mirror of
https://github.com/webmproject/libwebp.git
synced 2024-12-27 06:08:21 +01:00
Speed up Huffman decoding for lossless
speed-up is ~1.6% for photographic image to 10% for graphical image (1000 images corpus was sped up by 5.8 %) Code by akramarz@google.com and jyrki@google.com Change-Id: Iceb2e50e6cc761b9315a3865d22ec9d19b8011c6
This commit is contained in:
parent
637b388809
commit
f75dfbf23d
156
src/dec/vp8l.c
156
src/dec/vp8l.c
@ -72,6 +72,29 @@ static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
|
||||
0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
|
||||
};
|
||||
|
||||
// Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
|
||||
// and distance alphabets are constant (256 for red, blue and alpha, 40 for
|
||||
// distance) and lookup table sizes for them in worst case are 630 and 410
|
||||
// respectively. Size of green alphabet depends on color cache size and is equal
|
||||
// to 256 (green component values) + 24 (length prefix values)
|
||||
// + color_cache_size (between 0 and 2048).
|
||||
// All values computed for 8-bit first level lookup with tests/tools/enough.cc.
|
||||
#define FIXED_TABLE_SIZE (630 * 3 + 410)
|
||||
static const int kTableSize[12] = {
|
||||
FIXED_TABLE_SIZE + 654,
|
||||
FIXED_TABLE_SIZE + 656,
|
||||
FIXED_TABLE_SIZE + 658,
|
||||
FIXED_TABLE_SIZE + 662,
|
||||
FIXED_TABLE_SIZE + 670,
|
||||
FIXED_TABLE_SIZE + 686,
|
||||
FIXED_TABLE_SIZE + 718,
|
||||
FIXED_TABLE_SIZE + 782,
|
||||
FIXED_TABLE_SIZE + 912,
|
||||
FIXED_TABLE_SIZE + 1168,
|
||||
FIXED_TABLE_SIZE + 1680,
|
||||
FIXED_TABLE_SIZE + 2704
|
||||
};
|
||||
|
||||
static int DecodeImageStream(int xsize, int ysize,
|
||||
int is_level0,
|
||||
VP8LDecoder* const dec,
|
||||
@ -151,31 +174,20 @@ static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
|
||||
// Decodes the next Huffman code from bit-stream.
|
||||
// FillBitWindow(br) needs to be called at minimum every second call
|
||||
// to ReadSymbol, in order to pre-fetch enough bits.
|
||||
static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
|
||||
static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
|
||||
VP8LBitReader* const br) {
|
||||
const HuffmanTreeNode* node = tree->root_;
|
||||
uint32_t bits = VP8LPrefetchBits(br);
|
||||
int bitpos = br->bit_pos_;
|
||||
// Check if we find the bit combination from the Huffman lookup table.
|
||||
const int lut_ix = bits & (HUFF_LUT - 1);
|
||||
const int lut_bits = tree->lut_bits_[lut_ix];
|
||||
if (lut_bits <= HUFF_LUT_BITS) {
|
||||
VP8LSetBitPos(br, bitpos + lut_bits);
|
||||
return tree->lut_symbol_[lut_ix];
|
||||
int nbits;
|
||||
uint32_t val = VP8LPrefetchBits(br);
|
||||
table += val & HUFFMAN_TABLE_MASK;
|
||||
nbits = table->bits - HUFFMAN_TABLE_BITS;
|
||||
if (nbits > 0) {
|
||||
VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
|
||||
val = VP8LPrefetchBits(br);
|
||||
table += table->value;
|
||||
table += val & ((1 << nbits) - 1);
|
||||
}
|
||||
node += tree->lut_jump_[lut_ix];
|
||||
bitpos += HUFF_LUT_BITS;
|
||||
bits >>= HUFF_LUT_BITS;
|
||||
|
||||
// Decode the value from a binary tree.
