Merge "add Advanced Decoding Interface"

This commit is contained in:
Pascal Massimino 2011-06-20 16:30:01 -07:00 committed by Code Review
commit 5a18eb1a31
19 changed files with 2052 additions and 788 deletions

View File

@ -12,6 +12,8 @@ LOCAL_SRC_FILES := \
src/dec/tree.c \
src/dec/vp8.c \
src/dec/webp.c \
src/dec/io.c \
src/dec/buffer.c \
src/dec/yuv.c \
src/enc/alpha.c \
src/enc/analysis.c \

View File

@ -122,6 +122,8 @@ X_OBJS= \
$(DIROBJ)\dec\tree.obj \
$(DIROBJ)\dec\vp8.obj \
$(DIROBJ)\dec\webp.obj \
$(DIROBJ)\dec\io.obj \
$(DIROBJ)\dec\buffer.obj \
$(DIROBJ)\dec\yuv.obj \
$(DIROBJ)\dec\idec.obj \
$(DIROBJ)\dec\alpha.obj \

20
README
View File

@ -144,6 +144,7 @@ options:
-pass <int> ............ analysis pass number (1..10)
-partitions <int> ...... number of partitions to use (0..3)
-crop <x> <y> <w> <h> .. crop picture with the given rectangle
-resize <w> <h> ........ resize picture (after any cropping)
-map <int> ............. print map of extra info.
-d <file.pgm> .......... dump the compressed output (PGM file).
@ -201,6 +202,25 @@ file test.webp decodes to exactly the same as test_ref.ppm by using:
./dwebp test.webp -ppm -o test.ppm
diff test.ppm test_ref.ppm
The full list of options is available using -h:
> dwebp -h
Usage: dwebp in_file [options] [-o out_file]
Decodes the WebP image file to PNG format [Default]
Use following options to convert into alternate image formats:
-ppm ......... save the raw RGB samples as color PPM
-pgm ......... save the raw YUV samples as a grayscale PGM
file with IMC4 layout.
Other options are:
-version .... print version number and exit.
-nofancy ..... don't use the fancy YUV420 upscaler.
-nofilter .... disable in-loop filtering.
-crop <x> <y> <w> <h> ... crop output with the given rectangle
-scale <w> <h> .......... scale the output (*after* any cropping)
-h ....... this help message.
-v ....... verbose (e.g. print encoding/decoding times)
-noasm ....... disable all assembly optimizations.
Encoding API:
===========

View File

@ -5,8 +5,7 @@
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// simple command-line example calling libwebpdecode to
// decode a WebP image into a PPM image.
// Command-line tool for decoding a WebP image
//
// Compile with: gcc -o dwebp dwebp.c -lwebpdecode
//
@ -45,11 +44,18 @@
extern "C" {
#endif
//-----------------------------------------------------------------------------
static int verbose = 0;
extern void* VP8DecGetCPUInfo; // opaque forward declaration.
static int verbose = 0;
//-----------------------------------------------------------------------------
// Output types
typedef enum {
PNG = 0,
PPM,
PGM,
ALPHA_PLANE_ONLY // this is for experimenting only
} OutputFileFormat;
#ifdef HAVE_WINCODEC_H
@ -69,7 +75,8 @@ static int verbose = 0;
#define MAKE_REFGUID(x) &(x)
#endif
static HRESULT CreateOutputStream(const char* out_file_name, IStream** ppStream) {
static HRESULT CreateOutputStream(const char* out_file_name,
IStream** ppStream) {
HRESULT hr = S_OK;
IFS(SHCreateStreamOnFileA(out_file_name, STGM_WRITE | STGM_CREATE, ppStream));
if (FAILED(hr))
@ -117,8 +124,13 @@ static HRESULT WriteUsingWIC(const char* out_file_name, REFGUID container_guid,
return hr;
}
static int WritePNG(const char* out_file_name, unsigned char* rgb, int stride,
uint32_t width, uint32_t height, int has_alpha) {
static int WritePNG(const char* out_file_name,
const WebPDecBuffer* const buffer) {
const uint32_t width = buffer->width;
const uint32_t height = buffer->height;
unsigned char* const rgb = buffer->u.RGBA.rgba;
const int stride = buffer->u.RGBA.stride;
const int has_alpha = (buffer->colorspace == MODE_RGBA);
assert(!has_alpha); // TODO(mikolaj)
return SUCCEEDED(WriteUsingWIC(out_file_name,
MAKE_REFGUID(GUID_ContainerFormatPng), rgb, stride, width,
@ -131,8 +143,12 @@ static void PNGAPI error_function(png_structp png, png_const_charp dummy) {
longjmp(png_jmpbuf(png), 1);
}
static int WritePNG(FILE* out_file, unsigned char* rgb, int stride,
png_uint_32 width, png_uint_32 height, int has_alpha) {
static int WritePNG(FILE* out_file, const WebPDecBuffer* const buffer) {
const uint32_t width = buffer->width;
const uint32_t height = buffer->height;
unsigned char* const rgb = buffer->u.RGBA.rgba;
const int stride = buffer->u.RGBA.stride;
const int has_alpha = (buffer->colorspace == MODE_RGBA);
png_structp png;
png_infop info;
png_uint_32 y;
@ -169,8 +185,7 @@ static int WritePNG(FILE* out_file, unsigned char* rgb, int stride,
typedef uint32_t png_uint_32;
static int WritePNG(FILE* out_file, unsigned char* rgb, int stride,
png_uint_32 width, png_uint_32 height, int has_alpha) {
static int WritePNG(FILE* out_file, const WebPDecBuffer* const buffer) {
printf("PNG support not compiled. Please install the libpng development "
"package before building.\n");
printf("You can run with -ppm flag to decode in PPM format.\n");
@ -178,84 +193,157 @@ static int WritePNG(FILE* out_file, unsigned char* rgb, int stride,
}
#endif
static int WritePPM(FILE* fout, const unsigned char* rgb,
uint32_t width, uint32_t height) {
fprintf(fout, "P6\n%d %d\n255\n", width, height);
return (fwrite(rgb, width * height, 3, fout) == 3);
}
static int WriteAlphaPlane(FILE* fout, const unsigned char* rgba,
uint32_t width, uint32_t height) {
static int WritePPM(FILE* fout, const WebPDecBuffer* const buffer) {
const uint32_t width = buffer->width;
const uint32_t height = buffer->height;
const unsigned char* const rgb = buffer->u.RGBA.rgba;
const int stride = buffer->u.RGBA.stride;
uint32_t y;
fprintf(fout, "P5\n%d %d\n255\n", width, height);
fprintf(fout, "P6\n%d %d\n255\n", width, height);
for (y = 0; y < height; ++y) {
const unsigned char* line = rgba + y * (width * 4);
uint32_t x;
for (x = 0; x < width; ++x) {
if (fputc(line[4 * x + 3], fout) == EOF) {
return 0;
}
if (fwrite(rgb + y * stride, width, 3, fout) != 3) {
return 0;
}
}
return 1;
}
static int WritePGM(FILE* fout,
unsigned char* y_plane, unsigned char *u, unsigned char* v,
int y_stride, int uv_stride,
uint32_t width, uint32_t height) {
static int WriteAlphaPlane(FILE* fout, const WebPDecBuffer* const buffer) {
const uint32_t width = buffer->width;
const uint32_t height = buffer->height;
const unsigned char* const a = buffer->u.YUVA.a;
const int a_stride = buffer->u.YUVA.a_stride;
uint32_t y;
assert(a != NULL);
fprintf(fout, "P5\n%d %d\n255\n", width, height);
for (y = 0; y < height; ++y) {
if (fwrite(a + y * a_stride, width, 1, fout) != 1) {
return 0;
}
}
return 1;
}
static int WritePGM(FILE* fout, const WebPDecBuffer* const buffer) {
const int width = buffer->width;
const int height = buffer->height;
const WebPYUVABuffer* const yuv = &buffer->u.YUVA;
// Save a grayscale PGM file using the IMC4 layout
// (http://www.fourcc.org/yuv.php#IMC4). This is a very
// convenient format for viewing the samples, esp. for
// odd dimensions.
int ok = 1;
unsigned int y;
const unsigned int uv_width = (width + 1) / 2;
const unsigned int uv_height = (height + 1) / 2;
const unsigned int out_stride = (width + 1) & ~1;
fprintf(fout, "P5\n%d %d\n255\n", out_stride, height + uv_height);
int y;
const int uv_width = (width + 1) / 2;
const int uv_height = (height + 1) / 2;
const int out_stride = (width + 1) & ~1;
const int a_height = yuv->a ? height : 0;
fprintf(fout, "P5\n%d %d\n255\n", out_stride, height + uv_height + a_height);
for (y = 0; ok && y < height; ++y) {
ok &= (fwrite(y_plane + y * y_stride, width, 1, fout) == 1);
ok &= (fwrite(yuv->y + y * yuv->y_stride, width, 1, fout) == 1);
if (width & 1) fputc(0, fout); // padding byte
}
for (y = 0; ok && y < uv_height; ++y) {
ok &= (fwrite(u + y * uv_stride, uv_width, 1, fout) == 1);
ok &= (fwrite(v + y * uv_stride, uv_width, 1, fout) == 1);
ok &= (fwrite(yuv->u + y * yuv->u_stride, uv_width, 1, fout) == 1);
ok &= (fwrite(yuv->v + y * yuv->v_stride, uv_width, 1, fout) == 1);
}
for (y = 0; ok && y < a_height; ++y) {
ok &= (fwrite(yuv->a + y * yuv->a_stride, width, 1, fout) == 1);
if (width & 1) fputc(0, fout); // padding byte
}
return ok;
}
typedef enum {
PNG = 0,
PPM,
PGM,
ALPHA_PLANE_ONLY // this is for experimenting only
