {
 | |
| 		if (len >= 2) {
 | |
| 			writew(*(u16 *)buf, nand);
 | |
| 			buf += 2;
 | |
| 			len -= 2;
 | |
| 		}
 | |
| 
 | |
| 		if (len)
 | |
| 			writeb(*buf, nand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 | |
| 		unsigned int ctrl)
 | |
| {
 | |
| 	struct		nand_chip *this = mtd->priv;
 | |
| 	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
 | |
| 
 | |
| 	if (ctrl & NAND_CTRL_CHANGE) {
 | |
| 		IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
 | |
| 
 | |
| 		if (ctrl & NAND_CLE)
 | |
| 			IO_ADDR_W |= MASK_CLE;
 | |
| 		if (ctrl & NAND_ALE)
 | |
| 			IO_ADDR_W |= MASK_ALE;
 | |
| 		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
 | |
| 	}
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		writeb(cmd, IO_ADDR_W);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_HW_ECC
 | |
| 
 | |
| static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
 | |
| {
 | |
| 	u_int32_t	ecc = 0;
 | |
| 
 | |
| 	ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
 | |
| 				CONFIG_SYS_NAND_CS - 2]));
 | |
| 
 | |
| 	return ecc;
 | |
| }
 | |
| 
 | |
| static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	u_int32_t	val;
 | |
| 
 | |
| 	/* reading the ECC result register resets the ECC calculation */
 | |
| 	nand_davinci_readecc(mtd);
 | |
| 
 | |
| 	val = __raw_readl(&davinci_emif_regs->nandfcr);
 | |
| 	val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
 | |
| 	val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
 | |
| 	__raw_writel(val, &davinci_emif_regs->nandfcr);
 | |
| }
 | |
| 
 | |
| static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 | |
| 		u_char *ecc_code)
 | |
| {
 | |
| 	u_int32_t		tmp;
 | |
| 
 | |
| 	tmp = nand_davinci_readecc(mtd);
 | |
| 
 | |
| 	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
 | |
| 	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
 | |
| 	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
 | |
| 
 | |
| 	/* Invert so that erased block ECC is correct */
 | |
| 	tmp = ~tmp;
 | |
| 
 | |
| 	*ecc_code++ = tmp;
 | |
| 	*ecc_code++ = tmp >>  8;
 | |
| 	*ecc_code++ = tmp >> 16;
 | |
| 
 | |
| 	/* NOTE:  the above code matches mainline Linux:
 | |
| 	 *	.PQR.stu ==> ~PQRstu
 | |
| 	 *
 | |
| 	 * MontaVista/TI kernels encode those bytes differently, use
 | |
| 	 * complicated (and allegedly sometimes-wrong) correction code,
 | |
| 	 * and usually shipped with U-Boot that uses software ECC:
 | |
| 	 *	.PQR.stu ==> PsQRtu
 | |
| 	 *
 | |
| 	 * If you need MV/TI compatible NAND I/O in U-Boot, it should
 | |
| 	 * be possible to (a) change the mangling above, (b) reverse
 | |
| 	 * that mangling in nand_davinci_correct_data() below.