|
||||
assert(node != NULL);
|
||||
do {
|
||||
node = HuffmanTreeNextNode(node, bits & 1);
|
||||
bits >>= 1;
|
||||
++bitpos;
|
||||
} while (HuffmanTreeNodeIsNotLeaf(node));
|
||||
VP8LSetBitPos(br, bitpos);
|
||||
return node->symbol_;
|
||||
VP8LSetBitPos(br, br->bit_pos_ + table->bits);
|
||||
return table->value;
|
||||
}
|
||||
|
||||
static int ReadHuffmanCodeLengths(
|
||||
@ -186,11 +198,11 @@ static int ReadHuffmanCodeLengths(
|
||||
int symbol;
|
||||
int max_symbol;
|
||||
int prev_code_len = DEFAULT_CODE_LENGTH;
|
||||
HuffmanTree tree;
|
||||
int huff_codes[NUM_CODE_LENGTH_CODES] = { 0 };
|
||||
HuffmanCode table[1 << LENGTHS_TABLE_BITS];
|
||||
|
||||
if (!VP8LHuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
|
||||
huff_codes, NUM_CODE_LENGTH_CODES)) {
|
||||
if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
|
||||
code_length_code_lengths,
|
||||
NUM_CODE_LENGTH_CODES)) {
|
||||
dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
|
||||
return 0;
|
||||
}
|
||||
@ -208,10 +220,13 @@ static int ReadHuffmanCodeLengths(
|
||||
|
||||
symbol = 0;
|
||||
while (symbol < num_symbols) {
|
||||
const HuffmanCode* p = table;
|
||||
int code_len;
|
||||
if (max_symbol-- == 0) break;
|
||||
VP8LFillBitWindow(br);
|
||||
code_len = ReadSymbol(&tree, br);
|
||||
p += VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK;
|
||||
VP8LSetBitPos(br, br->bit_pos_ + p->bits);
|
||||
code_len = p->value;
|
||||
if (code_len < kCodeLengthLiterals) {
|
||||
code_lengths[symbol++] = code_len;
|
||||
if (code_len != 0) prev_code_len = code_len;
|
||||
@ -233,36 +248,31 @@ static int ReadHuffmanCodeLengths(
|
||||
ok = 1;
|
||||
|
||||
End:
|
||||
VP8LHuffmanTreeFree(&tree);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
|
||||
// tree.
|
||||
static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
|
||||
int* const code_lengths, int* const huff_codes,
|
||||
HuffmanTree* const tree) {
|
||||
int* const code_lengths, HuffmanCode* const table) {
|
||||
int ok = 0;
|
||||
VP8LBitReader* const br = &dec->br_;
|
||||
const int simple_code = VP8LReadBits(br, 1);
|
||||
|
||||
memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
|
||||
|
||||
if (simple_code) { // Read symbols, codes & code lengths directly.
|
||||
int symbols[2];
|
||||
int codes[2];
|
||||
const int num_symbols = VP8LReadBits(br, 1) + 1;
|
||||
const int first_symbol_len_code = VP8LReadBits(br, 1);
|
||||
// The first code is either 1 bit or 8 bit code.
|
||||
symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
|
||||
codes[0] = 0;
|
||||
code_lengths[0] = num_symbols - 1;
|
||||
int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
|
||||
code_lengths[symbol] = 1;
|
||||
// The second code (if present), is always 8 bit long.
|
||||
if (num_symbols == 2) {
|
||||
symbols[1] = VP8LReadBits(br, 8);
|
||||
codes[1] = 1;
|
||||
code_lengths[1] = num_symbols - 1;
|
||||
symbol = VP8LReadBits(br, 8);
|
||||
code_lengths[symbol] = 1;
|
||||
}
|
||||
ok = VP8LHuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
|
||||
alphabet_size, num_symbols);
|
||||
ok = 1;
|
||||
} else { // Decode Huffman-coded code lengths.
|
||||
int i;
|
||||
int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
|
||||
@ -272,22 +282,20 @@ static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
|
||||
return 0;
|
||||
}
|
||||
|
||||
memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
|
||||
|
||||
for (i = 0; i < num_codes; ++i) {
|
||||
code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
|
||||
}
|
||||
ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
|
||||
code_lengths);
|
||||
ok = ok && VP8LHuffmanTreeBuildImplicit(tree, code_lengths, huff_codes,
|
||||
alphabet_size);
|
||||
}
|
||||
|
||||
ok = ok && !br->error_;
|
||||
if (!ok) {
|
||||
dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
return VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
|
||||
code_lengths, alphabet_size);
|
||||
}
|
||||
|
||||
static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
|
||||
@ -297,10 +305,12 @@ static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
|
||||
VP8LMetadata* const hdr = &dec->hdr_;
|
||||
uint32_t* huffman_image = NULL;
|
||||
HTreeGroup* htree_groups = NULL;
|
||||
HuffmanCode* huffman_tables = NULL;
|
||||
HuffmanCode* next = NULL;
|
||||
int num_htree_groups = 1;
|
||||
int max_alphabet_size = 0;
|
||||
int* code_lengths = NULL;
|
||||
int* huff_codes = NULL;
|
||||
const int table_size = kTableSize[color_cache_bits];
|
||||
|
||||
if (allow_recursion && VP8LReadBits(br, 1)) {
|
||||
// use meta Huffman codes.