} OutputFileFormat;
static void SaveOutput(const WebPDecBuffer* const buffer,
OutputFileFormat format, const char* const out_file) {
FILE* fout = NULL;
int needs_open_file = 1;
int ok = 1;
Stopwatch stop_watch;
if (verbose)
StopwatchReadAndReset(&stop_watch);
#ifdef _WIN32
needs_open_file = (format != PNG);
#endif
if (needs_open_file) {
fout = fopen(out_file, "wb");
if (!fout) {
fprintf(stderr, "Error opening output file %s\n", out_file);
return;
}
}
if (format == PNG) {
#ifdef HAVE_WINCODEC_H
ok &= WritePNG(out_file, buffer);
#else
ok &= WritePNG(fout, buffer);
#endif
} else if (format == PPM) {
ok &= WritePPM(fout, buffer);
} else if (format == PGM) {
ok &= WritePGM(fout, buffer);
} else if (format == ALPHA_PLANE_ONLY) {
ok &= WriteAlphaPlane(fout, buffer);
}
if (fout) {
fclose(fout);
}
if (ok) {
printf("Saved file %s\n", out_file);
if (verbose) {
const double time = StopwatchReadAndReset(&stop_watch);
printf("Time to write output: %.3fs\n", time);
}
} else {
fprintf(stderr, "Error writing file %s !!\n", out_file);
}
}
static void Help(void) {
printf("Usage: dwebp "
"[in_file] [-h] [-v] [-ppm] [-pgm] [-version] [-o out_file]\n\n"
printf("Usage: dwebp in_file [options] [-o out_file]\n\n"
"Decodes the WebP image file to PNG format [Default]\n"
"Use following options to convert into alternate image formats:\n"
" -ppm: save the raw RGB samples as color PPM\n"
" -pgm: save the raw YUV samples as a grayscale PGM\n"
" file with IMC4 layout.\n"
" -version: print version number and exit.\n"
"Use -v for verbose (e.g. print encoding/decoding times)\n"
"Use -noasm to disable all assembly optimizations.\n"
" -ppm ......... save the raw RGB samples as color PPM\n"
" -pgm ......... save the raw YUV samples as a grayscale PGM\n"
" file with IMC4 layout.\n"
" Other options are:\n"
" -version .... print version number and exit.\n"
" -nofancy ..... don't use the fancy YUV420 upscaler.\n"
" -nofilter .... disable in-loop filtering.\n"
" -crop <x> <y> <w> <h> ... crop output with the given rectangle\n"
" -scale <w> <h> .......... scale the output (*after* any cropping)\n"
#ifdef WEBP_EXPERIMENTAL_FEATURES
" -alpha ....... only save the alpha plane.\n"
#endif
" -h ....... this help message.\n"
" -v ....... verbose (e.g. print encoding/decoding times)\n"
" -noasm ....... disable all assembly optimizations.\n"
);
}
static const char* const kStatusMessages[] = {
"OK", "OUT_OF_MEMORY", "INVALID_PARAM", "BITSTREAM_ERROR",
"UNSUPPORTED_FEATURE", "SUSPENDED", "USER_ABORT", "NOT_ENOUGH_DATA"
};
int main(int argc, const char *argv[]) {
const char *in_file = NULL;
const char *out_file = NULL;
int width, height, stride, uv_stride;
int has_alpha = 0;
uint8_t* out = NULL, *u = NULL, *v = NULL;
WebPDecoderConfig config;
WebPDecBuffer* const output_buffer = &config.output;
WebPBitstreamFeatures* const bitstream = &config.input;
OutputFileFormat format = PNG;
Stopwatch stop_watch;
int c;
if (!WebPInitDecoderConfig(&config)) {
fprintf(stderr, "Library version mismatch!\n");
return -1;
}
for (c = 1; c < argc; ++c) {
if (!strcmp(argv[c], "-h") || !strcmp(argv[c], "-help")) {
Help();
@ -264,6 +352,10 @@ int main(int argc, const char *argv[]) {
out_file = argv[++c];
} else if (!strcmp(argv[c], "-alpha")) {
format = ALPHA_PLANE_ONLY;
} else if (!strcmp(argv[c], "-nofancy")) {
config.options.no_fancy_upsampling = 1;
} else if (!strcmp(argv[c], "-nofilter")) {
config.options.bypass_filtering = 1;
} else if (!strcmp(argv[c], "-ppm")) {
format = PPM;
} else if (!strcmp(argv[c], "-version")) {
@ -273,6 +365,16 @@ int main(int argc, const char *argv[]) {
return 0;
} else if (!strcmp(argv[c], "-pgm")) {
format = PGM;
} else if (!strcmp(argv[c], "-crop") && c < argc - 4) {
config.options.use_cropping = 1;
config.options.crop_left = strtol(argv[++c], NULL, 0);
config.options.crop_top = strtol(argv[++c], NULL, 0);
config.options.crop_width = strtol(argv[++c], NULL, 0);
config.options.crop_height = strtol(argv[++c], NULL, 0);
} else if (!strcmp(argv[c], "-scale") && c < argc - 2) {
config.options.use_scaling = 1;
config.options.scaled_width = strtol(argv[++c], NULL, 0);
config.options.scaled_height = strtol(argv[++c], NULL, 0);
} else if (!strcmp(argv[c], "-v")) {
verbose = 1;
} else if (!strcmp(argv[c], "-noasm")) {
@ -293,10 +395,13 @@ int main(int argc, const char *argv[]) {
}
{
Stopwatch stop_watch;
VP8StatusCode status = VP8_STATUS_OK;
int ok;
uint32_t data_size = 0;
void* data = NULL;
int ok;
FILE* const in = fopen(in_file, "rb");
if (!in) {
fprintf(stderr, "cannot open input file '%s'\n", in_file);
return 1;
@ -308,101 +413,70 @@ int main(int argc, const char *argv[]) {
ok = (fread(data, data_size, 1, in) == 1);
fclose(in);
if (!ok) {
fprintf(stderr, "Could not read %d bytes of data from file %s\n",
data_size, in_file);
free(data);
return -1;
}
if (verbose)
StopwatchReadAndReset(&stop_watch);
status = WebPGetFeatures((const uint8_t*)data, data_size, bitstream);
if (status != VP8_STATUS_OK) {
goto end;
}
switch (format) {
case PNG:
#ifdef _WIN32
out = WebPDecodeBGR((const uint8_t*)data, data_size, &width, &height);
stride = 3 * width;
has_alpha = 0;
// TODO(mikolaj): no alpha for now
output_buffer->colorspace = MODE_BGR;
#else
out = WebPDecodeRGBA((const uint8_t*)data, data_size, &width, &height);
stride = 4 * width;
has_alpha = 1;
output_buffer->colorspace = bitstream->has_alpha ? MODE_RGBA : MODE_RGB;
#endif
break;
case PPM:
out = WebPDecodeRGB((const uint8_t*)data, data_size, &width, &height);
output_buffer->colorspace = MODE_RGB; // drops alpha for PPM
break;
case PGM:
out = WebPDecodeYUV((const uint8_t*)data, data_size, &width, &height,
&u, &v, &stride, &uv_stride);
output_buffer->colorspace = bitstream->has_alpha ? MODE_YUVA : MODE_YUV;
break;
case ALPHA_PLANE_ONLY:
out = WebPDecodeRGBA((const uint8_t*)data, data_size, &width, &height);
output_buffer->colorspace = MODE_YUVA;
break;
default:
free(data);
return -1;
}
status = WebPDecode((const uint8_t*)data, data_size, &config);
if (verbose) {
const double time = StopwatchReadAndReset(&stop_watch);
printf("Time to decode picture: %.3fs\n", time);
}
end:
free(data);
}
if (!out) {
fprintf(stderr, "Decoding of %s failed.\n", in_file);
return -1;
ok = (status == VP8_STATUS_OK);
if (!ok) {
fprintf(stderr, "Decoding of %s failed.\n", in_file);
fprintf(stderr, "Status: %d (%s)\n", status, kStatusMessages[status]);
return -1;
}
}
if (out_file) {
FILE* fout = NULL;
int needs_open_file = 0;
printf("Decoded %s. Dimensions: %d x %d. Now saving...\n", in_file, width, height);
StopwatchReadAndReset(&stop_watch);
#ifdef _WIN32
if (format != PNG) {
needs_open_file = 1;
}
#else
needs_open_file = 1;
#endif
if (needs_open_file) fout = fopen(out_file, "wb");
if (!needs_open_file || fout) {
int ok = 1;
if (format == PNG) {
#ifdef HAVE_WINCODEC_H
ok &= WritePNG(out_file, out, stride, width, height, has_alpha);
#else
ok &= WritePNG(fout, out, stride, width, height, has_alpha);
#endif
} else if (format == PPM) {
ok &= WritePPM(fout, out, width, height);
} else if (format == PGM) {
ok &= WritePGM(fout, out, u, v, stride, uv_stride, width, height);
} else if (format == ALPHA_PLANE_ONLY) {
ok &= WriteAlphaPlane(fout, out, width, height);
}
if (fout)
fclose(fout);
if (ok) {
printf("Saved file %s\n", out_file);
if (verbose) {
const double time = StopwatchReadAndReset(&stop_watch);
printf("Time to write output: %.3fs\n", time);
}
} else {
fprintf(stderr, "Error writing file %s !!\n", out_file);
}
} else {
fprintf(stderr, "Error opening output file %s\n", out_file);
}
printf("Decoded %s. Dimensions: %d x %d%s. Now saving...\n", in_file,
output_buffer->width, output_buffer->height,
bitstream->has_alpha ? " (with alpha)" : "");
SaveOutput(output_buffer, format, out_file);
} else {
printf("File %s can be decoded (dimensions: %d x %d).\n",
in_file, width, height);
printf("File %s can be decoded (dimensions: %d x %d)%s.\n",
in_file, output_buffer->width, output_buffer->height,
bitstream->has_alpha ? " (with alpha)" : "");
printf("Nothing written; use -o flag to save the result as e.g. PNG.\n");
}
free(out);
WebPFreeDecBuffer(output_buffer);
return 0;
}

