mirror of
https://github.com/webmproject/libwebp.git
synced 2025-01-28 23:52:56 +01:00
More efficient stochastic histogram merge.
Between each iteration we keep track of the previously found potential merge hence less work to do. Change-Id: I2b6237447e79443516a6111727d96c24f10bd98a
This commit is contained in:
parent
5183326ba8
commit
833c92198c
@ -523,11 +523,12 @@ static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
|
||||
|
||||
// Compact image_histo[] by merging some histograms with same bin_id together if
|
||||
// it's advantageous.
|
||||
static VP8LHistogram* HistogramCombineEntropyBin(
|
||||
VP8LHistogramSet* const image_histo,
|
||||
VP8LHistogram* cur_combo,
|
||||
const uint16_t* const bin_map, int bin_map_size, int num_bins,
|
||||
double combine_cost_factor, int low_effort) {
|
||||
static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo,
|
||||
VP8LHistogram* cur_combo,
|
||||
const uint16_t* const bin_map,
|
||||
int bin_map_size, int num_bins,
|
||||
double combine_cost_factor,
|
||||
int low_effort) {
|
||||
VP8LHistogram** const histograms = image_histo->histograms;
|
||||
int idx;
|
||||
// Work in-place: processed histograms are put at the beginning of
|
||||
@ -593,7 +594,6 @@ static VP8LHistogram* HistogramCombineEntropyBin(
|
||||
UpdateHistogramCost(histograms[idx]);
|
||||
}
|
||||
}
|
||||
return cur_combo;
|
||||
}
|
||||
|
||||
// Implement a Lehmer random number generator with a multiplicative constant of
|
||||
@ -641,6 +641,8 @@ static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
|
||||
static void HistoQueueClear(HistoQueue* const histo_queue) {
|
||||
assert(histo_queue != NULL);
|
||||
WebPSafeFree(histo_queue->queue);
|
||||
histo_queue->size = 0;
|
||||
histo_queue->max_size = 0;
|
||||
}
|
||||
|
||||
// Pop a specific pair in the queue by replacing it with the last one
|
||||
@ -785,10 +787,9 @@ static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
|
||||
// Perform histogram aggregation using a stochastic approach.
|
||||
// 'do_greedy' is set to 1 if a greedy approach needs to be performed
|
||||
// afterwards, 0 otherwise.
|
||||
static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
|
||||
VP8LHistogram* tmp_histo,
|
||||
VP8LHistogram* best_combo,
|
||||
int min_cluster_size, int* do_greedy) {
|
||||
static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
|
||||
int min_cluster_size,
|
||||
int* const do_greedy) {
|
||||
int iter;
|
||||
uint32_t seed = 1;
|
||||
int tries_with_no_success = 0;
|
||||
@ -796,66 +797,117 @@ static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
|
||||
const int outer_iters = image_histo_size;
|
||||
const int num_tries_no_success = outer_iters / 2;
|
||||
VP8LHistogram** const histograms = image_histo->histograms;
|
||||
// Priority queue of histogram pairs. Its size of "kCostHeapSizeSqrt"^2
|
||||
// impacts the quality of the compression and the speed: the smaller the
|
||||
// faster but the worse for the compression.
|
||||
HistoQueue histo_queue;
|
||||
const int kHistoQueueSizeSqrt = 3;
|
||||
int ok = 0;
|
||||
|
||||
if (!HistoQueueInit(&histo_queue, kHistoQueueSizeSqrt)) {
|
||||
goto End;
|
||||
}
|
||||
// Collapse similar histograms in 'image_histo'.
|
||||
*do_greedy = (image_histo->size <= min_cluster_size);
|
||||
++min_cluster_size;
|
||||
for (iter = 0; iter < outer_iters && image_histo_size >= min_cluster_size &&
|
||||
++tries_with_no_success < num_tries_no_success;
|
||||
++iter) {
|
||||
double best_cost_diff = 0.;
|
||||
double best_cost =
|
||||
(histo_queue.size == 0) ? 0. : histo_queue.queue[0].cost_diff;
|
||||
int best_idx1 = -1, best_idx2 = 1;
|
||||
int j;
|
||||
const uint32_t rand_range = (image_histo_size - 1) * image_histo_size;
|
||||
// 6/10 was chosen empirically.