|
||||
@ -337,45 +347,48 @@ static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
|
||||
}
|
||||
}
|
||||
|
||||
huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
|
||||
sizeof(HuffmanCode));
|
||||
htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
|
||||
code_lengths =
|
||||
(int*)WebPSafeCalloc((uint64_t)max_alphabet_size, sizeof(*code_lengths));
|
||||
huff_codes =
|
||||
(int*)WebPSafeMalloc((uint64_t)max_alphabet_size, sizeof(*huff_codes));
|
||||
code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
|
||||
sizeof(*code_lengths));
|
||||
|
||||
if (htree_groups == NULL || code_lengths == NULL || huff_codes == NULL) {
|
||||
if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
|
||||
dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
|
||||
goto Error;
|
||||
}
|
||||
|
||||
next = huffman_tables;
|
||||
for (i = 0; i < num_htree_groups; ++i) {
|
||||
HuffmanTree* const htrees = htree_groups[i].htrees_;
|
||||
HuffmanCode** const htrees = htree_groups[i].htrees;
|
||||
int size;
|
||||
for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
|
||||
int alphabet_size = kAlphabetSize[j];
|
||||
HuffmanTree* const htree = htrees + j;
|
||||
htrees[j] = next;
|
||||
if (j == 0 && color_cache_bits > 0) {
|
||||
alphabet_size += 1 << color_cache_bits;
|
||||
}
|
||||
if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, huff_codes,
|
||||
htree)) {
|
||||
size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
|
||||
next += size;
|
||||
if (size == 0) {
|
||||
goto Error;
|
||||
}
|
||||
}
|
||||
}
|
||||
WebPSafeFree(huff_codes);
|
||||
WebPSafeFree(code_lengths);
|
||||
|
||||
// All OK. Finalize pointers and return.
|
||||
hdr->huffman_image_ = huffman_image;
|
||||
hdr->num_htree_groups_ = num_htree_groups;
|
||||
hdr->htree_groups_ = htree_groups;
|
||||
hdr->huffman_tables_ = huffman_tables;
|
||||
return 1;
|
||||
|
||||
Error:
|
||||
WebPSafeFree(huff_codes);
|
||||
WebPSafeFree(code_lengths);
|
||||
WebPSafeFree(huffman_image);
|
||||
VP8LHtreeGroupsFree(htree_groups, num_htree_groups);
|
||||
WebPSafeFree(huffman_tables);
|
||||
VP8LHtreeGroupsFree(htree_groups);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -715,10 +728,10 @@ static int Is8bOptimizable(const VP8LMetadata* const hdr) {
|
||||
// When the Huffman tree contains only one symbol, we can skip the
|
||||
// call to ReadSymbol() for red/blue/alpha channels.
|
||||
for (i = 0; i < hdr->num_htree_groups_; ++i) {
|
||||
const HuffmanTree* const htrees = hdr->htree_groups_[i].htrees_;
|
||||
if (htrees[RED].num_nodes_ > 1) return 0;
|
||||
if (htrees[BLUE].num_nodes_ > 1) return 0;
|
||||
if (htrees[ALPHA].num_nodes_ > 1) return 0;
|
||||
HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
|
||||
if (htrees[RED][0].bits > 0) return 0;
|
||||
if (htrees[BLUE][0].bits > 0) return 0;
|
||||
if (htrees[ALPHA][0].bits > 0) return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
@ -758,7 +771,7 @@ static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
|
||||
htree_group = GetHtreeGroupForPos(hdr, col, row);
|
||||
}
|
||||
VP8LFillBitWindow(br);
|
||||
code = ReadSymbol(&htree_group->htrees_[GREEN], br);
|
||||
code = ReadSymbol(htree_group->htrees[GREEN], br);
|
||||
if (code < NUM_LITERAL_CODES) { // Literal
|
||||
data[pos] = code;
|
||||
++pos;
|
||||
@ -774,7 +787,7 @@ static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
|
||||
int dist_code, dist;
|
||||
const int length_sym = code - NUM_LITERAL_CODES;
|
||||
const int length = GetCopyLength(length_sym, br);
|
||||
const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
|
||||
const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
|
||||
VP8LFillBitWindow(br);
|
||||
dist_code = GetCopyDistance(dist_symbol, br);
|
||||
dist = PlaneCodeToDistance(width, dist_code);
|
||||
@ -850,14 +863,14 @@ static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
|
||||
htree_group = GetHtreeGroupForPos(hdr, col, row);
|
||||
}
|
||||
VP8LFillBitWindow(br);