View File

@ -56,7 +56,8 @@ OBJS = src/enc/webpenc.o src/enc/bit_writer.o src/enc/syntax.o \
src/enc/layer.o \
src/dec/bits.o src/dec/dsp.o src/dec/dsp_sse2.o src/dec/frame.o \
src/dec/webp.o src/dec/quant.o src/dec/tree.o src/dec/vp8.o \
src/dec/yuv.o src/dec/idec.o src/dec/alpha.o src/dec/layer.o
src/dec/yuv.o src/dec/idec.o src/dec/alpha.o src/dec/layer.o \
src/dec/io.o src/dec/buffer.o
HDRS = src/webp/encode.h src/enc/vp8enci.h src/enc/bit_writer.h \
src/enc/cost.h src/dec/bits.h src/dec/vp8i.h src/dec/yuv.h
OUTPUT = examples/cwebp examples/dwebp src/libwebp.a

View File

@ -1,5 +1,5 @@
.\" Hey, EMACS: -*- nroff -*-
.TH CWEBP 1 "March 28, 2011"
.TH CWEBP 1 "June 20, 2011"
.SH NAME
cwebp \- compress an image file to a WebP file
.SH SYNOPSIS
@ -102,8 +102,8 @@ options \fB\-size\fP or \fB\-psnr\fP. Maximum value is 10.
.TP
.B \-crop x_position y_position width height
Crop the source to a rectangle with top-left corner at coordinates
(x_position, y_position) and size width x height. This cropping area must
be fully contained within the source rectangle.
(\fBx_position\fP, \fBy_position\fP) and size \fBwidth\fP x \fBheight\fP.
This cropping area must be fully contained within the source rectangle.
.TP
.B \-s width height
Specify that the input file actually consists of raw Y'CbCr samples following

View File

@ -1,5 +1,5 @@
.\" Hey, EMACS: -*- nroff -*-
.TH DWEBP 1 "March 28, 2011"
.TH DWEBP 1 "June 20, 2011"
.SH NAME
dwebp \- decompress a WebP file to an image file
.SH SYNOPSIS
@ -32,6 +32,29 @@ Change the output format to PGM. The output consist of luma/chroma
samples instead of RGB, using the ICM4 layout. This option is mainly
for verification and debugging purpose.
.TP
.B \-nofancy
Don't use the fancy upscaler for YUV420. This may lead to jaggy
edges (especially the red ones), but should be faster.
.TP
.B \-nofilter
Don't use the in-loop filtering process even if it is required by
the bitstream. This may produce visible blocks on the non-compliant output,
but will make the decoding faster.
.TP
.B \-crop x_position y_position width height
Crop the decoded picture to a rectangle with top-left corner at coordinates
(\fBx_position\fP, \fBy_position\fP) and size \fBwidth\fP x \fBheight\fP.
This cropping area must be fully contained within the source rectangle.
The top-left corner will be snapped to even coordinates if needed.
This option is meant to reduce the memory needed for cropping large images.
Note: the cropping is applied \fIbefore\fP any scaling.
.TP
.B \-scale width height
Rescale the decoded picture to dimension \fBwidth\fP x \fBheight\fP. This option is
mostly intended to reducing the memory needed to decode large images,
when only a small version is needed (thumbnail, preview, etc.).
Note: scaling is applied \fIafter\fP cropping.
.TP
.B \-v
Print extra information (decoding time in particular).
.TP