 | |
| 	 */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 		u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
 | |
| 					  (read_ecc[2] << 16);
 | |
| 	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
 | |
| 					  (calc_ecc[2] << 16);
 | |
| 	u_int32_t diff = ecc_calc ^ ecc_nand;
 | |
| 
 | |
| 	if (diff) {
 | |
| 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 | |
| 			/* Correctable error */
 | |
| 			if ((diff >> (12 + 3)) < this->ecc.size) {
 | |
| 				uint8_t find_bit = 1 << ((diff >> 12) & 7);
 | |
| 				uint32_t find_byte = diff >> (12 + 3);
 | |
| 
 | |
| 				dat[find_byte] ^= find_bit;
 | |
| 				MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
 | |
| 					 "bit ECC error at offset: %d, bit: "
 | |
| 					 "%d\n", find_byte, find_bit);
 | |
| 				return 1;
 | |
| 			} else {
 | |
| 				return -1;
 | |
| 			}
 | |
| 		} else if (!(diff & (diff - 1))) {
 | |
| 			/* Single bit ECC error in the ECC itself,
 | |
| 			   nothing to fix */
 | |
| 			MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
 | |
| 				 "ECC.\n");
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			/* Uncorrectable error */
 | |
| 			MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_SYS_NAND_HW_ECC */
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
 | |
| static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
 | |
| #if defined(CONFIG_SYS_NAND_PAGE_2K)
 | |
| 	.eccbytes = 40,
 | |
| 	.eccpos = {
 | |
| 		24, 25, 26, 27, 28,
 | |
| 		29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
 | |
| 		39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
 | |
| 		49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
 | |
| 		59, 60, 61, 62, 63,
 | |
| 		},
 | |
| 	.oobfree = {
 | |
| 		{.offset = 2, .length = 22, },
 | |
| 	},
 | |
| #elif defined(CONFIG_SYS_NAND_PAGE_4K)
 | |
| 	.eccbytes = 80,
 | |
| 	.eccpos = {
 | |
| 		48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
 | |
| 		58, 59, 60, 61, 62, 63,	64, 65, 66, 67,
 | |
| 		68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
 | |
| 		78, 79,	80, 81, 82, 83,	84, 85, 86, 87,
 | |
| 		88, 89, 90, 91, 92, 93,	94, 95, 96, 97,
 | |
| 		98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
 | |
| 		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
 | |
| 		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
 | |
| 		},
 | |
| 	.oobfree = {
 | |
| 		{.offset = 2, .length = 46, },
 | |
| 	},
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case NAND_ECC_WRITE:
 | |
| 	case NAND_ECC_READ:
 | |
| 		/*
 | |
| 		 * Start a new ECC calculation for reading or writing 512 bytes
 | |
| 		 * of data.
 | |
| 		 */
 | |
| 		val = __raw_readl(&davinci_emif_regs->nandfcr);
 | |
| 		val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
 | |
| 		val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
 | |
| 		val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
 | |
| 		val |= DAVINCI_NANDFCR_4BIT_ECC_START;
 | |
| 		__raw_writel(val, &davinci_emif_regs->nandfcr);
 | |
| 		break;
 | |
| 	case NAND_ECC_READSYN:
 | |
| 		val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
 | |
| 			NAND_4BITECC_MASK;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
 | |
| 					   const uint8_t *dat,
 | |
| 					   uint8_t *ecc_code)
 | |
| {
 | |
| 	unsigned int hw_4ecc[4];
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	nand_davinci_4bit_readecc(mtd, hw_4ecc);
 | |
| 
 | |
| 	/*Convert 10 bit ecc value to 8 bit */
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		unsigned int hw_ecc_low = hw_4ecc[i * 2];
 | |
| 		unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
 | |
| 
 | |
| 		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
 | |
| 		*ecc_code++ = hw_ecc_low & 0xFF;
 | |
| 
 | |
| 		/*
 | |
| 		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
 | |
| 		 * (count1=1) and 6 bits from val2 (count1=0) or
 | |
| 		 * val5 (count1=1)
 | |
| 		 */
 | |
| 		*ecc_code++ =
 | |
| 		    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
 | |
| 
 | |
| 		/*
 | |
| 		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
 | |
| 		 * 4 bits from val3 (count1=0) or val6 (count1=1)
 | |
| 		 */
 | |
| 		*ecc_code++ =
 | |
| 		    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
 | |
| 		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
 | |
| 		 */
 | |
| 		*ecc_code++ =
 | |
| 		    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
 | |
| 
 | |
| 		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
 | |
| 		*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
 | |
| 					  uint8_t *read_ecc, uint8_t *calc_ecc)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int hw_4ecc[4];
 | |
| 	unsigned int iserror;
 | |
| 	unsigned short *ecc16;
 | |
| 	unsigned int numerrors, erroraddress, errorvalue;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
 | |
| 	 * will assume we are looking at an erased page and we should ignore
 | |
| 	 * the ECC.
 | |
| 	 */
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		if (read_ecc[i] != 0xFF)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i == 10)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Convert 8 bit in to 10 bit */
 | |
| 	ecc16 = (unsigned short *)&read_ecc[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
 | |
| 	 * Write each parity value one at a time starting from 4bit_ecc_val8
 | |
| 	 * to 4bit_ecc_val1.