|
||||
code = ReadSymbol(&htree_group->htrees_[GREEN], br);
|
||||
code = ReadSymbol(htree_group->htrees[GREEN], br);
|
||||
if (code < NUM_LITERAL_CODES) { // Literal
|
||||
int red, green, blue, alpha;
|
||||
red = ReadSymbol(&htree_group->htrees_[RED], br);
|
||||
red = ReadSymbol(htree_group->htrees[RED], br);
|
||||
green = code;
|
||||
VP8LFillBitWindow(br);
|
||||
blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
|
||||
alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
|
||||
blue = ReadSymbol(htree_group->htrees[BLUE], br);
|
||||
alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
|
||||
*src = ((uint32_t)alpha << 24) | (red << 16) | (green << 8) | blue;
|
||||
AdvanceByOne:
|
||||
++src;
|
||||
@ -878,7 +891,7 @@ static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
|
||||
int dist_code, dist;
|
||||
const int length_sym = code - NUM_LITERAL_CODES;
|
||||
const int length = GetCopyLength(length_sym, br);
|
||||
const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
|
||||
const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
|
||||
VP8LFillBitWindow(br);
|
||||
dist_code = GetCopyDistance(dist_symbol, br);
|
||||
dist = PlaneCodeToDistance(width, dist_code);
|
||||
@ -1035,7 +1048,8 @@ static void ClearMetadata(VP8LMetadata* const hdr) {
|
||||
assert(hdr);
|
||||
|
||||
WebPSafeFree(hdr->huffman_image_);
|
||||
VP8LHtreeGroupsFree(hdr->htree_groups_, hdr->num_htree_groups_);
|
||||
WebPSafeFree(hdr->huffman_tables_);
|
||||
VP8LHtreeGroupsFree(hdr->htree_groups_);
|
||||
VP8LColorCacheClear(&hdr->color_cache_);
|
||||
InitMetadata(hdr);
|
||||
}
|
||||
|
@ -50,6 +50,7 @@ typedef struct {
|
||||
uint32_t *huffman_image_;
|
||||
int num_htree_groups_;
|
||||
HTreeGroup *htree_groups_;
|
||||
HuffmanCode *huffman_tables_;
|
||||
} VP8LMetadata;
|
||||
|
||||
typedef struct VP8LDecoder VP8LDecoder;
|
||||
|
@ -18,302 +18,192 @@
|
||||
#include "../utils/utils.h"
|
||||
#include "../webp/format_constants.h"
|
||||
|
||||
// Uncomment the following to use look-up table for ReverseBits()
|
||||
// (might be faster on some platform)
|
||||
// #define USE_LUT_REVERSE_BITS
|
||||
|
||||
// Huffman data read via DecodeImageStream is represented in two (red and green)
|
||||
// bytes.
|
||||
#define MAX_HTREE_GROUPS 0x10000
|
||||
#define NON_EXISTENT_SYMBOL (-1)
|
||||
|
||||
static void TreeNodeInit(HuffmanTreeNode* const node) {
|
||||
node->children_ = -1; // means: 'unassigned so far'
|
||||
}
|
||||
|
||||
static int NodeIsEmpty(const HuffmanTreeNode* const node) {
|
||||
return (node->children_ < 0);
|
||||
}
|
||||
|
||||
static int IsFull(const HuffmanTree* const tree) {
|
||||
return (tree->num_nodes_ == tree->max_nodes_);
|
||||
}
|
||||
|
||||
static void AssignChildren(HuffmanTree* const tree,
|
||||
HuffmanTreeNode* const node) {
|
||||
HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
|
||||
node->children_ = (int)(children - node);
|
||||
assert(children - node == (int)(children - node));
|
||||
tree->num_nodes_ += 2;
|
||||
TreeNodeInit(children + 0);
|
||||
TreeNodeInit(children + 1);
|
||||
}
|
||||
|
||||
// A Huffman tree is a full binary tree; and in a full binary tree with L
|
||||
// leaves, the total number of nodes N = 2 * L - 1.
|
||||
static int HuffmanTreeMaxNodes(int num_leaves) {
|
||||
return (2 * num_leaves - 1);
|
||||
}
|
||||
|
||||
static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) {
|
||||
assert(tree != NULL);
|
||||
tree->root_ =
|
||||
(HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_));
|
||||
return (tree->root_ != NULL);
|
||||
}
|
||||
|
||||
static int TreeInit(HuffmanTree* const tree, int num_leaves) {
|
||||
assert(tree != NULL);
|
||||
if (num_leaves == 0) return 0;
|
||||
tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves);
|
||||
assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table
|
||||
if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0;
|
||||
TreeNodeInit(tree->root_); // Initialize root.