View File

@ -2,7 +2,7 @@ AM_CPPFLAGS = -I$(top_srcdir)/src
libwebpdecode_la_SOURCES = bits.h vp8i.h yuv.h bits.c dsp.c dsp_sse2.c frame.c \
quant.c tree.c vp8.c webp.c yuv.c idec.c alpha.c \
layer.c
layer.c io.c buffer.c
libwebpdecode_la_LDFLAGS = -version-info 0:0:0
libwebpdecode_la_CPPFLAGS = $(USE_EXPERIMENTAL_CODE)
libwebpdecodeinclude_HEADERS = ../webp/decode.h ../webp/decode_vp8.h ../webp/types.h

201
src/dec/buffer.c Normal file
View File

@ -0,0 +1,201 @@
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Everything about WebPDecBuffer
//
// Author: Skal (pascal.massimino@gmail.com)
#include <stdlib.h>
#include "vp8i.h"
#include "webpi.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//-----------------------------------------------------------------------------
// WebPDecBuffer
static VP8StatusCode CheckDecBuffer(const WebPDecBuffer* const buffer) {
int ok = 1;
WEBP_CSP_MODE mode = buffer->colorspace;
const int width = buffer->width;
const int height = buffer->height;
if (mode >= MODE_YUV) { // YUV checks
const WebPYUVABuffer* const buf = &buffer->u.YUVA;
const int size = buf->y_stride * height;
const int u_size = buf->u_stride * ((height + 1) / 2);
const int v_size = buf->v_stride * ((height + 1) / 2);
const int a_size = buf->a_stride * height;
ok &= (size <= buf->y_size);
ok &= (u_size <= buf->u_size);
ok &= (v_size <= buf->v_size);
ok &= (a_size <= buf->a_size);
ok &= (buf->y_stride >= width);
ok &= (buf->u_stride >= (width + 1) / 2);
ok &= (buf->v_stride >= (width + 1) / 2);
if (buf->a) {
ok &= (buf->a_stride >= width);
}
} else { // RGB checks
const WebPRGBABuffer* const buf = &buffer->u.RGBA;
ok &= (buf->stride * height <= buf->size);
if (mode == MODE_RGB || mode == MODE_BGR) {
ok &= (buf->stride >= width * 3);
} else if (mode == MODE_RGBA || mode == MODE_BGRA) {
ok &= (buf->stride >= width * 4);
}
}
return ok ? VP8_STATUS_OK : VP8_STATUS_INVALID_PARAM;
}
static VP8StatusCode AllocateBuffer(WebPDecBuffer* const buffer) {
const int w = buffer->width;
const int h = buffer->height;
if (w <= 0 || h <= 0) {
return VP8_STATUS_INVALID_PARAM;
}
if (!buffer->is_external_memory && buffer->memory == NULL) {
uint8_t* output;
WEBP_CSP_MODE mode = buffer->colorspace;
int stride;
int uv_stride = 0, a_stride = 0;
int uv_size = 0;
uint64_t size, a_size = 0, total_size;
// We need memory and it hasn't been allocated yet.
// => initialize output buffer, now that dimensions are known.
stride = (mode == MODE_RGB || mode == MODE_BGR) ? 3 * w
: (mode == MODE_RGBA || mode == MODE_BGRA) ? 4 * w
: w;
size = (uint64_t)stride * h;
if (mode >= MODE_YUV) {
uv_stride = (w + 1) / 2;
uv_size = (uint64_t)uv_stride * ((h + 1) / 2);
if (mode == MODE_YUVA) {
a_stride = w;
a_size = (uint64_t)a_stride * h;
}
}
total_size = size + 2 * uv_size + a_size;
// Security/sanity checks
if (((size_t)total_size != total_size) || (total_size >= (1ULL << 40))) {
return VP8_STATUS_INVALID_PARAM;
}
buffer->memory = output = (uint8_t*)malloc((size_t)total_size);
if (output == NULL) {
return VP8_STATUS_OUT_OF_MEMORY;
}
if (mode >= MODE_YUV) { // YUVA initialization
WebPYUVABuffer* const buf = &buffer->u.YUVA;
buf->y = output;
buf->y_stride = stride;
buf->y_size = size;
buf->u = output + size;
buf->u_stride = uv_stride;
buf->u_size = uv_size;
buf->v = output + size + uv_size;
buf->v_stride = uv_stride;
buf->v_size = uv_size;
if (mode == MODE_YUVA) {
buf->a = output + size + 2 * uv_size;
}
buf->a_size = a_size;
buf->a_stride = a_stride;
} else { // RGBA initialization
WebPRGBABuffer* const buf = &buffer->u.RGBA;
buf->rgba = output;
buf->stride = stride;
buf->size = size;
}
}
return CheckDecBuffer(buffer);
}
VP8StatusCode WebPAllocateDecBuffer(int w, int h,
const WebPDecoderOptions* const options,
WebPDecBuffer* const out) {
if (out == NULL || w <= 0 || h <= 0) {
return VP8_STATUS_INVALID_PARAM;
}
if (options != NULL) { // First, apply options if there is any.
if (options->use_cropping) {
const int cw = options->crop_width;
const int ch = options->crop_height;
const int x = options->crop_left & ~1;
const int y = options->crop_top & ~1;
if (x < 0 || y < 0 || cw <= 0 || ch <= 0 || x + cw > w || y + ch > h) {
return VP8_STATUS_INVALID_PARAM; // out of frame boundary.
}
w = cw;
h = ch;
}
if (options->use_scaling) {
if (options->scaled_width <= 0 || options->scaled_height <= 0) {
return VP8_STATUS_INVALID_PARAM;
}
w = options->scaled_width;
h = options->scaled_height;
}
}
out->width = w;
out->height = h;
// Then, allocate buffer for real
return AllocateBuffer(out);
}
//-----------------------------------------------------------------------------
// constructors / destructors
int WebPInitDecBufferInternal(WebPDecBuffer* const buffer, int version) {
if (version != WEBP_DECODER_ABI_VERSION) return 0; // version mismatch
if (!buffer) return 0;
memset(buffer, 0, sizeof(*buffer));
return 1;
}
void WebPFreeDecBuffer(WebPDecBuffer* const buffer) {
if (buffer) {
if (!buffer->is_external_memory)
free(buffer->memory);
buffer->memory = NULL;
}
}
void WebPCopyDecBuffer(const WebPDecBuffer* const src,
WebPDecBuffer* const dst) {
if (src && dst) {
*dst = *src;
if (src->memory) {
dst->is_external_memory = 1; // dst buffer doesn't own the memory.
dst->memory = NULL;
}
}
}
// Copy and transfer ownership from src to dst (beware of parameter order!)
void WebPGrabDecBuffer(WebPDecBuffer* const src, WebPDecBuffer* const dst) {
if (src && dst) {
*dst = *src;
if (src->memory) {
src->is_external_memory = 1; // src relinquishes ownership
src->memory = NULL;
}
}
}
//-----------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif

View File

@ -18,7 +18,7 @@ extern "C" {
#define ALIGN_MASK (32 - 1)
//-----------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Memory setup
// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
@ -101,15 +101,13 @@ int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
// prepare 'io'
io->width = dec->pic_hdr_.width_;
io->height = dec->pic_hdr_.height_;
io->mb_y = 0;
io->y = dec->cache_y_;
io->u = dec->cache_u_;
io->v = dec->cache_v_;
io->y_stride = dec->cache_y_stride_;
io->uv_stride = dec->cache_uv_stride_;
io->fancy_upscaling = 0; // default
io->fancy_upsampling = 0; // default
io->a = NULL;
// Init critical function pointers and look-up tables.
@ -119,7 +117,7 @@ int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
return 1;
}
//-----------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Filtering
static inline int hev_thresh_from_level(int level, int keyframe) {
@ -130,7 +128,7 @@ static inline int hev_thresh_from_level(int level, int keyframe) {
}
}
static void DoFilter(VP8Decoder* const dec, int mb_x, int mb_y) {
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
VP8MB* const mb = dec->mb_info_ + mb_x;
uint8_t* const y_dst = dec->cache_y_ + mb_x * 16;
const int y_bps = dec->cache_y_stride_;
@ -178,6 +176,19 @@ static void DoFilter(VP8Decoder* const dec, int mb_x, int mb_y) {
}
}
void VP8FilterRow(const VP8Decoder* const dec) {
int mb_x;
assert(dec->filter_type_ > 0);
if (dec->mb_y_ < dec->tl_mb_y_ || dec->mb_y_ > dec->br_mb_y_) {
return;
}
for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
DoFilter(dec, mb_x, dec->mb_y_);
}
}
//------------------------------------------------------------------------------
void VP8StoreBlock(VP8Decoder* const dec) {
if (dec->filter_type_ > 0) {
VP8MB* const info = dec->mb_info_ + dec->mb_x_;
@ -225,24 +236,31 @@ void VP8StoreBlock(VP8Decoder* const dec) {
}
}
//------------------------------------------------------------------------------
// This function is called after a row of macroblocks is finished decoding.
// It also takes into account the following restrictions:
// * In case of in-loop filtering, we must hold off sending some of the bottom
// pixels as they are yet unfiltered. They will be when the next macroblock
// row is decoded. Meanwhile, we must preserve them by rotating them in the
// cache area. This doesn't hold for the very bottom row of the uncropped
// picture of course.
// * we must clip the remaining pixels against the cropping area. The VP8Io
// struct must have the following fields set correctly before calling put():
#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
int VP8FinishRow(VP8Decoder* const dec, VP8Io* io) {
const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
const int ysize = extra_y_rows * dec->cache_y_stride_;
const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
const int first_row = (dec->mb_y_ == 0);
const int last_row = (dec->mb_y_ >= dec->mb_h_ - 1);
uint8_t* const ydst = dec->cache_y_ - ysize;
uint8_t* const udst = dec->cache_u_ - uvsize;
uint8_t* const vdst = dec->cache_v_ - uvsize;
if (dec->filter_type_ > 0) {
int mb_x;
for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
DoFilter(dec, mb_x, dec->mb_y_);
}
}
const int first_row = (dec->mb_y_ == 0);
const int last_row = (dec->mb_y_ >= dec->br_mb_y_ - 1);
int y_start = MACROBLOCK_VPOS(dec->mb_y_);
int y_end = MACROBLOCK_VPOS(dec->mb_y_ + 1);
if (io->put) {
int y_start = dec->mb_y_ * 16;
int y_end = y_start + 16;
if (!first_row) {
y_start -= extra_y_rows;
io->y = ydst;
@ -253,14 +271,13 @@ int VP8FinishRow(VP8Decoder* const dec, VP8Io* io) {
io->u = dec->cache_u_;
io->v = dec->cache_v_;
}
if (!last_row) {
y_end -= extra_y_rows;
}
if (y_end > io->height) {
y_end = io->height;
if (y_end > io->crop_bottom) {
y_end = io->crop_bottom; // make sure we don't overflow on last row.
}
io->mb_y = y_start;
io->mb_h = y_end - y_start;
io->a = NULL;
#ifdef WEBP_EXPERIMENTAL_FEATURES
if (dec->alpha_data_) {
@ -271,11 +288,33 @@ int VP8FinishRow(VP8Decoder* const dec, VP8Io* io) {
}
}
#endif
if (!io->put(io)) {
return 0;
if (y_start < io->crop_top) {
const int delta_y = io->crop_top - y_start;
y_start = io->crop_top;
assert(!(delta_y & 1));
io->y += dec->cache_y_stride_ * delta_y;
io->u += dec->cache_uv_stride_ * (delta_y >> 1);
io->v += dec->cache_uv_stride_ * (delta_y >> 1);
if (io->a) {
io->a += io->width * delta_y;
}
}
if (y_start < y_end) {
io->y += io->crop_left;
io->u += io->crop_left >> 1;
io->v += io->crop_left >> 1;
if (io->a) {
io->a += io->crop_left;
}
io->mb_y = y_start - io->crop_top;
io->mb_w = io->crop_right - io->crop_left;
io->mb_h = y_end - y_start;
if (!io->put(io)) {
return 0;
}
}
}
// rotate top samples
// rotate top samples
if (!last_row) {
memcpy(ydst, ydst + 16 * dec->cache_y_stride_, ysize);
memcpy(udst, udst + 8 * dec->cache_uv_stride_, uvsize);
@ -284,7 +323,60 @@ int VP8FinishRow(VP8Decoder* const dec, VP8Io* io) {
return 1;
}
//-----------------------------------------------------------------------------
#undef MACROBLOCK_VPOS
//------------------------------------------------------------------------------
// Finish setting up the decoding parameter once user's setup() is called.
VP8StatusCode VP8FinishFrameSetup(VP8Decoder* const dec, VP8Io* const io) {
// Call setup() first. This may trigger additional decoding features on 'io'.
if (io->setup && !io->setup(io)) {
VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
return dec->status_;
}
// Disable filtering per user request
if (io->bypass_filtering) {
dec->filter_type_ = 0;
}
// TODO(skal): filter type / strength / sharpness forcing
// Define the area where we can skip in-loop filtering, in case of cropping.
//
// 'Simple' filter reads two luma samples outside of the macroblock and
// and filters one. It doesn't filter the chroma samples. Hence, we can
// avoid doing the in-loop filtering before crop_top/crop_left position.
// For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
// Means: there's a dependency chain that goes all the way up to the
// top-left corner of the picture (MB #0). We must filter all the previous
// macroblocks.
// TODO(skal): add an 'approximate_decoding' option, that won't produce
// a 1:1 bit-exactness for complex filtering?
{
const int extra_pixels = kFilterExtraRows[dec->filter_type_];
if (dec->filter_type_ == 2) {
// For complex filter, we need to preserve the dependency chain.
dec->tl_mb_x_ = 0;
dec->tl_mb_y_ = 0;
} else {
// For simple filter, we can filter only the cropped region.
dec->tl_mb_y_ = io->crop_top >> 4;
dec->tl_mb_x_ = io->crop_left >> 4;
}
// We need some 'extra' pixels on the right/bottom.
dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
if (dec->br_mb_x_ > dec->mb_w_) {
dec->br_mb_x_ = dec->mb_w_;
}
if (dec->br_mb_y_ > dec->mb_h_) {
dec->br_mb_y_ = dec->mb_h_;
}
}
return VP8_STATUS_OK;
}
//------------------------------------------------------------------------------
// Main reconstruction function.
static const int kScan[16] = {
@ -431,7 +523,7 @@ void VP8ReconstructBlock(VP8Decoder* const dec) {
}
}
//-----------------------------------------------------------------------------
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"

