mirror of
https://github.com/webmproject/libwebp.git
synced 2025-01-24 21:52:55 +01:00
Merge "Refactor predictor finding" into main
This commit is contained in:
commit
bc49176355
@ -14,17 +14,24 @@
|
||||
// Urvang Joshi (urvang@google.com)
|
||||
// Vincent Rabaud (vrabaud@google.com)
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "src/dsp/lossless.h"
|
||||
#include "src/dsp/lossless_common.h"
|
||||
#include "src/enc/vp8i_enc.h"
|
||||
#include "src/enc/vp8li_enc.h"
|
||||
#include "src/utils/utils.h"
|
||||
#include "src/webp/encode.h"
|
||||
#include "src/webp/format_constants.h"
|
||||
#include "src/webp/types.h"
|
||||
|
||||
#define HISTO_SIZE (4 * 256)
|
||||
static const int64_t kSpatialPredictorBias = 15ll << LOG_2_PRECISION_BITS;
|
||||
static const int kPredLowEffort = 11;
|
||||
static const uint32_t kMaskAlpha = 0xff000000;
|
||||
static const int kNumPredModes = 14;
|
||||
|
||||
// Mostly used to reduce code size + readability
|
||||
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
|
||||
@ -305,17 +312,61 @@ static WEBP_INLINE void GetResidual(
|
||||
}
|
||||
}
|
||||
|
||||
// Returns best predictor and updates the accumulated histogram.
|
||||
// Accessors to residual histograms.
|
||||
static WEBP_INLINE uint32_t* GetHistoArgb(uint32_t* const all_histos,
|
||||
int mode) {
|
||||
return &all_histos[mode * HISTO_SIZE];
|
||||
}
|
||||
|
||||
static WEBP_INLINE const uint32_t* GetHistoArgbConst(
|
||||
const uint32_t* const all_histos, int mode) {
|
||||
return &all_histos[mode * HISTO_SIZE];
|
||||
}
|
||||
|
||||
// Find and store the best predictor.
|
||||
static void GetBestPredictorForTile(const uint32_t* const all_argb, int tile_x,
|
||||
int tile_y, int tiles_per_row,
|
||||
uint32_t* accumulated_argb,
|
||||
uint32_t* const modes) {
|
||||
// Prediction modes of the left and above neighbor tiles.
|
||||
const int left_mode =
|
||||
(tile_x > 0) ? (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff
|
||||
: 0xff;
|
||||
const int above_mode =
|
||||
(tile_y > 0) ? (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff
|
||||
: 0xff;
|
||||
int mode;
|
||||
int64_t best_diff = WEBP_INT64_MAX;
|
||||
uint32_t best_mode = 0;
|
||||
const uint32_t* best_histo = GetHistoArgbConst(all_argb, best_mode);
|
||||
for (mode = 0; mode < kNumPredModes; ++mode) {
|
||||
const uint32_t* const histo_argb = GetHistoArgbConst(all_argb, mode);
|
||||
const int64_t cur_diff = PredictionCostSpatialHistogram(
|
||||
accumulated_argb, histo_argb, mode, left_mode, above_mode);
|
||||
|
||||
if (cur_diff < best_diff) {
|
||||
best_histo = histo_argb;
|
||||
best_diff = cur_diff;
|
||||
best_mode = mode;
|
||||
}
|
||||
}
|
||||
// Update the accumulated histogram.
|
||||
VP8LAddVectorEq(best_histo, accumulated_argb, HISTO_SIZE);
|
||||
modes[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (best_mode << 8);
|
||||
}
|
||||
|
||||
// Computes the residuals for the different predictors.
|
||||
// If max_quantization > 1, assumes that near lossless processing will be
|
||||
// applied, quantizing residuals to multiples of quantization levels up to
|
||||
// max_quantization (the actual quantization level depends on smoothness near
|
||||
// the given pixel).