|
||||
tree->num_nodes_ = 1;
|
||||
memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
|
||||
memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
|
||||
return 1;
|
||||
}
|
||||
|
||||
void VP8LHuffmanTreeFree(HuffmanTree* const tree) {
|
||||
if (tree != NULL) {
|
||||
WebPSafeFree(tree->root_);
|
||||
tree->root_ = NULL;
|
||||
tree->max_nodes_ = 0;
|
||||
tree->num_nodes_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
|
||||
HTreeGroup* const htree_groups =
|
||||
(HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups));
|
||||
assert(num_htree_groups <= MAX_HTREE_GROUPS);
|
||||
(HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
|
||||
if (htree_groups == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
assert(num_htree_groups <= MAX_HTREE_GROUPS);
|
||||
return htree_groups;
|
||||
}
|
||||
|
||||
void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) {
|
||||
void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
|
||||
if (htree_groups != NULL) {
|
||||
int i, j;
|
||||
for (i = 0; i < num_htree_groups; ++i) {
|
||||
HuffmanTree* const htrees = htree_groups[i].htrees_;
|
||||
for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
|
||||
VP8LHuffmanTreeFree(&htrees[j]);
|
||||
}
|
||||
}
|
||||
WebPSafeFree(htree_groups);
|
||||
}
|
||||
}
|
||||
|
||||
int VP8LHuffmanCodeLengthsToCodes(
|
||||
const int* const code_lengths, int code_lengths_size,
|
||||
int* const huff_codes) {
|
||||
int symbol;
|
||||
int code_len;
|
||||
int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
||||
int curr_code;
|
||||
int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
||||
int max_code_length = 0;
|
||||
// Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
|
||||
// bit-wise reversal of the len least significant bits of key.
|
||||
static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
|
||||
uint32_t step = 1 << (len - 1);
|
||||
while (key & step) {
|
||||
step >>= 1;
|
||||
}
|
||||
return (key & (step - 1)) + step;
|
||||
}
|
||||
|
||||
// Stores code in table[0], table[step], table[2*step], ..., table[end].
|
||||
// Assumes that end is an integer multiple of step.
|
||||
static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
|
||||
int step, int end,
|
||||
HuffmanCode code) {
|
||||
assert(end % step == 0);
|
||||
do {
|
||||
end -= step;
|
||||
table[end] = code;
|
||||
} while (end > 0);
|
||||
}
|
||||
|
||||
// Returns the table width of the next 2nd level table. count is the histogram
|
||||
// of bit lengths for the remaining symbols, len is the code length of the next
|
||||
// processed symbol
|
||||
static WEBP_INLINE int NextTableBitSize(const int* const count,
|
||||
int len, int root_bits) {
|
||||
int left = 1 << (len - root_bits);
|
||||
while (len < MAX_ALLOWED_CODE_LENGTH) {
|
||||
left -= count[len];
|
||||
if (left <= 0) break;
|
||||
++len;
|
||||
left <<= 1;
|
||||
}
|
||||
return len - root_bits;
|
||||
}
|
||||
|
||||
int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
|
||||
const int* const code_lengths,
|
||||
int code_lengths_size) {
|
||||
HuffmanCode* table; // next available space in table
|
||||
int len; // current code length
|
||||
int symbol; // symbol index in original or sorted table
|
||||
int total_size; // sum of root table size and 2nd level table sizes
|
||||
int* sorted = NULL; // symbols sorted by code length
|
||||
int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
||||
// number of codes of each length
|
||||
int offset[MAX_ALLOWED_CODE_LENGTH + 1];
|
||||
// offsets in sorted table for each length
|
||||
|
||||
assert(code_lengths_size != 0);
|
||||
assert(code_lengths != NULL);
|
||||
assert(code_lengths_size > 0);
|
||||
assert(huff_codes != NULL);
|
||||
assert(root_table != NULL);
|
||||
assert(root_bits > 0);
|
||||
|
||||
// Calculate max code length.
|
||||
// Build histogram of code lengths.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > max_code_length) {
|
||||
max_code_length = code_lengths[symbol];
|
||||
}
|
||||
}
|
||||
if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
|
||||
|
||||
// Calculate code length histogram.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
++code_length_hist[code_lengths[symbol]];
|
||||
}
|
||||
code_length_hist[0] = 0;
|
||||
|
||||
// Calculate the initial values of 'next_codes' for each code length.
|
||||
// next_codes[code_len] denotes the code to be assigned to the next symbol
|
||||
// of code length 'code_len'.
|
||||
curr_code = 0;
|
||||
next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
|
||||
for (code_len = 1; code_len <= max_code_length; ++code_len) {
|
||||
curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
|
||||
next_codes[code_len] = curr_code;
|
||||
}
|
||||
|
||||
// Get symbols.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > 0) {
|
||||
huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
|
||||
} else {
|
||||
huff_codes[symbol] = NON_EXISTENT_SYMBOL;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef USE_LUT_REVERSE_BITS
|
||||
|
||||
static int ReverseBitsShort(int bits, int num_bits) {
|
||||
int retval = 0;
|
||||
int i;
|
||||
assert(num_bits <= 8); // Not a hard requirement, just for coherency.