View File

@ -15,7 +15,6 @@
#include "webpi.h"
#include "vp8i.h"
#include "yuv.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
@ -56,12 +55,12 @@ typedef struct {
struct WebPIDecoder {
DecState state_; // current decoding state
int w_, h_; // width and height
WebPDecParams params_; // Params to store output info
VP8Decoder* dec_;
VP8Io io_;
MemBuffer mem_; // memory buffer
MemBuffer mem_; // input memory buffer.
WebPDecBuffer output_; // output buffer (when no external one is supplied)
};
// MB context to restore in case VP8DecodeMB() fails
@ -236,24 +235,23 @@ static VP8StatusCode IDecError(WebPIDecoder* idec, VP8StatusCode error) {
// Header
static VP8StatusCode DecodeHeader(WebPIDecoder* const idec) {
int width, height;
uint32_t curr_size, riff_header_size, bits;
WebPDecParams* params = &idec->params_;
uint32_t riff_header_size, bits;
const uint8_t* data = idec->mem_.buf_ + idec->mem_.start_;
uint32_t curr_size = MemDataSize(&idec->mem_);
uint32_t chunk_size;
if (MemDataSize(&idec->mem_) < WEBP_HEADER_SIZE) {
if (curr_size < WEBP_HEADER_SIZE) {
return VP8_STATUS_SUSPENDED;
}
if (!WebPInitDecParams(data, idec->mem_.end_, &width, &height, params)) {
// Validate and Skip over RIFF header
chunk_size = WebPCheckRIFFHeader(&data, &curr_size);
if (chunk_size == 0 ||
curr_size < VP8_HEADER_SIZE ||
!VP8GetInfo(data, curr_size, chunk_size, NULL, NULL, NULL)) {
return IDecError(idec, VP8_STATUS_BITSTREAM_ERROR);
}
// Validate and Skip over RIFF header
curr_size = MemDataSize(&idec->mem_);
if (!WebPCheckRIFFHeader(&data, &curr_size)) {
return IDecError(idec, VP8_STATUS_BITSTREAM_ERROR);
}
riff_header_size = idec->mem_.end_ - curr_size;
bits = data[0] | (data[1] << 8) | (data[2] << 16);
@ -261,8 +259,6 @@ static VP8StatusCode DecodeHeader(WebPIDecoder* const idec) {
idec->mem_.start_ += riff_header_size;
assert(idec->mem_.start_ <= idec->mem_.end_);
idec->w_ = width;
idec->h_ = height;
idec->io_.data_size -= riff_header_size;
idec->io_.data = data;
idec->state_ = STATE_PARTS0;
@ -298,14 +294,13 @@ static VP8StatusCode DecodePartition0(WebPIDecoder* const idec) {
VP8Decoder* const dec = idec->dec_;
VP8Io* const io = &idec->io_;
const WebPDecParams* const params = &idec->params_;
const WEBP_CSP_MODE mode = params->mode;
WebPDecBuffer* const output = params->output;
// Wait till we have enough data for the whole partition #0
if (MemDataSize(&idec->mem_) < idec->mem_.part0_size_) {
return VP8_STATUS_SUSPENDED;
}
io->opaque = &idec->params_;
if (!VP8GetHeaders(dec, io)) {
const VP8StatusCode status = dec->status_;
if (status == VP8_STATUS_SUSPENDED ||
@ -316,29 +311,26 @@ static VP8StatusCode DecodePartition0(WebPIDecoder* const idec) {
return IDecError(idec, status);
}
if (!WebPCheckDecParams(io, params)) {
return IDecError(idec, VP8_STATUS_INVALID_PARAM);
// Allocate/Verify output buffer now
dec->status_ = WebPAllocateDecBuffer(io->width, io->height, params->options,
output);
if (dec->status_ != VP8_STATUS_OK) {
return IDecError(idec, dec->status_);
}
if (mode != MODE_YUV) {
VP8YUVInit();
}
// allocate memory and prepare everything.
// Allocate memory and prepare everything.
if (!VP8InitFrame(dec, io)) {
return IDecError(idec, VP8_STATUS_OUT_OF_MEMORY);
}
if (io->setup && !io->setup(io)) {
return IDecError(idec, VP8_STATUS_USER_ABORT);
return IDecError(idec, dec->status_);
}
// disable filtering per user request (_after_ setup() is called)
if (io->bypass_filtering) dec->filter_type_ = 0;
// Finish setting up the decoding parameter
if (VP8FinishFrameSetup(dec, io) != VP8_STATUS_OK) {
return IDecError(idec, dec->status_);
}
if (!CopyParts0Data(idec)) {
return IDecError(idec, VP8_STATUS_OUT_OF_MEMORY);
}
idec->state_ = STATE_DATA;
return VP8_STATUS_OK;
}
@ -383,6 +375,9 @@ static VP8StatusCode DecodeRemaining(WebPIDecoder* const idec) {
assert(idec->mem_.start_ <= idec->mem_.end_);
}
}
if (dec->filter_type_ > 0) {
VP8FilterRow(dec);
}
if (!VP8FinishRow(dec, io)) {
return IDecError(idec, VP8_STATUS_USER_ABORT);
}
@ -410,7 +405,7 @@ static VP8StatusCode IDecode(WebPIDecoder* idec) {
status = DecodePartition0(idec);
}
if (idec->state_ == STATE_DATA) {
return DecodeRemaining(idec);
status = DecodeRemaining(idec);
}
return status;
}
@ -418,9 +413,11 @@ static VP8StatusCode IDecode(WebPIDecoder* idec) {
//------------------------------------------------------------------------------
// Public functions
WebPIDecoder* WebPINew(WEBP_CSP_MODE mode) {
WebPIDecoder* WebPINewDecoder(WebPDecBuffer* const output_buffer) {
WebPIDecoder* idec = (WebPIDecoder*)calloc(1, sizeof(WebPIDecoder));
if (!idec) return NULL;
if (idec == NULL) {
return NULL;
}
idec->dec_ = VP8New();
if (idec->dec_ == NULL) {
@ -430,53 +427,87 @@ WebPIDecoder* WebPINew(WEBP_CSP_MODE mode) {
idec->state_ = STATE_HEADER;
WebPResetDecParams(&idec->params_);
idec->params_.mode = mode;
InitMemBuffer(&idec->mem_);
WebPInitDecBuffer(&idec->output_);
VP8InitIo(&idec->io_);
WebPInitCustomIo(&idec->io_);
WebPResetDecParams(&idec->params_);
idec->params_.output = output_buffer ? output_buffer : &idec->output_;
WebPInitCustomIo(&idec->params_, &idec->io_); // Plug the I/O functions.
return idec;
}
WebPIDecoder* WebPIDecode(const uint8_t* data, uint32_t data_size,
WebPDecoderConfig* const config) {
WebPIDecoder* idec;
// Parse the bitstream's features, if requested:
if (data != NULL && data_size > 0 && config != NULL) {
if (WebPGetFeatures(data, data_size, &config->input) != VP8_STATUS_OK) {
return NULL;
}
}
// Create an instance of the incremental decoder
idec = WebPINewDecoder(config ? &config->output : NULL);
if (!idec) {
return NULL;
}
// Finish initialization
if (config != NULL) {
idec->params_.options = &config->options;
}
return idec;
}
void WebPIDelete(WebPIDecoder* const idec) {
if (!idec) return;
VP8Delete(idec->dec_);
WebPClearDecParams(&idec->params_);
ClearMemBuffer(&idec->mem_);
WebPFreeDecBuffer(&idec->output_);
free(idec);
}
//------------------------------------------------------------------------------
// Wrapper toward WebPINewDecoder
WebPIDecoder* WebPINew(WEBP_CSP_MODE mode) {
WebPIDecoder* const idec = WebPINewDecoder(NULL);
if (!idec) return NULL;
idec->output_.colorspace = mode;
return idec;
}
WebPIDecoder* WebPINewRGB(WEBP_CSP_MODE mode, uint8_t* output_buffer,
int output_buffer_size, int output_stride) {
WebPIDecoder* idec;
if (mode == MODE_YUV) return NULL;
idec = WebPINew(mode);
if (idec == NULL) return NULL;
idec->params_.output = output_buffer;
idec->params_.stride = output_stride;
idec->params_.output_size = output_buffer_size;
idec->params_.external_buffer = 1;
if (mode >= MODE_YUV) return NULL;
idec = WebPINewDecoder(NULL);
if (!idec) return NULL;
idec->output_.colorspace = mode;
idec->output_.is_external_memory = 1;
idec->output_.u.RGBA.rgba = output_buffer;
idec->output_.u.RGBA.stride = output_stride;
idec->output_.u.RGBA.size = output_buffer_size;
return idec;
}
WebPIDecoder* WebPINewYUV(uint8_t* luma, int luma_size, int luma_stride,
uint8_t* u, int u_size, int u_stride,
uint8_t* v, int v_size, int v_stride) {
WebPIDecoder* idec = WebPINew(MODE_YUV);
if (idec == NULL) return NULL;
idec->params_.output = luma;
idec->params_.stride = luma_stride;
idec->params_.output_size = luma_size;
idec->params_.u = u;
idec->params_.u_stride = u_stride;
idec->params_.output_u_size = u_size;
idec->params_.v = v;
idec->params_.v_stride = v_stride;
idec->params_.output_v_size = v_size;
idec->params_.external_buffer = 1;
WebPIDecoder* const idec = WebPINewDecoder(NULL);
if (!idec) return NULL;
idec->output_.colorspace = MODE_YUV;
idec->output_.is_external_memory = 1;
idec->output_.u.YUVA.y = luma;
idec->output_.u.YUVA.y_stride = luma_stride;
idec->output_.u.YUVA.y_size = luma_size;
idec->output_.u.YUVA.u = u;
idec->output_.u.YUVA.u_stride = u_stride;
idec->output_.u.YUVA.u_size = u_size;
idec->output_.u.YUVA.v = v;
idec->output_.u.YUVA.v_stride = v_stride;
idec->output_.u.YUVA.v_size = v_size;
return idec;
}
@ -540,38 +571,54 @@ VP8StatusCode WebPIUpdate(WebPIDecoder* const idec, const uint8_t* data,
//------------------------------------------------------------------------------
uint8_t* WebPIDecGetRGB(const WebPIDecoder* const idec, int *last_y, int* width,
int* height, int* stride) {
if (!idec || !idec->dec_ || idec->params_.mode == MODE_YUV ||
idec->state_ <= STATE_PARTS0) {
static const WebPDecBuffer* GetOutputBuffer(const WebPIDecoder* const idec) {
if (!idec || !idec->dec_ || idec->state_ <= STATE_PARTS0) {
return NULL;
}
if (last_y) *last_y = idec->params_.last_y;
if (width) *width = idec->w_;
if (height) *height = idec->h_;
if (stride) *stride = idec->params_.stride;
return idec->params_.output;
}
uint8_t* WebPIDecGetYUV(const WebPIDecoder* const idec, int *last_y,
uint8_t** u, uint8_t** v, int* width, int* height,
int *stride, int* uv_stride) {
if (!idec || !idec->dec_ || idec->params_.mode != MODE_YUV ||
idec->state_ <= STATE_PARTS0) {
const WebPDecBuffer* WebPIDecGetSamples(const WebPIDecoder* const idec,
int* last_y) {
const WebPDecBuffer* const src = GetOutputBuffer(idec);
if (last_y) *last_y = idec->params_.last_y;
return src;
}
uint8_t* WebPIDecGetRGB(const WebPIDecoder* const idec, int* last_y,
int* width, int* height, int* stride) {
const WebPDecBuffer* const src = GetOutputBuffer(idec);
if (!src) return NULL;
if (src->colorspace >= MODE_YUV) {
return NULL;
}
if (last_y) *last_y = idec->params_.last_y;
if (u) *u = idec->params_.u;
if (v) *v = idec->params_.v;
if (width) *width = idec->w_;
if (height) *height = idec->h_;
if (stride) *stride = idec->params_.stride;
if (uv_stride) *uv_stride = idec->params_.u_stride;
if (width) *width = src->width;
if (height) *height = src->height;
if (stride) *stride = src->u.RGBA.stride;
return idec->params_.output;
return src->u.RGBA.rgba;
}
uint8_t* WebPIDecGetYUV(const WebPIDecoder* const idec, int* last_y,
uint8_t** u, uint8_t** v,
int* width, int* height, int *stride, int* uv_stride) {
const WebPDecBuffer* const src = GetOutputBuffer(idec);
if (!src) return NULL;
if (src->colorspace < MODE_YUV) {
return NULL;
}
if (last_y) *last_y = idec->params_.last_y;
if (u) *u = src->u.YUVA.u;
if (v) *v = src->u.YUVA.v;
if (width) *width = src->width;
if (height) *height = src->height;
if (stride) *stride = src->u.YUVA.y_stride;
if (uv_stride) *uv_stride = src->u.YUVA.u_stride;
return src->u.YUVA.y;
}
#if defined(__cplusplus) || defined(c_plusplus)