|
||||
static int GetBestPredictorForTile(
|
||||
int width, int height, int tile_x, int tile_y, int bits,
|
||||
uint32_t accumulated[HISTO_SIZE], uint32_t* const argb_scratch,
|
||||
const uint32_t* const argb, int max_quantization, int exact,
|
||||
int used_subtract_green, const uint32_t* const modes) {
|
||||
const int kNumPredModes = 14;
|
||||
static void ComputeResidualsForTile(int width, int height, int tile_x,
|
||||
int tile_y, int bits,
|
||||
uint32_t* const all_argb,
|
||||
uint32_t* const argb_scratch,
|
||||
const uint32_t* const argb,
|
||||
int max_quantization, int exact,
|
||||
int used_subtract_green) {
|
||||
const int start_x = tile_x << bits;
|
||||
const int start_y = tile_y << bits;
|
||||
const int tile_size = 1 << bits;
|
||||
@ -329,34 +380,19 @@ static int GetBestPredictorForTile(
|
||||
#if (WEBP_NEAR_LOSSLESS == 1)
|
||||
const int context_width = max_x + have_left + (max_x < width - start_x);
|
||||
#endif
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
||||
// Prediction modes of the left and above neighbor tiles.
|
||||
const int left_mode = (tile_x > 0) ?
|
||||
(modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff;
|
||||
const int above_mode = (tile_y > 0) ?
|
||||
(modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff;
|
||||
// The width of upper_row and current_row is one pixel larger than image width
|
||||
// to allow the top right pixel to point to the leftmost pixel of the next row
|
||||
// when at the right edge.
|
||||
uint32_t* upper_row = argb_scratch;
|
||||
uint32_t* current_row = upper_row + width + 1;
|
||||
uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
|
||||
int64_t best_diff = WEBP_INT64_MAX;
|
||||
int best_mode = 0;
|
||||
int mode;
|
||||
uint32_t histo_stack_1[HISTO_SIZE];
|
||||
uint32_t histo_stack_2[HISTO_SIZE];
|
||||
// Need pointers to be able to swap arrays.
|
||||
uint32_t* histo_argb = histo_stack_1;
|
||||
uint32_t* best_histo = histo_stack_2;
|
||||
uint32_t residuals[1 << MAX_TRANSFORM_BITS];
|
||||
assert(bits <= MAX_TRANSFORM_BITS);
|
||||
assert(max_x <= (1 << MAX_TRANSFORM_BITS));
|
||||
|
||||
for (mode = 0; mode < kNumPredModes; ++mode) {
|
||||
int64_t cur_diff;
|
||||
int relative_y;
|
||||
memset(histo_argb, 0, sizeof(histo_stack_1));
|
||||
uint32_t* const histo_argb = GetHistoArgb(all_argb, mode);
|
||||
if (start_y > 0) {
|
||||
// Read the row above the tile which will become the first upper_row.
|
||||
// Include a pixel to the left if it exists; include a pixel to the right
|
||||
@ -393,20 +429,7 @@ static int GetBestPredictorForTile(
|
||||
UpdateHisto(histo_argb, residuals[relative_x]);
|
||||
}
|
||||
}
|
||||
cur_diff = PredictionCostSpatialHistogram(accumulated, histo_argb, mode,
|
||||
left_mode, above_mode);
|
||||
|
||||
if (cur_diff < best_diff) {
|
||||
uint32_t* tmp = histo_argb;
|
||||
histo_argb = best_histo;
|
||||
best_histo = tmp;
|
||||
best_diff = cur_diff;
|
||||
best_mode = mode;
|
||||
}
|
||||
}
|
||||
|
||||
VP8LAddVectorEq(best_histo, accumulated, HISTO_SIZE);
|
||||
return best_mode;
|
||||
}
|
||||
|
||||
// Converts pixels of the image to residuals with respect to predictions.
|
||||
@ -536,6 +559,59 @@ static void OptimizeSampling(uint32_t* const image, int full_width,
|
||||
*best_bits_out = best_bits;
|
||||
}
|
||||
|
||||
// Computes the best predictor image.
|
||||
// Finds the best predictors per tile. Once done, finds the best predictor image
|
||||
// sampling.