|
||||
for (i = 0; i < num_bits; ++i) {
|
||||
retval <<= 1;
|
||||
retval |= bits & 1;
|
||||
bits >>= 1;
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values.
|
||||
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
|
||||
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
|
||||
};
|
||||
|
||||
static int ReverseBitsShort(int bits, int num_bits) {
|
||||
const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
|
||||
assert(num_bits <= 8);
|
||||
return v >> (8 - num_bits);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
static int TreeAddSymbol(HuffmanTree* const tree,
|
||||
int symbol, int code, int code_length) {
|
||||
int step = HUFF_LUT_BITS;
|
||||
int base_code;
|
||||
HuffmanTreeNode* node = tree->root_;
|
||||
const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
|
||||
assert(symbol == (int16_t)symbol);
|
||||
if (code_length <= HUFF_LUT_BITS) {
|
||||
int i;
|
||||
base_code = ReverseBitsShort(code, code_length);
|
||||
for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
|
||||
const int idx = base_code | (i << code_length);
|
||||
tree->lut_symbol_[idx] = (int16_t)symbol;
|
||||
tree->lut_bits_[idx] = code_length;
|
||||
}
|
||||
} else {
|
||||
base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
|
||||
HUFF_LUT_BITS);
|
||||
}
|
||||
while (code_length-- > 0) {
|
||||
if (node >= max_node) {
|
||||
if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
|
||||
return 0;
|
||||
}
|
||||
if (NodeIsEmpty(node)) {
|
||||
if (IsFull(tree)) return 0; // error: too many symbols.
|
||||
AssignChildren(tree, node);
|
||||
} else if (!HuffmanTreeNodeIsNotLeaf(node)) {
|
||||
return 0; // leaf is already occupied.
|
||||
}
|
||||
node += node->children_ + ((code >> code_length) & 1);
|
||||
if (--step == 0) {
|
||||
tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
|
||||
}
|
||||
}
|
||||
if (NodeIsEmpty(node)) {
|
||||
node->children_ = 0; // turn newly created node into a leaf.
|
||||
} else if (HuffmanTreeNodeIsNotLeaf(node)) {
|
||||
return 0; // trying to assign a symbol to already used code.
|
||||
}
|
||||
node->symbol_ = symbol; // Add symbol in this node.
|
||||
return 1;
|
||||
}
|
||||
|
||||
int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
int* const codes,
|
||||
int code_lengths_size) {
|
||||
int symbol;
|
||||
int num_symbols = 0;
|
||||
int root_symbol = 0;
|
||||
|
||||
assert(tree != NULL);
|
||||
assert(code_lengths != NULL);
|
||||
|
||||
// Find out number of symbols and the root symbol.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > 0) {
|
||||
// Note: code length = 0 indicates non-existent symbol.
|
||||
++num_symbols;
|
||||
root_symbol = symbol;
|
||||
}
|
||||
++count[code_lengths[symbol]];
|
||||
}
|
||||
|
||||
// Initialize the tree. Will fail for num_symbols = 0
|
||||
if (!TreeInit(tree, num_symbols)) return 0;
|
||||
// Error, all code lengths are zeros.
|
||||
if (count[0] == code_lengths_size) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Build tree.
|
||||
if (num_symbols == 1) { // Trivial case.
|
||||
const int max_symbol = code_lengths_size;
|
||||
if (root_symbol < 0 || root_symbol >= max_symbol) {
|
||||
VP8LHuffmanTreeFree(tree);
|
||||
// Generate offsets into sorted symbol table by code length.
|
||||
offset[1] = 0;
|
||||
for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
|
||||
if (count[len] > (1 << len)) {
|
||||
return 0;
|
||||
}
|
||||
return TreeAddSymbol(tree, root_symbol, 0, 0);
|
||||
} else { // Normal case.
|
||||
int ok = 0;
|
||||
memset(codes, 0, code_lengths_size * sizeof(*codes));
|
||||
offset[len + 1] = offset[len] + count[len];
|
||||
}
|
||||
|
||||
if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size,
|
||||
codes)) {
|
||||
goto End;
|
||||
sorted = (int*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
|
||||
if (sorted == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Sort symbols by length, by symbol order within each length.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
const int symbol_code_length = code_lengths[symbol];
|
||||
if (code_lengths[symbol] > 0) {
|
||||
sorted[offset[symbol_code_length]++] = symbol;
|
||||
}
|
||||
}
|
||||
|
||||
table = root_table;
|
||||
total_size = 1 << root_bits;
|
||||
|
||||
// Special case code with only one value.