|
||||
// TODO(vrabaud): use less magic constants in that code.
|
||||
const int num_tries = (6 * image_histo_size) / 10;
|
||||
|
||||
// If the stochastic method has not worked for a while (10 iterations) and
|
||||
// if it requires less iterations to finish off with a greedy approach, go
|
||||
// for it.
|
||||
// With the greedy approach, each histogram is compared to the other ones,
|
||||
// hence (image_histo_size-1)*image_histo_size/2 overall comparisons.
|
||||
// Then, at each iteration, the best pair is merged and compared to all
|
||||
// the other ones, adding (image_histo_size-2)*(image_histo_size-1)/2 more
|
||||
// comparisons. Overall: (image_histo_size-1)^2 comparisons.
|
||||
*do_greedy |= (tries_with_no_success > 10) &&
|
||||
((image_histo_size - 1) * (image_histo_size - 1) <
|
||||
num_tries * (outer_iters - iter));
|
||||
if (*do_greedy) break;
|
||||
// image_histo_size / 2 was chosen empirically. Less means faster but worse
|
||||
// compression.
|
||||
const int num_tries = image_histo_size / 2;
|
||||
|
||||
for (j = 0; j < num_tries; ++j) {
|
||||
double curr_cost_diff;
|
||||
double curr_cost;
|
||||
// Choose two different histograms at random and try to combine them.
|
||||
const uint32_t tmp = MyRand(&seed) % rand_range;
|
||||
const uint32_t idx1 = tmp / (image_histo_size - 1);
|
||||
uint32_t idx2 = tmp % (image_histo_size - 1);
|
||||
if (idx2 >= idx1) ++idx2;
|
||||
|
||||
// Calculate cost reduction on combining.
|
||||
curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
|
||||
tmp_histo, best_cost_diff);
|
||||
if (curr_cost_diff < best_cost_diff) { // found a better pair?
|
||||
HistogramSwap(&best_combo, &tmp_histo);
|
||||
best_cost_diff = curr_cost_diff;
|
||||
best_idx1 = idx1;
|
||||
best_idx2 = idx2;
|
||||
// Calculate cost reduction on combination.
|
||||
curr_cost =
|
||||
HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost);
|
||||
if (curr_cost < 0) { // found a better pair?
|
||||
best_cost = curr_cost;
|
||||
// Empty the queue if we reached full capacity.
|
||||
if (histo_queue.size == histo_queue.max_size) break;
|
||||
}
|
||||
}
|
||||
if (histo_queue.size == 0) continue;
|
||||
|
||||
// Merge the two best histograms.
|
||||
best_idx1 = histo_queue.queue[0].idx1;
|
||||
best_idx2 = histo_queue.queue[0].idx2;
|
||||
assert(best_idx1 < best_idx2);
|
||||
HistogramAddEval(histograms[best_idx1], histograms[best_idx2],
|
||||
histograms[best_idx1], 0);
|
||||
// Swap the best_idx2 histogram with the last one (which is now unused).
|
||||
--image_histo_size;
|
||||
if (best_idx2 != image_histo_size) {
|
||||
HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
|
||||
}
|
||||
histograms[image_histo_size] = NULL;
|
||||
// Parse the queue and update each pair that deals with best_idx1,
|
||||
// best_idx2 or image_histo_size.
|
||||
for (j = 0; j < histo_queue.size;) {
|
||||
HistogramPair* const p = histo_queue.queue + j;
|
||||
const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2;
|
||||
const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2;
|
||||
int do_eval = 0;
|
||||
// The front pair could have been duplicated by a random pick so
|
||||
// check for it all the time nevertheless.
