mirror of
https://github.com/webmproject/libwebp.git
synced 2025-01-26 22:52:55 +01:00
Cleaup Near-lossless code.
Cleaup Near-lossless code - Simplified and refactored the code. - Removed the requirement (TODO) to allocate the buffer of size WxH and work with buffer of size 3xW. - Disabled the Near-lossless prr-processing for small icon images (W < 64 and H < 64). Change-Id: Id7ee90c90622368d5528de4dd14fd5ead593bb1b
This commit is contained in:
parent
9814ddb601
commit
ec0d1be577
@ -21,6 +21,10 @@
|
||||
#include "./vp8enci.h"
|
||||
|
||||
#ifdef WEBP_EXPERIMENTAL_FEATURES
|
||||
|
||||
#define MIN_DIM_FOR_NEAR_LOSSLESS 64
|
||||
#define MAX_LIMIT_BITS 5
|
||||
|
||||
// Computes quantized pixel value and distance from original value.
|
||||
static void GetValAndDistance(int a, int initial, int bits,
|
||||
int* const val, int* const distance) {
|
||||
@ -29,20 +33,21 @@ static void GetValAndDistance(int a, int initial, int bits,
|
||||
*distance = 2 * abs(a - *val);
|
||||
}
|
||||
|
||||
// Quantizes values {a, a+(1<<bits), a-(1<<bits)}, checks if in [min, max] range
|
||||
// and returns the nearest one.
|
||||
static int FindClosestDiscretized(int a, int bits, int min, int max) {
|
||||
// Clamps the value to range [0, 255].
|
||||
static int Clamp8b(int val) {
|
||||
const int min_val = 0;
|
||||
const int max_val = 0xff;
|
||||
return (val < min_val) ? min_val : (val > max_val) ? max_val : val;
|
||||
}
|
||||
|
||||
// Quantizes values {a, a+(1<<bits), a-(1<<bits)} and returns the nearest one.
|
||||
static int FindClosestDiscretized(int a, int bits) {
|
||||
int best_val = a, i;
|
||||
int min_distance = 256;
|
||||
|
||||
for (i = -1; i <= 1; ++i) {
|
||||
int val = a + i * (1 << bits);
|
||||
int candidate, distance;
|
||||
if (val < 0) {
|
||||
val = 0;
|
||||
} else if (val > 255) {
|
||||
val = 255;
|
||||
}
|
||||
const int val = Clamp8b(a + i * (1 << bits));
|
||||
GetValAndDistance(a, val, bits, &candidate, &distance);
|
||||
if (i != 0) {
|
||||
++distance;
|
||||
@ -50,7 +55,7 @@ static int FindClosestDiscretized(int a, int bits, int min, int max) {
|
||||
// Smallest distance but favor i == 0 over i == -1 and i == 1
|
||||
// since that keeps the overall intensity more constant in the
|
||||
// images.
|
||||
if (distance < min_distance && candidate >= min && candidate <= max) {
|
||||
if (distance < min_distance) {
|
||||
min_distance = distance;
|
||||
best_val = candidate;
|
||||
}
|
||||
@ -59,30 +64,37 @@ static int FindClosestDiscretized(int a, int bits, int min, int max) {
|
||||
}
|
||||
|
||||
// Applies FindClosestDiscretized to all channels of pixel.
|
||||
static uint32_t ClosestDiscretizedArgb(uint32_t a, int bits,
|
||||
uint32_t min, uint32_t max) {
|
||||
return (FindClosestDiscretized(a >> 24, bits, min >> 24, max >> 24) << 24) |
|
||||
(FindClosestDiscretized((a >> 16) & 0xff, bits,
|
||||
(min >> 16) & 0xff,
|
||||
(max >> 16) & 0xff) << 16) |
|
||||
(FindClosestDiscretized((a >> 8) & 0xff, bits,
|
||||
(min >> 8) & 0xff,
|
||||
(max >> 8) & 0xff) << 8) |
|
||||
(FindClosestDiscretized(a & 0xff, bits, min & 0xff, max & 0xff));
|
||||
static uint32_t ClosestDiscretizedArgb(uint32_t a, int bits) {
|
||||
return
|
||||
(FindClosestDiscretized(a >> 24, bits) << 24) |
|
||||
(FindClosestDiscretized((a >> 16) & 0xff, bits) << 16) |
|
||||
(FindClosestDiscretized((a >> 8) & 0xff, bits) << 8) |
|
||||
(FindClosestDiscretized(a & 0xff, bits));
|
||||
}
|
||||
|
||||
// Checks if distance between corresponding channel values of pixels a and b
|
||||
// exceeds given limit.
|
||||
static int IsFar(uint32_t a, uint32_t b, int limit) {
|
||||
// is within the given limit.
|
||||
static int IsNear(uint32_t a, uint32_t b, int limit) {
|
||||
int k;
|
||||
for (k = 0; k < 4; ++k) {
|
||||
const int delta = (int)((a >> (k * 8)) & 0xff) -
|
||||
(int)((b >> (k * 8)) & 0xff);
|
||||
const int delta =
|
||||
(int)((a >> (k * 8)) & 0xff) - (int)((b >> (k * 8)) & 0xff);
|
||||
if (delta >= limit || delta <= -limit) {
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int IsSmooth(const uint32_t* const prev_row,
|
||||
const uint32_t* const curr_row,
|
||||
const uint32_t* const next_row,
|
||||
int ix, int limit) {
|
||||
// Check that all pixels in 4-connected neighborhood are smooth.