|
||||
if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
|
||||
HuffmanCode code;
|
||||
code.bits = 0;
|
||||
code.value = (uint16_t)sorted[0];
|
||||
ReplicateValue(table, 1, total_size, code);
|
||||
WebPSafeFree(sorted);
|
||||
return total_size;
|
||||
}
|
||||
|
||||
{
|
||||
int step; // step size to replicate values in current table
|
||||
uint32_t low = -1; // low bits for current root entry
|
||||
uint32_t mask = total_size - 1; // mask for low bits
|
||||
uint32_t key = 0; // reversed prefix code
|
||||
int num_nodes = 1; // number of Huffman tree nodes
|
||||
int num_open = 1; // number of open branches in current tree level
|
||||
int table_bits = root_bits; // key length of current table
|
||||
int table_size = 1 << table_bits; // size of current table
|
||||
symbol = 0;
|
||||
// Fill in root table.
|
||||
for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
|
||||
num_open <<= 1;
|
||||
num_nodes += num_open;
|
||||
num_open -= count[len];
|
||||
if (num_open < 0) {
|
||||
WebPSafeFree(sorted);
|
||||
return 0;
|
||||
}
|
||||
for (; count[len] > 0; --count[len]) {
|
||||
HuffmanCode code;
|
||||
code.bits = (uint8_t)len;
|
||||
code.value = (uint16_t)sorted[symbol++];
|
||||
ReplicateValue(&table[key], step, table_size, code);
|
||||
key = GetNextKey(key, len);
|
||||
}
|
||||
}
|
||||
|
||||
// Add symbols one-by-one.
|
||||
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
||||
if (code_lengths[symbol] > 0) {
|
||||
if (!TreeAddSymbol(tree, symbol, codes[symbol],
|
||||
code_lengths[symbol])) {
|
||||
goto End;
|
||||
// Fill in 2nd level tables and add pointers to root table.
|
||||
for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
|
||||
++len, step <<= 1) {
|
||||
num_open <<= 1;
|
||||
num_nodes += num_open;
|
||||
num_open -= count[len];
|
||||
if (num_open < 0) {
|
||||
WebPSafeFree(sorted);
|
||||
return 0;
|
||||
}
|
||||
for (; count[len] > 0; --count[len]) {
|
||||
HuffmanCode code;
|
||||
if ((key & mask) != low) {
|
||||
table += table_size;
|
||||
table_bits = NextTableBitSize(count, len, root_bits);
|
||||
table_size = 1 << table_bits;
|
||||
total_size += table_size;
|
||||
low = key & mask;
|
||||
root_table[low].bits = (uint8_t)(table_bits + root_bits);
|
||||
root_table[low].value = (uint16_t)((table - root_table) - low);
|
||||
}
|
||||
code.bits = (uint8_t)(len - root_bits);
|
||||
code.value = (uint16_t)sorted[symbol++];
|
||||
ReplicateValue(&table[key >> root_bits], step, table_size, code);
|
||||
key = GetNextKey(key, len);
|
||||
}
|
||||
}
|
||||
ok = 1;
|
||||
End:
|
||||
ok = ok && IsFull(tree);
|
||||
if (!ok) VP8LHuffmanTreeFree(tree);
|
||||
return ok;
|
||||
}
|
||||
}
|
||||
|
||||
int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
const int* const codes,
|
||||
const int* const symbols, int max_symbol,
|
||||
int num_symbols) {
|
||||
int ok = 0;
|
||||
int i;
|
||||
assert(tree != NULL);
|
||||
assert(code_lengths != NULL);
|
||||
assert(codes != NULL);
|
||||
assert(symbols != NULL);
|
||||
|
||||
// Initialize the tree. Will fail if num_symbols = 0.
|
||||
if (!TreeInit(tree, num_symbols)) return 0;
|
||||
|
||||
// Add symbols one-by-one.
|
||||
for (i = 0; i < num_symbols; ++i) {
|
||||
if (codes[i] != NON_EXISTENT_SYMBOL) {
|
||||
if (symbols[i] < 0 || symbols[i] >= max_symbol) {
|
||||
goto End;
|
||||
}
|
||||
if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
|
||||
goto End;
|
||||
}
|
||||
// Check if tree is full.
|
||||
if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
|
||||
WebPSafeFree(sorted);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
ok = 1;
|
||||
End:
|
||||
ok = ok && IsFull(tree);
|
||||
if (!ok) VP8LHuffmanTreeFree(tree);
|
||||
return ok;
|
||||
|
||||
WebPSafeFree(sorted);
|
||||
return total_size;
|
||||
}
|
||||
|
@ -22,78 +22,39 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// A node of a Huffman tree.