|
||||
if (is_idx1_best && is_idx2_best) {
|
||||
HistoQueuePopPair(&histo_queue, p);
|
||||
continue;
|
||||
}
|
||||
// Any pair containing one of the two best indices should only refer to
|
||||
// best_idx1. Its cost should also be updated.
|
||||
if (is_idx1_best) {
|
||||
p->idx1 = best_idx1;
|
||||
do_eval = 1;
|
||||
} else if (is_idx2_best) {
|
||||
p->idx2 = best_idx1;
|
||||
do_eval = 1;
|
||||
}
|
||||
if (p->idx2 == image_histo_size) {
|
||||
// No need to re-evaluate here as it does not involve a pair
|
||||
// containing best_idx1 or best_idx2.
|
||||
p->idx2 = best_idx2;
|
||||
}
|
||||
assert(p->idx2 < image_histo_size);
|
||||
// Make sure the index order is respected.
|
||||
if (p->idx1 > p->idx2) {
|
||||
const int tmp = p->idx2;
|
||||
p->idx2 = p->idx1;
|
||||
p->idx1 = tmp;
|
||||
}
|
||||
if (do_eval) {
|
||||
// Re-evaluate the cost of an updated pair.
|
||||
GetCombinedHistogramEntropy(histograms[p->idx1], histograms[p->idx2], 0,
|
||||
&p->cost_diff);
|
||||
if (p->cost_diff >= 0.) {
|
||||
HistoQueuePopPair(&histo_queue, p);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
HistoQueueUpdateHead(&histo_queue, p);
|
||||
++j;
|
||||
}
|
||||
|
||||
if (best_idx1 >= 0) {
|
||||
HistogramSwap(&best_combo, &histograms[best_idx1]);
|
||||
// swap best_idx2 slot with last one (which is now unused)
|
||||
--image_histo_size;
|
||||
if (best_idx2 != image_histo_size) {
|
||||
HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
|
||||
histograms[image_histo_size] = NULL;
|
||||
}
|
||||
tries_with_no_success = 0;
|
||||
}
|
||||
tries_with_no_success = 0;
|
||||
}
|
||||
image_histo->size = image_histo_size;
|
||||
*do_greedy |= (image_histo->size <= min_cluster_size);
|
||||
*do_greedy = (image_histo->size <= min_cluster_size);
|
||||
ok = 1;
|
||||
|
||||
End:
|
||||
HistoQueueClear(&histo_queue);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
@ -920,7 +972,7 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
int quality, int low_effort,
|
||||
int histo_bits, int cache_bits,
|
||||
VP8LHistogramSet* const image_histo,
|
||||
VP8LHistogramSet* const tmp_histos,
|
||||
VP8LHistogram* const tmp_histo,
|
||||
uint16_t* const histogram_symbols) {
|
||||
int ok = 0;
|
||||
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
|
||||
@ -928,7 +980,6 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
const int image_histo_raw_size = histo_xsize * histo_ysize;
|
||||
VP8LHistogramSet* const orig_histo =
|
||||
VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
|
||||
VP8LHistogram* cur_combo;
|
||||
// Don't attempt linear bin-partition heuristic for
|
||||
// histograms of small sizes (as bin_map will be very sparse) and
|
||||
// maximum quality q==100 (to preserve the compression gains at that level).
|
||||
@ -943,7 +994,6 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
// Copies the histograms and computes its bit_cost.
|
||||
HistogramCopyAndAnalyze(orig_histo, image_histo);
|
||||
|
||||
cur_combo = tmp_histos->histograms[1]; // pick up working slot
|
||||
if (entropy_combine) {
|
||||
const int bin_map_size = orig_histo->size;
|
||||
// Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
|
||||
@ -953,10 +1003,9 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
|
||||
HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
|
||||
// Collapse histograms with similar entropy.