|
||||
// best_bits is set to 0 in case of error.
|
||||
static void GetBestPredictorsAndSampling(
|
||||
int width, int height, const int bits, uint32_t* const argb_scratch,
|
||||
const uint32_t* const argb, int max_quantization, int exact,
|
||||
int used_subtract_green, const WebPPicture* const pic, int percent_range,
|
||||
int* const percent, uint32_t* const all_modes, int* best_bits) {
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
||||
const int tiles_per_col = VP8LSubSampleSize(height, bits);
|
||||
// Compute the needed memory size for residual histograms and accumulated
|
||||
// residual histograms.
|
||||
const int num_argb = kNumPredModes * HISTO_SIZE;
|
||||
const int num_accumulated_argb = HISTO_SIZE;
|
||||
uint32_t* const raw_data = (uint32_t*)WebPSafeCalloc(
|
||||
num_argb + num_accumulated_argb, sizeof(*raw_data));
|
||||
uint32_t* const all_argb = raw_data;
|
||||
uint32_t* const all_accumulated_argb = all_argb + num_argb;
|
||||
const int percent_start = *percent;
|
||||
int tile_x = 0, tile_y = 0;
|
||||
|
||||
*best_bits = 0;
|
||||
if (raw_data == NULL) return;
|
||||
|
||||
while (tile_y < tiles_per_col) {
|
||||
ComputeResidualsForTile(width, height, tile_x, tile_y, bits, all_argb,
|
||||
argb_scratch, argb, max_quantization, exact,
|
||||
used_subtract_green);
|
||||
GetBestPredictorForTile(all_argb, tile_x, tile_y, tiles_per_row,
|
||||
all_accumulated_argb, all_modes);
|
||||
// Reset the residuals.
|
||||
memset(all_argb, 0, HISTO_SIZE * kNumPredModes * sizeof(*all_argb));
|
||||
|
||||
if (tile_x == (tiles_per_row - 1)) {
|
||||
tile_x = 0;
|
||||
++tile_y;
|
||||
} else {
|
||||
++tile_x;
|
||||
}
|
||||
if (tile_x == 0 &&
|
||||
!WebPReportProgress(
|
||||
pic, percent_start + percent_range * tile_y / tiles_per_col,
|
||||
percent)) {
|
||||
WebPSafeFree(raw_data);
|
||||
return;
|
||||
}
|
||||
}
|
||||
WebPSafeFree(raw_data);
|
||||
|
||||
OptimizeSampling(all_modes, width, height, bits, best_bits);
|
||||
}
|
||||
|
||||
// Finds the best predictor for each tile, and converts the image to residuals
|
||||
// with respect to predictions. If near_lossless_quality < 100, applies
|
||||
// near lossless processing, shaving off more bits of residuals for lower
|
||||
@ -557,24 +633,10 @@ int VP8LResidualImage(int width, int height, int bits, int low_effort,
|
||||
}
|
||||
*best_bits = bits;
|
||||
} else {
|
||||
int tile_y;
|
||||
uint32_t histo[HISTO_SIZE] = { 0 };
|
||||
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
|
||||
int tile_x;
|
||||
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
|
||||
const int pred = GetBestPredictorForTile(
|
||||
width, height, tile_x, tile_y, bits, histo, argb_scratch, argb,
|
||||
max_quantization, exact, used_subtract_green, image);
|
||||
image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
|
||||
}
|
||||
|
||||
if (!WebPReportProgress(
|
||||
pic, percent_start + percent_range * tile_y / tiles_per_col,
|
||||
percent)) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
OptimizeSampling(image, width, height, bits, best_bits);
|
||||
GetBestPredictorsAndSampling(width, height, bits, argb_scratch, argb,
|
||||
max_quantization, exact, used_subtract_green,
|
||||
pic, percent_range, percent, image, best_bits);
|
||||
if (*best_bits == 0) return 0;
|
||||
}
|
||||
|
||||
CopyImageWithPrediction(width, height, *best_bits, image, argb_scratch, argb,
|
||||
|
Loading…
x
Reference in New Issue
Block a user