845
src/dec/io.c Normal file
View File

@ -0,0 +1,845 @@
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// functions for sample output.
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include <stdlib.h>
#include "vp8i.h"
#include "webpi.h"
#include "yuv.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#define FANCY_UPSAMPLING // undefined to remove fancy upsampling support
// mask to apply to WEBP_CSP_MODE, to know if there's alpha channel or not.
#define MODE_ALPHA_MASK 1
//------------------------------------------------------------------------------
// Fancy upsampler
#ifdef FANCY_UPSAMPLING
// Given samples laid out in a square as:
// [a b]
// [c d]
// we interpolate u/v as:
// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16
// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16
// We process u and v together stashed into 32bit (16bit each).
#define LOAD_UV(u,v) ((u) | ((v) << 16))
#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* top_u, const uint8_t* top_v, \
const uint8_t* cur_u, const uint8_t* cur_v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int x; \
const int last_pixel_pair = (len - 1) >> 1; \
uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \
uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \
} \
for (x = 1; x <= last_pixel_pair; ++x) { \
const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \
const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \
/* precompute invariant values associated with first and second diagonals*/\
const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \
const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \
const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \
if (top_y) { \
const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \
const uint32_t uv1 = (diag_03 + t_uv) >> 1; \
FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (2 * x - 1) * XSTEP); \
FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \
top_dst + (2 * x - 0) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (diag_03 + l_uv) >> 1; \
const uint32_t uv1 = (diag_12 + uv) >> 1; \
FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (2 * x - 1) * XSTEP); \
FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \
bottom_dst + (2 * x + 0) * XSTEP); \
} \
tl_uv = t_uv; \
l_uv = uv; \
} \
if (!(len & 1)) { \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (len - 1) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (len - 1) * XSTEP); \
} \
} \
}
// All variants implemented.
UPSAMPLE_FUNC(UpsampleRgbLinePair, VP8YuvToRgb, 3)
UPSAMPLE_FUNC(UpsampleBgrLinePair, VP8YuvToBgr, 3)
UPSAMPLE_FUNC(UpsampleRgbaLinePair, VP8YuvToRgba, 4)
UPSAMPLE_FUNC(UpsampleBgraLinePair, VP8YuvToBgra, 4)
// These two don't erase the alpha value
UPSAMPLE_FUNC(UpsampleRgbKeepAlphaLinePair, VP8YuvToRgb, 4)
UPSAMPLE_FUNC(UpsampleBgrKeepAlphaLinePair, VP8YuvToBgr, 4)
typedef void (*UpsampleLinePairFunc)(
const uint8_t* top_y, const uint8_t* bottom_y,
const uint8_t* top_u, const uint8_t* top_v,
const uint8_t* cur_u, const uint8_t* cur_v,
uint8_t* top_dst, uint8_t* bottom_dst, int len);
static const UpsampleLinePairFunc
kUpsamplers[MODE_BGRA + 1] = {
UpsampleRgbLinePair, // MODE_RGB
UpsampleRgbaLinePair, // MODE_RGBA
UpsampleBgrLinePair, // MODE_BGR
UpsampleBgraLinePair // MODE_BGRA
},
kUpsamplersKeepAlpha[MODE_BGRA + 1] = {
UpsampleRgbLinePair, // MODE_RGB
UpsampleRgbKeepAlphaLinePair, // MODE_RGBA
UpsampleBgrLinePair, // MODE_BGR
UpsampleBgrKeepAlphaLinePair // MODE_BGRA
};
#undef LOAD_UV
#undef UPSAMPLE_FUNC
#endif // FANCY_UPSAMPLING
//------------------------------------------------------------------------------
// simple point-sampling
#define SAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* u, const uint8_t* v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int i; \
for (i = 0; i < len - 1; i += 2) { \
FUNC(top_y[0], u[0], v[0], top_dst); \
FUNC(top_y[1], u[0], v[0], top_dst + XSTEP); \
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
FUNC(bottom_y[1], u[0], v[0], bottom_dst + XSTEP); \
top_y += 2; \
bottom_y += 2; \
u++; \
v++; \
top_dst += 2 * XSTEP; \
bottom_dst += 2 * XSTEP; \
} \
if (i == len - 1) { /* last one */ \
FUNC(top_y[0], u[0], v[0], top_dst); \
FUNC(bottom_y[0], u[0], v[0], bottom_dst); \
} \
}
// All variants implemented.
SAMPLE_FUNC(SampleRgbLinePair, VP8YuvToRgb, 3)
SAMPLE_FUNC(SampleBgrLinePair, VP8YuvToBgr, 3)
SAMPLE_FUNC(SampleRgbaLinePair, VP8YuvToRgba, 4)
SAMPLE_FUNC(SampleBgraLinePair, VP8YuvToBgra, 4)
#undef SAMPLE_FUNC
// Main methods.
typedef void (*SampleLinePairFunc)(
const uint8_t* top_y, const uint8_t* bottom_y,
const uint8_t* u, const uint8_t* v,
uint8_t* top_dst, uint8_t* bottom_dst, int len);
static const SampleLinePairFunc kSamplers[MODE_BGRA + 1] = {
SampleRgbLinePair, // MODE_RGB
SampleRgbaLinePair, // MODE_RGBA
SampleBgrLinePair, // MODE_BGR
SampleBgraLinePair // MODE_BGRA
};
//------------------------------------------------------------------------------
// YUV444 converter
#define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \
uint8_t* dst, int len) { \
int i; \
for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * XSTEP]); \
}
YUV444_FUNC(Yuv444ToRgb, VP8YuvToRgb, 3)
YUV444_FUNC(Yuv444ToBgr, VP8YuvToBgr, 3)
YUV444_FUNC(Yuv444ToRgba, VP8YuvToRgba, 4)
YUV444_FUNC(Yuv444ToBgra, VP8YuvToBgra, 4)
#undef YUV444_FUNC
typedef void (*YUV444Func)(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst, int len);
static const YUV444Func kYUV444Converters[MODE_BGRA + 1] = {
Yuv444ToRgb, // MODE_RGB
Yuv444ToRgba, // MODE_RGBA
Yuv444ToBgr, // MODE_BGR
Yuv444ToBgra // MODE_BGRA
};
//------------------------------------------------------------------------------
// Main YUV<->RGB conversion functions
static int EmitYUV(const VP8Io* const io, WebPDecParams* const p) {
WebPDecBuffer* output = p->output;
const WebPYUVABuffer* const buf = &output->u.YUVA;
uint8_t* const y_dst = buf->y + io->mb_y * buf->y_stride;
uint8_t* const u_dst = buf->u + (io->mb_y >> 1) * buf->u_stride;
uint8_t* const v_dst = buf->v + (io->mb_y >> 1) * buf->v_stride;
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
const int uv_w = (mb_w + 1) / 2;
int j;
for (j = 0; j < mb_h; ++j) {
memcpy(y_dst + j * buf->y_stride, io->y + j * io->y_stride, mb_w);
}
for (j = 0; j < (mb_h + 1) / 2; ++j) {
memcpy(u_dst + j * buf->u_stride, io->u + j * io->uv_stride, uv_w);
memcpy(v_dst + j * buf->v_stride, io->v + j * io->uv_stride, uv_w);
}
return io->mb_h;
}
// Point-sampling U/V sampler.
static int EmitSampledRGB(const VP8Io* const io, WebPDecParams* const p) {
WebPDecBuffer* output = p->output;
const WebPRGBABuffer* const buf = &output->u.RGBA;
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
const uint8_t* y_src = io->y;
const uint8_t* u_src = io->u;
const uint8_t* v_src = io->v;
const SampleLinePairFunc sample = kSamplers[output->colorspace];
const int mb_w = io->mb_w;
const int last = io->mb_h - 1;
int j;
for (j = 0; j < last; j += 2) {
sample(y_src, y_src + io->y_stride, u_src, v_src,
dst, dst + buf->stride, mb_w);
y_src += 2 * io->y_stride;
u_src += io->uv_stride;
v_src += io->uv_stride;
dst += 2 * buf->stride;
}
if (j == last) { // Just do the last line twice
sample(y_src, y_src, u_src, v_src, dst, dst, mb_w);
}
return io->mb_h;
}
//------------------------------------------------------------------------------
// YUV444 -> RGB conversion
#if 0 // TODO(skal): this is for future rescaling.
static int EmitRGB(const VP8Io* const io, WebPDecParams* const p) {
WebPDecBuffer* output = p->output;
const WebPRGBABuffer* const buf = &output->u.RGBA;
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
const uint8_t* y_src = io->y;
const uint8_t* u_src = io->u;
const uint8_t* v_src = io->v;
const YUV444Func convert = kYUV444Converters[output->colorspace];
const int mb_w = io->mb_w;
const int last = io->mb_h;
int j;
for (j = 0; j < last; ++j) {
convert(y_src, u_src, v_src, dst, mb_w);
y_src += io->y_stride;
u_src += io->uv_stride;
v_src += io->uv_stride;
dst += buf->stride;
}
return io->mb_h;
}
#endif
//------------------------------------------------------------------------------
// Fancy upsampling
#ifdef FANCY_UPSAMPLING
static int EmitFancyRGB(const VP8Io* const io, WebPDecParams* const p) {
int num_lines_out = io->mb_h; // a priori guess
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
const UpsampleLinePairFunc upsample =
io->a ? kUpsamplersKeepAlpha[p->output->colorspace]
: kUpsamplers[p->output->colorspace];
const uint8_t* cur_y = io->y;
const uint8_t* cur_u = io->u;
const uint8_t* cur_v = io->v;
const uint8_t* top_u = p->tmp_u;
const uint8_t* top_v = p->tmp_v;
int y = io->mb_y;
int y_end = io->mb_y + io->mb_h;
const int mb_w = io->mb_w;
const int uv_w = (mb_w + 1) / 2;
if (y == 0) {
// First line is special cased. We mirror the u/v samples at boundary.
upsample(NULL, cur_y, cur_u, cur_v, cur_u, cur_v, NULL, dst, mb_w);
} else {
// We can finish the left-over line from previous call.
// Warning! Don't overwrite the alpha values (if any), as they
// are not lagging one line behind but are already written.
upsample(p->tmp_y, cur_y, top_u, top_v, cur_u, cur_v,
dst - buf->stride, dst, mb_w);
num_lines_out++;
}
// Loop over each output pairs of row.
for (; y + 2 < y_end; y += 2) {
top_u = cur_u;
top_v = cur_v;
cur_u += io->uv_stride;
cur_v += io->uv_stride;
dst += 2 * buf->stride;
cur_y += 2 * io->y_stride;
upsample(cur_y - io->y_stride, cur_y,
top_u, top_v, cur_u, cur_v,
dst - buf->stride, dst, mb_w);
}
// move to last row
cur_y += io->y_stride;
if (io->crop_top + y_end < io->crop_bottom) {
// Save the unfinished samples for next call (as we're not done yet).
memcpy(p->tmp_y, cur_y, mb_w * sizeof(*p->tmp_y));
memcpy(p->tmp_u, cur_u, uv_w * sizeof(*p->tmp_u));
memcpy(p->tmp_v, cur_v, uv_w * sizeof(*p->tmp_v));
// The fancy upsampler leaves a row unfinished behind
// (except for the very last row)
num_lines_out--;
} else {
// Process the very last row of even-sized picture
if (!(y_end & 1)) {
upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v,
dst + buf->stride, NULL, mb_w);
}
}
return num_lines_out;
}
#endif /* FANCY_UPSAMPLING */
//------------------------------------------------------------------------------
#ifdef WEBP_EXPERIMENTAL_FEATURES
static int EmitAlphaYUV(const VP8Io* const io, WebPDecParams* const p) {
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
int j;
const WebPYUVABuffer* const buf = &p->output->u.YUVA;
uint8_t* dst = buf->a + io->mb_y * buf->a_stride;
const uint8_t* alpha = io->a;
if (alpha) {
for (j = 0; j < mb_h; ++j) {
memcpy(dst, alpha, mb_w * sizeof(*dst));
alpha += io->width;
dst += buf->a_stride;
}
}
return 0;
}
static int EmitAlphaRGB(const VP8Io* const io, WebPDecParams* const p) {
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
int i, j;
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
const uint8_t* alpha = io->a;
if (alpha) {
for (j = 0; j < mb_h; ++j) {
for (i = 0; i < mb_w; ++i) {
dst[4 * i + 3] = alpha[i];
}
alpha += io->width;
dst += buf->stride;
}
}
return 0;
}
#endif /* WEBP_EXPERIMENTAL_FEATURES */
//------------------------------------------------------------------------------
// Simple picture rescaler
// TODO(skal): start a common library for encoder and decoder, and factorize
// this code in.
#define RFIX 30
#define MULT(x,y) (((int64_t)(x) * (y) + (1 << (RFIX - 1))) >> RFIX)
static void InitRescaler(WebPRescaler* const wrk,
int src_width, int src_height,
uint8_t* dst,
int dst_width, int dst_height, int dst_stride,
int x_add, int x_sub, int y_add, int y_sub,
int32_t* work) {
wrk->x_expand = (src_width < dst_width);
wrk->src_width = src_width;
wrk->src_height = src_height;
wrk->dst_width = dst_width;
wrk->dst_height = dst_height;
wrk->dst = dst;
wrk->dst_stride = dst_stride;
// for 'x_expand', we use bilinear interpolation
wrk->x_add = wrk->x_expand ? (x_sub - 1) : x_add - x_sub;
wrk->x_sub = wrk->x_expand ? (x_add - 1) : x_sub;
wrk->y_accum = y_add;
wrk->y_add = y_add;
wrk->y_sub = y_sub;
wrk->fx_scale = (1 << RFIX) / x_sub;
wrk->fy_scale = (1 << RFIX) / y_sub;
wrk->fxy_scale = wrk->x_expand ?