 | |
| 	 */
 | |
| 
 | |
| 	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
 | |
| 	__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
 | |
| 	__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
 | |
| 	__raw_writel((ecc16[3] >> 2) & 0x3FF,
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
 | |
| 	__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
 | |
| 	__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
 | |
| 	__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
 | |
| 	__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/* Take 10 bits from 0th and 1st bytes */
 | |
| 	__raw_writel((ecc16[0]) & 0x3FF,
 | |
| 			&davinci_emif_regs->nand4biteccload);
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform a dummy read to the EMIF Revision Code and Status register.
 | |
| 	 * This is required to ensure time for syndrome calculation after
 | |
| 	 * writing the ECC values in previous step.
 | |
| 	 */
 | |
| 
 | |
| 	val = __raw_readl(&davinci_emif_regs->nandfsr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
 | |
| 	 * A syndrome value of 0 means no bit errors. If the syndrome is
 | |
| 	 * non-zero then go further otherwise return.
 | |
| 	 */
 | |
| 	nand_davinci_4bit_readecc(mtd, hw_4ecc);
 | |
| 
 | |
| 	if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear any previous address calculation by doing a dummy read of an
 | |
| 	 * error address register.
 | |
| 	 */
 | |
| 	val = __raw_readl(&davinci_emif_regs->nanderradd1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
 | |
| 	 * register to 1.
 | |
| 	 */
 | |
| 	__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
 | |
| 			&davinci_emif_regs->nandfcr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the corr_state field (bits 8 to 11) in the
 | |
| 	 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
 | |
| 	 * Otherwise ECC calculation has not even begun and the next loop might
 | |
| 	 * fail because of a false positive!
 | |
| 	 */
 | |
| 	i = NAND_TIMEOUT;
 | |
| 	do {
 | |
| 		val = __raw_readl(&davinci_emif_regs->nandfsr);
 | |
| 		val &= 0xc00;
 | |
| 		i--;
 | |
| 	} while ((i > 0) && !val);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the corr_state field (bits 8 to 11) in the
 | |
| 	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
 | |
| 	 */
 | |
| 	i = NAND_TIMEOUT;
 | |
| 	do {
 | |
| 		val = __raw_readl(&davinci_emif_regs->nandfsr);
 | |
| 		val &= 0xc00;
 | |
| 		i--;
 | |
| 	} while ((i > 0) && val);
 | |
| 
 | |
| 	iserror = __raw_readl(&davinci_emif_regs->nandfsr);
 | |
| 	iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
 | |
| 	iserror = iserror >> 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
 | |
| 	 * corrected (five or more errors).  The number of errors
 | |
| 	 * calculated (err_num field) differs from the number of errors
 | |
| 	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
 | |
| 	 * correction complete (errors on bit 8 or 9).
 | |
| 	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
 | |
| 	 * complete (error exists).
 | |
| 	 */
 | |
| 
 | |
| 	if (iserror == ECC_STATE_NO_ERR) {
 | |
| 		val = __raw_readl(&davinci_emif_regs->nanderrval1);
 | |
| 		return 0;
 | |
| 	} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
 | |
| 		val = __raw_readl(&davinci_emif_regs->nanderrval1);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
 | |
| 			& 0x3) + 1;
 | |
| 
 | |
| 	/* Read the error address, error value and correct */
 | |
| 	for (i = 0; i < numerrors; i++) {
 | |
| 		if (i > 1) {
 | |
| 			erroraddress =
 | |
| 			    ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
 | |
| 			      (16 * (i & 1))) & 0x3FF);
 | |
| 			erroraddress = ((512 + 7) - erroraddress);
 | |
| 			errorvalue =
 | |
| 			    ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
 | |
| 			      (16 * (i & 1))) & 0xFF);
 | |
| 		} else {
 | |
| 			erroraddress =
 | |
| 			    ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
 | |
| 			      (16 * (i & 1))) & 0x3FF);
 | |
| 			erroraddress = ((512 + 7) - erroraddress);
 | |
| 			errorvalue =
 | |
| 			    ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
 | |
| 			      (16 * (i & 1))) & 0xFF);
 | |
| 		}
 | |
| 		/* xor the corrupt data with error value */
 | |
| 		if (erroraddress < 512)
 | |
| 			dat[erroraddress] ^= errorvalue;
 | |
| 	}
 | |
| 
 | |
| 	return numerrors;
 | |
| }
 | |
| #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
 | |
| 
 | |
| static int nand_davinci_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
 | |
| }
 | |
| 
 | |
| static void nand_flash_init(void)
 | |
| {
 | |
| 	/* This is for DM6446 EVM and *very* similar.  DO NOT GROW THIS!