|
||||
cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo,
|
||||
bin_map, bin_map_size,
|
||||
entropy_combine_num_bins,
|
||||
combine_cost_factor, low_effort);
|
||||
HistogramCombineEntropyBin(image_histo, tmp_histo, bin_map, bin_map_size,
|
||||
entropy_combine_num_bins, combine_cost_factor,
|
||||
low_effort);
|
||||
}
|
||||
|
||||
// Don't combine the histograms using stochastic and greedy heuristics for
|
||||
@ -966,8 +1015,9 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
// cubic ramp between 1 and MAX_HISTO_GREEDY:
|
||||
const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
|
||||
int do_greedy;
|
||||
HistogramCombineStochastic(image_histo, tmp_histos->histograms[0],
|
||||
cur_combo, threshold_size, &do_greedy);
|
||||
if (!HistogramCombineStochastic(image_histo, threshold_size, &do_greedy)) {
|
||||
goto Error;
|
||||
}
|
||||
if (do_greedy && !HistogramCombineGreedy(image_histo)) {
|
||||
goto Error;
|
||||
}
|
||||
|
@ -103,7 +103,7 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
||||
int quality, int low_effort,
|
||||
int histogram_bits, int cache_bits,
|
||||
VP8LHistogramSet* const image_in,
|
||||
VP8LHistogramSet* const tmp_histos,
|
||||
VP8LHistogram* const tmp_histo,
|
||||
uint16_t* const histogram_symbols);
|
||||
|
||||
// Returns the entropy for the symbols in the input array.
|
||||
|
@ -804,7 +804,7 @@ static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
VP8LSubSampleSize(width, histogram_bits) *
|
||||
VP8LSubSampleSize(height, histogram_bits);
|
||||
VP8LHistogramSet* histogram_image = NULL;
|
||||
VP8LHistogramSet* tmp_histos = NULL;
|
||||
VP8LHistogram* tmp_histo = NULL;
|
||||
int histogram_image_size = 0;
|
||||
size_t bit_array_size = 0;
|
||||
HuffmanTree* huff_tree = NULL;
|
||||
@ -850,8 +850,8 @@ static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
}
|
||||
histogram_image =
|
||||
VP8LAllocateHistogramSet(histogram_image_xysize, *cache_bits);
|
||||
tmp_histos = VP8LAllocateHistogramSet(2, *cache_bits);
|
||||
if (histogram_image == NULL || tmp_histos == NULL) {
|
||||
tmp_histo = VP8LAllocateHistogram(*cache_bits);
|
||||
if (histogram_image == NULL || tmp_histo == NULL) {
|
||||
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
|
||||
goto Error;
|
||||
}
|
||||
@ -859,7 +859,7 @@ static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
// Build histogram image and symbols from backward references.
|
||||
if (!VP8LGetHistoImageSymbols(width, height, &refs, quality, low_effort,
|
||||
histogram_bits, *cache_bits, histogram_image,
|
||||
tmp_histos, histogram_symbols)) {
|
||||
tmp_histo, histogram_symbols)) {
|
||||
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
|
||||
goto Error;
|
||||
}
|
||||
@ -880,8 +880,8 @@ static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
histogram_image = NULL;
|
||||
|
||||
// Free scratch histograms.
|
||||
VP8LFreeHistogramSet(tmp_histos);
|
||||
tmp_histos = NULL;
|
||||
VP8LFreeHistogram(tmp_histo);
|
||||
tmp_histo = NULL;
|
||||
|
||||
// Color Cache parameters.
|
||||
if (*cache_bits > 0) {
|
||||
@ -965,7 +965,7 @@ static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw,
|
||||
WebPSafeFree(tokens);
|
||||
WebPSafeFree(huff_tree);
|
||||
VP8LFreeHistogramSet(histogram_image);
|
||||
VP8LFreeHistogramSet(tmp_histos);
|
||||
VP8LFreeHistogram(tmp_histo);
|
||||
VP8LBackwardRefsClear(&refs);
|
||||
if (huffman_codes != NULL) {
|
||||
WebPSafeFree(huffman_codes->codes);
|
||||
|
Loading…
x
Reference in New Issue
Block a user