|
||||
#define HUFFMAN_TABLE_BITS 8
|
||||
#define HUFFMAN_TABLE_MASK ((1 << HUFFMAN_TABLE_BITS) - 1)
|
||||
|
||||
#define LENGTHS_TABLE_BITS 7
|
||||
#define LENGTHS_TABLE_MASK ((1 << LENGTHS_TABLE_BITS) - 1)
|
||||
|
||||
|
||||
// Huffman lookup table entry
|
||||
typedef struct {
|
||||
int symbol_;
|
||||
int children_; // delta offset to both children (contiguous) or 0 if leaf.
|
||||
} HuffmanTreeNode;
|
||||
uint8_t bits; // number of bits used for this symbol
|
||||
uint16_t value; // symbol value or table offset
|
||||
} HuffmanCode;
|
||||
|
||||
// Huffman Tree.
|
||||
#define HUFF_LUT_BITS 7
|
||||
#define HUFF_LUT (1U << HUFF_LUT_BITS)
|
||||
typedef struct HuffmanTree HuffmanTree;
|
||||
struct HuffmanTree {
|
||||
// Fast lookup for short bit lengths.
|
||||
uint8_t lut_bits_[HUFF_LUT];
|
||||
int16_t lut_symbol_[HUFF_LUT];
|
||||
int16_t lut_jump_[HUFF_LUT];
|
||||
// Complete tree for lookups.
|
||||
HuffmanTreeNode* root_; // all the nodes, starting at root.
|
||||
int max_nodes_; // max number of nodes
|
||||
int num_nodes_; // number of currently occupied nodes
|
||||
};
|
||||
|
||||
// Huffman Tree group.
|
||||
// Huffman table group.
|
||||
typedef struct HTreeGroup HTreeGroup;
|
||||
struct HTreeGroup {
|
||||
HuffmanTree htrees_[HUFFMAN_CODES_PER_META_CODE];
|
||||
HuffmanCode* htrees[HUFFMAN_CODES_PER_META_CODE];
|
||||
};
|
||||
|
||||
// Returns true if the given node is not a leaf of the Huffman tree.
|
||||
static WEBP_INLINE int HuffmanTreeNodeIsNotLeaf(
|
||||
const HuffmanTreeNode* const node) {
|
||||
return node->children_;
|
||||
}
|
||||
|
||||
// Go down one level. Most critical function. 'right_child' must be 0 or 1.
|
||||
static WEBP_INLINE const HuffmanTreeNode* HuffmanTreeNextNode(
|
||||
const HuffmanTreeNode* node, int right_child) {
|
||||
return node + node->children_ + right_child;
|
||||
}
|
||||
|
||||
// Releases the nodes of the Huffman tree.
|
||||
// Note: It does NOT free 'tree' itself.
|
||||
void VP8LHuffmanTreeFree(HuffmanTree* const tree);
|
||||
|
||||
// Creates the instance of HTreeGroup with specified number of tree-groups.
|
||||
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups);
|
||||
|
||||
// Releases the memory allocated for HTreeGroup.
|
||||
void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups);
|
||||
void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups);
|
||||
|
||||
// Builds Huffman tree assuming code lengths are implicitly in symbol order.
|
||||
// The 'huff_codes' and 'code_lengths' are pre-allocated temporary memory
|
||||
// buffers, used for creating the huffman tree.
|
||||
// Returns false in case of error (invalid tree or memory error).
|
||||
int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
int* const huff_codes,
|
||||
int code_lengths_size);
|
||||
|
||||
// Build a Huffman tree with explicitly given lists of code lengths, codes
|
||||
// and symbols. Verifies that all symbols added are smaller than max_symbol.
|
||||
// Returns false in case of an invalid symbol, invalid tree or memory error.
|
||||
int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
|
||||
const int* const code_lengths,
|
||||
const int* const codes,
|
||||
const int* const symbols, int max_symbol,
|
||||
int num_symbols);
|
||||
|
||||
// Utility: converts Huffman code lengths to corresponding Huffman codes.
|
||||
// 'huff_codes' should be pre-allocated.
|
||||
// Returns false in case of error (memory allocation, invalid codes).
|
||||
int VP8LHuffmanCodeLengthsToCodes(const int* const code_lengths,
|
||||
int code_lengths_size, int* const huff_codes);
|
||||
// Builds Huffman lookup table assuming code lengths are in symbol order.
|
||||
// The 'code_lengths' is pre-allocated temporary memory buffer used for creating
|
||||
// the huffman table.
|
||||
// Returns built table size or 0 in case of error (invalid tree or
|
||||
// memory error).
|
||||
int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
|
||||
const int* const code_lengths,
|
||||
int code_lengths_size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
Loading…
Reference in New Issue
Block a user