 | |
| 	 * Instead, have your board_init() set EMIF timings, based on its
 | |
| 	 * knowledge of the clocks and what devices are hooked up ... and
 | |
| 	 * don't even do that unless no UBL handled it.
 | |
| 	 */
 | |
| #ifdef CONFIG_SOC_DM644X
 | |
| 	u_int32_t	acfg1 = 0x3ffffffc;
 | |
| 
 | |
| 	/*------------------------------------------------------------------*
 | |
| 	 *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
 | |
| 	 *                                                                  *
 | |
| 	 *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
 | |
| 	 *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
 | |
| 	 *                                                                  *
 | |
| 	 *------------------------------------------------------------------*/
 | |
| 	 acfg1 = 0
 | |
| 		| (0 << 31)	/* selectStrobe */
 | |
| 		| (0 << 30)	/* extWait */
 | |
| 		| (1 << 26)	/* writeSetup	10 ns */
 | |
| 		| (3 << 20)	/* writeStrobe	40 ns */
 | |
| 		| (1 << 17)	/* writeHold	10 ns */
 | |
| 		| (1 << 13)	/* readSetup	10 ns */
 | |
| 		| (5 << 7)	/* readStrobe	60 ns */
 | |
| 		| (1 << 4)	/* readHold	10 ns */
 | |
| 		| (3 << 2)	/* turnAround	?? ns */
 | |
| 		| (0 << 0)	/* asyncSize	8-bit bus */
 | |
| 		;
 | |
| 
 | |
| 	__raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
 | |
| 
 | |
| 	/* NAND flash on CS2 */
 | |
| 	__raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void davinci_nand_init(struct nand_chip *nand)
 | |
| {
 | |
| 	nand->chip_delay  = 0;
 | |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | |
| 	nand->options	  |= NAND_USE_FLASH_BBT;
 | |
| #endif
 | |
| #ifdef CONFIG_SYS_NAND_HW_ECC
 | |
| 	nand->ecc.mode = NAND_ECC_HW;
 | |
| 	nand->ecc.size = 512;
 | |
| 	nand->ecc.bytes = 3;
 | |
| 	nand->ecc.calculate = nand_davinci_calculate_ecc;
 | |
| 	nand->ecc.correct  = nand_davinci_correct_data;
 | |
| 	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
 | |
| #else
 | |
| 	nand->ecc.mode = NAND_ECC_SOFT;
 | |
| #endif /* CONFIG_SYS_NAND_HW_ECC */
 | |
| #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
 | |
| 	nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
 | |
| 	nand->ecc.size = 512;
 | |
| 	nand->ecc.bytes = 10;
 | |
| 	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
 | |
| 	nand->ecc.correct = nand_davinci_4bit_correct_data;
 | |
| 	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
 | |
| 	nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
 | |
| #endif
 | |
| 	/* Set address of hardware control function */
 | |
| 	nand->cmd_ctrl = nand_davinci_hwcontrol;
 | |
| 
 | |
| 	nand->read_buf = nand_davinci_read_buf;
 | |
| 	nand->write_buf = nand_davinci_write_buf;
 | |
| 
 | |
| 	nand->dev_ready = nand_davinci_dev_ready;
 | |
| 
 | |
| 	nand_flash_init();
 | |
| }
 | |
| 
 | |
| int board_nand_init(struct nand_chip *chip) __attribute__((weak));
 | |
| 
 | |
| int board_nand_init(struct nand_chip *chip)
 | |
| {
 | |
| 	davinci_nand_init(chip);
 | |
| 	return 0;
 | |
| }
 |