|
||||
return (IsNear(curr_row[ix], curr_row[ix - 1], limit) &&
|
||||
IsNear(curr_row[ix], curr_row[ix + 1], limit) &&
|
||||
IsNear(curr_row[ix], prev_row[ix], limit) &&
|
||||
IsNear(curr_row[ix], next_row[ix], limit));
|
||||
}
|
||||
|
||||
// Adjusts pixel values of image with given maximum error.
|
||||
@ -90,39 +102,37 @@ static void NearLossless(int xsize, int ysize, uint32_t* argb,
|
||||
int limit_bits, uint32_t* copy_buffer) {
|
||||
int x, y;
|
||||
const int limit = 1 << limit_bits;
|
||||
memcpy(copy_buffer, argb, xsize * ysize * sizeof(argb[0]));
|
||||
uint32_t* prev_row = copy_buffer;
|
||||
uint32_t* curr_row = prev_row + xsize;
|
||||
uint32_t* next_row = curr_row + xsize;
|
||||
memcpy(copy_buffer, argb, xsize * 2 * sizeof(argb[0]));
|
||||
|
||||
for (y = 0; y < ysize; ++y) {
|
||||
const int offset = y * xsize;
|
||||
for (x = 0; x < xsize; ++x) {
|
||||
const int ix = offset + x;
|
||||
// Check that all pixels in 4-connected neighborhood are smooth.
|
||||
int smooth_area = 1;
|
||||
if (x != 0 && IsFar(copy_buffer[ix], copy_buffer[ix - 1], limit)) {
|
||||
smooth_area = 0;
|
||||
} else if (y != 0 &&
|
||||
IsFar(copy_buffer[ix], copy_buffer[ix - xsize], limit)) {
|
||||
smooth_area = 0;
|
||||
} else if (x != xsize - 1 &&
|
||||
IsFar(copy_buffer[ix], copy_buffer[ix + 1], limit)) {
|
||||
smooth_area = 0;
|
||||
} else if (y != ysize - 1 &&
|
||||
IsFar(copy_buffer[ix], copy_buffer[ix + xsize], limit)) {
|
||||
smooth_area = 0;
|
||||
}
|
||||
if (!smooth_area) {
|
||||
argb[ix] = ClosestDiscretizedArgb(argb[ix], limit_bits, 0, 0xffffffff);
|
||||
for (y = 1; y < ysize - 1; ++y) {
|
||||
uint32_t* const curr_argb_row = argb + y * xsize;
|
||||
uint32_t* const next_argb_row = curr_argb_row + xsize;
|
||||
memcpy(next_row, next_argb_row, xsize * sizeof(argb[0]));
|
||||
for (x = 1; x < xsize - 1; ++x) {
|
||||
if (!IsSmooth(prev_row, curr_row, next_row, x, limit)) {
|
||||
curr_argb_row[x] = ClosestDiscretizedArgb(curr_row[x], limit_bits);
|
||||
}
|
||||
}
|
||||
{
|
||||
// Three-way swap.
|
||||
uint32_t* const temp = prev_row;
|
||||
prev_row = curr_row;
|
||||
curr_row = next_row;
|
||||
next_row = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int QualityToLimitBits(int quality) {
|
||||
return 5 - (quality + 12) / 25;
|
||||
// quality mapping 0..12 -> 5
|
||||
// 13..100 -> 4..1
|
||||
return MAX_LIMIT_BITS - (quality + 12) / 25;
|
||||
}
|
||||
#endif // WEBP_EXPERIMENTAL_FEATURES
|
||||
|
||||
// TODO(vikasa): optimize memory to O(xsize)
|
||||
int VP8ApplyNearLossless(int xsize, int ysize, uint32_t* argb, int quality) {
|
||||
#ifndef WEBP_EXPERIMENTAL_FEATURES
|
||||
(void)xsize;
|
||||
@ -132,16 +142,20 @@ int VP8ApplyNearLossless(int xsize, int ysize, uint32_t* argb, int quality) {
|
||||
#else
|
||||
int i;
|
||||
uint32_t* const copy_buffer =
|
||||
(uint32_t *)WebPSafeMalloc(xsize * ysize, sizeof(*copy_buffer));
|
||||
// quality mapping 0..12 -> 5
|
||||
// 13..100 -> 4..1
|
||||
(uint32_t*)WebPSafeMalloc(xsize * 3, sizeof(*copy_buffer));
|
||||
const int limit_bits = QualityToLimitBits(quality);
|
||||
assert(argb != NULL);
|
||||
assert(limit_bits >= 0);
|
||||
assert(limit_bits < 31);
|
||||
assert(limit_bits <= MAX_LIMIT_BITS);
|
||||
if (copy_buffer == NULL) {
|
||||
return 0;
|
||||
}
|
||||
// For small icon images, don't attempt to apply near-lossless compression.
|
||||
if (xsize < MIN_DIM_FOR_NEAR_LOSSLESS && ysize < MIN_DIM_FOR_NEAR_LOSSLESS) {
|
||||
WebPSafeFree(copy_buffer);
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (i = limit_bits; i != 0; --i) {
|
||||
NearLossless(xsize, ysize, argb, i, copy_buffer);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user