((int64_t)dst_height << RFIX) / (x_sub * src_height) :
((int64_t)dst_height << RFIX) / (x_add * src_height);
wrk->irow = work;
wrk->frow = work + dst_width;
}
static inline void ImportRow(const uint8_t* const src,
WebPRescaler* const wrk) {
int x_in = 0;
int x_out;
int accum = 0;
if (!wrk->x_expand) {
int sum = 0;
for (x_out = 0; x_out < wrk->dst_width; ++x_out) {
accum += wrk->x_add;
for (; accum > 0; accum -= wrk->x_sub) {
sum += src[x_in++];
}
{ // Emit next horizontal pixel.
const int32_t base = src[x_in++];
const int32_t frac = base * (-accum);
wrk->frow[x_out] = (sum + base) * wrk->x_sub - frac;
// fresh fractional start for next pixel
sum = MULT(frac, wrk->fx_scale);
}
}
} else { // simple bilinear interpolation
int left = src[0], right = src[0];
for (x_out = 0; x_out < wrk->dst_width; ++x_out) {
if (accum < 0) {
left = right;
right = src[++x_in];
accum += wrk->x_add;
}
wrk->frow[x_out] = right * wrk->x_add + (left - right) * accum;
accum -= wrk->x_sub;
}
}
// Accumulate the new row's contribution
for (x_out = 0; x_out < wrk->dst_width; ++x_out) {
wrk->irow[x_out] += wrk->frow[x_out];
}
}
static void ExportRow(WebPRescaler* const wrk) {
int x_out;
const int yscale = wrk->fy_scale * (-wrk->y_accum);
assert(wrk->y_accum <= 0);
for (x_out = 0; x_out < wrk->dst_width; ++x_out) {
const int frac = MULT(wrk->frow[x_out], yscale);
const int v = MULT(wrk->irow[x_out] - frac, wrk->fxy_scale);
wrk->dst[x_out] = (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
wrk->irow[x_out] = frac; // new fractional start
}
wrk->y_accum += wrk->y_add;
wrk->dst += wrk->dst_stride;
}
#undef MULT
#undef RFIX
//------------------------------------------------------------------------------
// YUV rescaling (no final RGB conversion needed)
static int Rescale(const uint8_t* src, int src_stride,
int new_lines, WebPRescaler* const wrk) {
int num_lines_out = 0;
while (new_lines-- > 0) { // import new contribution of one source row.
ImportRow(src, wrk);
src += src_stride;
wrk->y_accum -= wrk->y_sub;
while (wrk->y_accum <= 0) { // emit output row(s)
ExportRow(wrk);
num_lines_out++;
}
}
return num_lines_out;
}
static int EmitRescaledYUV(const VP8Io* const io, WebPDecParams* const p) {
const int mb_h = io->mb_h;
const int uv_mb_h = (mb_h + 1) >> 1;
const int num_lines_out = Rescale(io->y, io->y_stride, mb_h, &p->scaler_y);
Rescale(io->u, io->uv_stride, uv_mb_h, &p->scaler_u);
Rescale(io->v, io->uv_stride, uv_mb_h, &p->scaler_v);
return num_lines_out;
}
static int EmitRescaledAlphaYUV(const VP8Io* const io, WebPDecParams* const p) {
if (io->a) {
Rescale(io->a, io->width, io->mb_h, &p->scaler_a);
}
return 0;
}
static int InitYUVRescaler(const VP8Io* const io, WebPDecParams* const p) {
const int has_alpha = (p->output->colorspace & MODE_ALPHA_MASK);
const WebPYUVABuffer* const buf = &p->output->u.YUVA;
const int out_width = io->scaled_width;
const int out_height = io->scaled_height;
const int uv_out_width = (out_width + 1) >> 1;
const int uv_out_height = (out_height + 1) >> 1;
const int uv_in_width = (io->mb_w + 1) >> 1;
const int uv_in_height = (io->mb_h + 1) >> 1;
const size_t work_size = 2 * out_width; // scratch memory for luma rescaler
const size_t uv_work_size = 2 * uv_out_width; // and for each u/v ones
size_t tmp_size;
int32_t* work;
tmp_size = work_size + 2 * uv_work_size;
if (has_alpha) {
tmp_size += work_size;
}
p->memory = calloc(1, tmp_size * sizeof(*work));
if (p->memory == NULL) {
return 0; // memory error
}
work = (int32_t*)p->memory;
InitRescaler(&p->scaler_y, io->mb_w, io->mb_h,
buf->y, out_width, out_height, buf->y_stride,
io->mb_w, out_width, io->mb_h, out_height,
work);
InitRescaler(&p->scaler_u, uv_in_width, uv_in_height,
buf->u, uv_out_width, uv_out_height, buf->u_stride,
uv_in_width, uv_out_width,
uv_in_height, uv_out_height,
work + work_size);
InitRescaler(&p->scaler_v, uv_in_width, uv_in_height,
buf->v, uv_out_width, uv_out_height, buf->v_stride,
uv_in_width, uv_out_width,
uv_in_height, uv_out_height,
work + work_size + uv_work_size);
p->emit = EmitRescaledYUV;
if (has_alpha) {
InitRescaler(&p->scaler_a, io->mb_w, io->mb_h,
buf->a, out_width, out_height, buf->a_stride,
io->mb_w, out_width, io->mb_h, out_height,
work + work_size + 2 * uv_work_size);
p->emit_alpha = EmitRescaledAlphaYUV;
}
return 1;
}
//------------------------------------------------------------------------------
// RGBA rescaling
// import new contributions until one row is ready to be output, or all input
// is consumed.
static int Import(const uint8_t* src, int src_stride,
int new_lines, WebPRescaler* const wrk) {
int num_lines_in = 0;
while (num_lines_in < new_lines && wrk->y_accum > 0) {
ImportRow(src, wrk);
src += src_stride;
++num_lines_in;
wrk->y_accum -= wrk->y_sub;
}
return num_lines_in;
}
static int ExportRGB(WebPDecParams* const p, int y_pos) {
const YUV444Func convert = kYUV444Converters[p->output->colorspace];
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* dst = buf->rgba + (p->last_y + y_pos) * buf->stride;
int num_lines_out = 0;
// For RGB rescaling, because of the YUV420, current scan position
// U/V can be +1/-1 line from the Y one. Hence the double test.
while (p->scaler_y.y_accum <= 0 && p->scaler_u.y_accum <= 0) {
assert(p->last_y + y_pos + num_lines_out < p->output->height);
assert(p->scaler_u.y_accum == p->scaler_v.y_accum);
ExportRow(&p->scaler_y);
ExportRow(&p->scaler_u);
ExportRow(&p->scaler_v);
convert(p->scaler_y.dst, p->scaler_u.dst, p->scaler_v.dst,
dst, p->scaler_y.dst_width);
dst += buf->stride;
num_lines_out++;
}
return num_lines_out;
}
static int EmitRescaledRGB(const VP8Io* const io, WebPDecParams* const p) {
const int mb_h = io->mb_h;
const int uv_mb_h = (mb_h + 1) >> 1;
int j = 0, uv_j = 0;
int num_lines_out = 0;
while (j < mb_h) {
const int y_lines_in = Import(io->y + j * io->y_stride, io->y_stride,
mb_h - j, &p->scaler_y);
const int u_lines_in = Import(io->u + uv_j * io->uv_stride, io->uv_stride,
uv_mb_h - uv_j, &p->scaler_u);
const int v_lines_in = Import(io->v + uv_j * io->uv_stride, io->uv_stride,
uv_mb_h - uv_j, &p->scaler_v);
(void)v_lines_in; // remove a gcc warning
assert(u_lines_in == v_lines_in);
j += y_lines_in;
uv_j += u_lines_in;
num_lines_out += ExportRGB(p, num_lines_out);
}
return num_lines_out;
}
static int ExportAlpha(WebPDecParams* const p, int y_pos) {
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* dst = buf->rgba + (p->last_y + y_pos) * buf->stride;
int num_lines_out = 0;
while (p->scaler_a.y_accum <= 0) {
int i;
assert(p->last_y + y_pos + num_lines_out < p->output->height);
ExportRow(&p->scaler_a);
for (i = 0; i < p->scaler_a.dst_width; ++i) {
dst[4 * i + 3] = p->scaler_a.dst[i];
}
dst += buf->stride;
num_lines_out++;
}
return num_lines_out;
}
static int EmitRescaledAlphaRGB(const VP8Io* const io, WebPDecParams* const p) {
if (io->a) {
int j = 0, pos = 0;
while (j < io->mb_h) {
j += Import(io->a + j * io->width, io->width, io->mb_h - j, &p->scaler_a);
pos += ExportAlpha(p, pos);
}
}
return 0;
}
static int InitRGBRescaler(const VP8Io* const io, WebPDecParams* const p) {
const int has_alpha = (p->output->colorspace & MODE_ALPHA_MASK);
const int out_width = io->scaled_width;
const int out_height = io->scaled_height;
const int uv_in_width = (io->mb_w + 1) >> 1;
const int uv_in_height = (io->mb_h + 1) >> 1;
const size_t work_size = 2 * out_width; // scratch memory for one rescaler
int32_t* work; // rescalers work area
uint8_t* tmp; // tmp storage for scaled YUV444 samples before RGB conversion
size_t tmp_size1, tmp_size2;
tmp_size1 = 3 * work_size;
tmp_size2 = 3 * out_width;
if (has_alpha) {
tmp_size1 += work_size;
tmp_size2 += out_width;
}
p->memory =
calloc(1, tmp_size1 * sizeof(*work) + tmp_size2 * sizeof(*tmp));
if (p->memory == NULL) {
return 0; // memory error
}
work = (int32_t*)p->memory;
tmp = (uint8_t*)(work + tmp_size1);
InitRescaler(&p->scaler_y, io->mb_w, io->mb_h,
tmp + 0 * out_width, out_width, out_height, 0,
io->mb_w, out_width, io->mb_h, out_height,
work + 0 * work_size);
InitRescaler(&p->scaler_u, uv_in_width, uv_in_height,
tmp + 1 * out_width, out_width, out_height, 0,
io->mb_w, 2 * out_width, io->mb_h, 2 * out_height,
work + 1 * work_size);
InitRescaler(&p->scaler_v, uv_in_width, uv_in_height,
tmp + 2 * out_width, out_width, out_height, 0,
io->mb_w, 2 * out_width, io->mb_h, 2 * out_height,
work + 2 * work_size);
p->emit = EmitRescaledRGB;
if (has_alpha) {
InitRescaler(&p->scaler_a, io->mb_w, io->mb_h,
tmp + 3 * out_width, out_width, out_height, 0,
io->mb_w, out_width, io->mb_h, out_height,
work + 3 * work_size);
p->emit_alpha = EmitRescaledAlphaRGB;
}
return 1;
}
//------------------------------------------------------------------------------
// Default custom functions
// Setup crop_xxx fields, mb_w and mb_h
static int InitFromOptions(const WebPDecoderOptions* const options,
VP8Io* const io) {
const int W = io->width;
const int H = io->height;
int x = 0, y = 0, w = W, h = H;
// Cropping
io->use_cropping = (options != NULL) && (options->use_cropping > 0);
if (io->use_cropping) {
w = options->crop_width;
h = options->crop_height;
// TODO(skal): take colorspace into account. Don't assume YUV420.
x = options->crop_left & ~1;
y = options->crop_top & ~1;
if (x < 0 || y < 0 || w <= 0 || h <= 0 || x + w > W || y + h > H) {
return 0; // out of frame boundary error
}
}
io->crop_left = x;
io->crop_top = y;
io->crop_right = x + w;
io->crop_bottom = y + h;
io->mb_w = w;
io->mb_h = h;
// Scaling
io->use_scaling = (options != NULL) && (options->use_scaling > 0);
if (io->use_scaling) {
if (options->scaled_width <= 0 || options->scaled_height <= 0) {
return 0;
}
io->scaled_width = options->scaled_width;
io->scaled_height = options->scaled_height;
}
// Filter
io->bypass_filtering = options && options->bypass_filtering;
// Fancy upsampler
#ifdef FANCY_UPSAMPLING
io->fancy_upsampling = (options == NULL) || (!options->no_fancy_upsampling);
#endif
if (io->use_scaling) {
// disable filter (only for large downscaling ratio).
io->bypass_filtering = (io->scaled_width < W * 3 / 4) &&
(io->scaled_height < H * 3 / 4);
io->fancy_upsampling = 0;
}
return 1;
}
static int CustomSetup(VP8Io* io) {
WebPDecParams* const p = (WebPDecParams*)io->opaque;
const int is_rgb = (p->output->colorspace < MODE_YUV);
p->memory = NULL;
p->emit = NULL;
p->emit_alpha = NULL;
if (!InitFromOptions(p->options, io)) {
return 0;
}
if (io->use_scaling) {
const int ok = is_rgb ? InitRGBRescaler(io, p) : InitYUVRescaler(io, p);
if (!ok) {
return 0; // memory error
}
} else {
if (is_rgb) {
p->emit = EmitSampledRGB; // default
#ifdef FANCY_UPSAMPLING
if (io->fancy_upsampling) {
const int uv_width = (io->mb_w + 1) >> 1;
p->memory = malloc(io->mb_w + 2 * uv_width);
if (p->memory == NULL) {
return 0; // memory error.
}
p->tmp_y = (uint8_t*)p->memory;
p->tmp_u = p->tmp_y + io->mb_w;
p->tmp_v = p->tmp_u + uv_width;
p->emit = EmitFancyRGB;
}
#endif
} else {
p->emit = EmitYUV;
}
#ifdef WEBP_EXPERIMENTAL_FEATURES
if (p->output->colorspace & MODE_ALPHA_MASK) {
// We need transparency output
p->emit_alpha = is_rgb ? EmitAlphaRGB : EmitAlphaYUV;
}
#endif
}
if (is_rgb) {
VP8YUVInit();
}
return 1;
}
//------------------------------------------------------------------------------
static int CustomPut(const VP8Io* io) {
WebPDecParams* p = (WebPDecParams*)io->opaque;
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
int num_lines_out;
assert(!(io->mb_y & 1));
if (mb_w <= 0 || mb_h <= 0) {
return 0;
}
num_lines_out = p->emit(io, p);
if (p->emit_alpha) {
p->emit_alpha(io, p);
}
p->last_y += num_lines_out;
return 1;
}
//------------------------------------------------------------------------------
static void CustomTeardown(const VP8Io* io) {
WebPDecParams* const p = (WebPDecParams*)io->opaque;
free(p->memory);
p->memory = NULL;
}
//------------------------------------------------------------------------------
// Main entry point
void WebPInitCustomIo(WebPDecParams* const params, VP8Io* const io) {
io->put = CustomPut;
io->setup = CustomSetup;
io->teardown = CustomTeardown;
io->opaque = params;
}
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif

View File

@ -76,8 +76,12 @@ int VP8SetError(VP8Decoder* const dec,
//-----------------------------------------------------------------------------
int VP8GetInfo(const uint8_t* data, uint32_t chunk_size,
int *width, int *height) {
int VP8GetInfo(const uint8_t* data,
uint32_t data_size, uint32_t chunk_size,
int* width, int* height, int* has_alpha) {
if (data_size < 10) {
return 0; // not enough data
}
// check signature
if (data[3] != 0x9d || data[4] != 0x01 || data[5] != 0x2a) {
return 0; // Wrong signature.
@ -87,6 +91,14 @@ int VP8GetInfo(const uint8_t* data, uint32_t chunk_size,
const int w = ((data[7] << 8) | data[6]) & 0x3fff;
const int h = ((data[9] << 8) | data[8]) & 0x3fff;
if (has_alpha) {
#ifdef WEBP_EXPERIMENTAL_FEATURES
if (data_size < 11) return 0;
*has_alpha = !!(data[10] & 0x80); // the colorspace_ bit
#else
*has_alpha = 0;
#endif
}
if (!key_frame) { // Not a keyframe.
return 0;
}
@ -254,7 +266,7 @@ int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) {
"null VP8Io passed to VP8GetHeaders()");
}
buf = (uint8_t *)io->data;
buf = (uint8_t*)io->data;
buf_size = io->data_size;
if (buf == NULL || buf_size <= 4) {
return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
@ -329,8 +341,17 @@ int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) {
dec->mb_w_ = (pic_hdr->width_ + 15) >> 4;
dec->mb_h_ = (pic_hdr->height_ + 15) >> 4;
// Setup default output area (can be later modified during io->setup())
io->width = pic_hdr->width_;
io->height = pic_hdr->height_;
io->use_scaling = 0;
io->use_cropping = 0;
io->crop_top = 0;
io->crop_left = 0;
io->crop_right = io->width;
io->crop_bottom = io->height;
io->mb_w = io->width; // sanity check
io->mb_h = io->height; // ditto
VP8ResetProba(&dec->proba_);
ResetSegmentHeader(&dec->segment_hdr_);
@ -458,7 +479,7 @@ static const uint8_t kCat4[] = { 176, 155, 140, 135, 0 };
static const uint8_t kCat5[] = { 180, 157, 141, 134, 130, 0 };
static const uint8_t kCat6[] =
{ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0 };
static const uint8_t * const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 };
static const uint8_t* const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 };
static const uint8_t kZigzag[16] = {
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
@ -662,11 +683,10 @@ int VP8DecodeMB(VP8Decoder* const dec, VP8BitReader* const token_br) {
}
static int ParseFrame(VP8Decoder* const dec, VP8Io* io) {
for (dec->mb_y_ = 0; dec->mb_y_ < dec->mb_h_; ++dec->mb_y_) {
for (dec->mb_y_ = 0; dec->mb_y_ < dec->br_mb_y_; ++dec->mb_y_) {
VP8MB* const left = dec->mb_info_ - 1;
VP8BitReader* const token_br =
&dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)];
left->nz_ = 0;
left->dc_nz_ = 0;
memset(dec->intra_l_, B_DC_PRED, sizeof(dec->intra_l_));
@ -681,9 +701,11 @@ static int ParseFrame(VP8Decoder* const dec, VP8Io* io) {
// Store data and save block's filtering params
VP8StoreBlock(dec);
}
if (dec->filter_type_ > 0) {
VP8FilterRow(dec);
}
if (!VP8FinishRow(dec, io)) {
return VP8SetError(dec, VP8_STATUS_USER_ABORT,
"Output aborted.");
return VP8SetError(dec, VP8_STATUS_USER_ABORT, "Output aborted.");
}
}
@ -722,22 +744,18 @@ int VP8Decode(VP8Decoder* const dec, VP8Io* const io) {
}
assert(dec->ready_);
// will allocate memory and prepare everything.
// Will allocate memory and prepare everything.
if (!VP8InitFrame(dec, io)) {
VP8Clear(dec);
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
"Allocation failed");
return 0;
}
if (io->setup && !io->setup(io)) {
// Finish setting up the decoding parameter
if (VP8FinishFrameSetup(dec, io) != VP8_STATUS_OK) {
VP8Clear(dec);
return VP8SetError(dec, VP8_STATUS_USER_ABORT,
"Frame setup failed");
return 0;
}
// Disable filtering per user request (_after_ setup() is called)
if (io->bypass_filtering) dec->filter_type_ = 0;
// Main decoding loop
{
const int ret = ParseFrame(dec, io);

View File

@ -184,6 +184,10 @@ struct VP8Decoder {
// dimension, in macroblock units.
int mb_w_, mb_h_;
// Macroblock to process/filter, depending on cropping and filter_type.
int tl_mb_x_, tl_mb_y_; // top-left MB that must be in-loop filtered
int br_mb_x_, br_mb_y_; // last bottom-right MB that must be decoded
// number of partitions.
int num_parts_;
// per-partition boolean decoders.
@ -212,8 +216,8 @@ struct VP8Decoder {
// Boundary data cache and persistent buffers.
uint8_t* intra_t_; // top intra modes values: 4 * mb_w_
uint8_t intra_l_[4]; // left intra modes values
uint8_t *y_t_; // top luma samples: 16 * mb_w_
uint8_t *u_t_, *v_t_; // top u/v samples: 8 * mb_w_ each
uint8_t* y_t_; // top luma samples: 16 * mb_w_
uint8_t* u_t_, *v_t_; // top u/v samples: 8 * mb_w_ each
VP8MB* mb_info_; // contextual macroblock infos (mb_w_ + 1)
uint8_t* yuv_b_; // main block for Y/U/V (size = YUV_SIZE)
@ -264,10 +268,12 @@ struct VP8Decoder {
int VP8SetError(VP8Decoder* const dec,
VP8StatusCode error, const char * const msg);
// Validates the VP8 data-header and retrieve basic header information viz width
// and height. Returns 0 in case of formatting error. *width/*height can be
// passed NULL.
int VP8GetInfo(const uint8_t* data, uint32_t data_size,
int *width, int *height);
// and height. Returns 0 in case of formatting error. *width/*height/*has_alpha
// can be passed NULL.
int VP8GetInfo(const uint8_t* data,
uint32_t data_size, // data available so far
uint32_t chunk_size, // total data size expect in the chunk
int *width, int *height, int *has_alpha);
// in tree.c
void VP8ResetProba(VP8Proba* const proba);
@ -281,10 +287,14 @@ void VP8ParseQuant(VP8Decoder* const dec);
int VP8InitFrame(VP8Decoder* const dec, VP8Io* io);
// Predict a block and add residual
void VP8ReconstructBlock(VP8Decoder* const dec);
// Call io->setup() and finish setting up scan parameters.
VP8StatusCode VP8FinishFrameSetup(VP8Decoder* const dec, VP8Io* const io);
// Filter the decoded macroblock row (if needed)
void VP8FilterRow(const VP8Decoder* const dec);
// Store a block, along with filtering params
void VP8StoreBlock(VP8Decoder* const dec);
// Finalize and transmit a complete row. Return false in case of user-abort.
int VP8FinishRow(VP8Decoder* const dec, VP8Io* io);
int VP8FinishRow(VP8Decoder* const dec, VP8Io* const io);
// Decode one macroblock. Returns false if there is not enough data.
int VP8DecodeMB(VP8Decoder* const dec, VP8BitReader* const token_br);
@ -307,7 +317,7 @@ extern void (*VP8TransformWHT)(const int16_t* in, int16_t* out);
// *dst is the destination block, with stride BPS. Boundary samples are
// assumed accessible when needed.
typedef void (*VP8PredFunc)(uint8_t *dst);
typedef void (*VP8PredFunc)(uint8_t* dst);
extern VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES];
extern VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES];
extern VP8PredFunc VP8PredLuma4[NUM_BMODES];

View File

@ -12,14 +12,11 @@
#include <stdlib.h>
#include "vp8i.h"
#include "webpi.h"
#include "yuv.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#define FANCY_UPSCALING // undefined to remove fancy upscaling support
//-----------------------------------------------------------------------------
// RIFF layout is:
// 0ffset tag
@ -39,7 +36,7 @@ static inline uint32_t get_le32(const uint8_t* const data) {
// If a RIFF container is detected, validate it and skip over it.
uint32_t WebPCheckRIFFHeader(const uint8_t** data_ptr,
uint32_t *data_size_ptr) {
uint32_t* data_size_ptr) {
uint32_t chunk_size = 0xffffffffu;
if (*data_size_ptr >= 10 + 20 && !memcmp(*data_ptr, "RIFF", 4)) {
if (memcmp(*data_ptr + 8, "WEBP", 4)) {
@ -67,473 +64,96 @@ uint32_t WebPCheckRIFFHeader(const uint8_t** data_ptr,
}
//-----------------------------------------------------------------------------
// Fancy upscaling
#ifdef FANCY_UPSCALING
// Given samples laid out in a square as:
// [a b]
// [c d]
// we interpolate u/v as:
// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16
// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16
// We process u and v together stashed into 32bit (16bit each).
#define LOAD_UV(u,v) ((u) | ((v) << 16))
#define UPSCALE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static inline void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* top_u, const uint8_t* top_v, \
const uint8_t* cur_u, const uint8_t* cur_v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int x; \
const int last_pixel_pair = (len - 1) >> 1; \
uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \
uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \
} \
for (x = 1; x <= last_pixel_pair; ++x) { \
const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \
const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \
/* precompute invariant values associated with first and second diagonals*/\
const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \
const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \
const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \
if (top_y) { \
const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \
const uint32_t uv1 = (diag_03 + t_uv) >> 1; \
FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (2 * x - 1) * XSTEP); \
FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \
top_dst + (2 * x - 0) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (diag_03 + l_uv) >> 1; \
const uint32_t uv1 = (diag_12 + uv) >> 1; \
FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (2 * x - 1) * XSTEP); \
FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \
bottom_dst + (2 * x + 0) * XSTEP); \
} \
tl_uv = t_uv; \
l_uv = uv; \
} \
if (!(len & 1)) { \
if (top_y) { \
const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
top_dst + (len - 1) * XSTEP); \
} \
if (bottom_y) { \
const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \
bottom_dst + (len - 1) * XSTEP); \
} \
} \
}
// All variants implemented.
UPSCALE_FUNC(UpscaleRgbLinePair, VP8YuvToRgb, 3)
UPSCALE_FUNC(UpscaleBgrLinePair, VP8YuvToBgr, 3)
UPSCALE_FUNC(UpscaleRgbaLinePair, VP8YuvToRgb, 4)
UPSCALE_FUNC(UpscaleBgraLinePair, VP8YuvToBgr, 4)
// Main driver function.
static inline
void UpscaleLinePair(const uint8_t* top_y, const uint8_t* bottom_y,
const uint8_t* top_u, const uint8_t* top_v,
const uint8_t* cur_u, const uint8_t* cur_v,
uint8_t* top_dst, uint8_t* bottom_dst, int len,
WEBP_CSP_MODE mode) {
if (mode == MODE_RGB) {
UpscaleRgbLinePair(top_y, bottom_y, top_u, top_v, cur_u, cur_v,
top_dst, bottom_dst, len);
} else if (mode == MODE_BGR) {
UpscaleBgrLinePair(top_y, bottom_y, top_u, top_v, cur_u, cur_v,
top_dst, bottom_dst, len);
} else if (mode == MODE_RGBA) {
UpscaleRgbaLinePair(top_y, bottom_y, top_u, top_v, cur_u, cur_v,
top_dst, bottom_dst, len);
} else {
assert(mode == MODE_BGRA);
UpscaleBgraLinePair(top_y, bottom_y, top_u, top_v, cur_u, cur_v,
top_dst, bottom_dst, len);
}
}
#undef LOAD_UV
#undef UPSCALE_FUNC
#endif // FANCY_UPSCALING
//-----------------------------------------------------------------------------
// Main conversion driver.
static int CustomPut(const VP8Io* io) {
WebPDecParams *p = (WebPDecParams*)io->opaque;
const int w = io->width;
const int mb_h = io->mb_h;
const int uv_w = (w + 1) / 2;
assert(!(io->mb_y & 1));
if (w <= 0 || mb_h <= 0) {
return 0;
}
p->last_y = io->mb_y + io->mb_h; // a priori guess
if (p->mode == MODE_YUV) {
uint8_t* const y_dst = p->output + io->mb_y * p->stride;
uint8_t* const u_dst = p->u + (io->mb_y >> 1) * p->u_stride;
uint8_t* const v_dst = p->v + (io->mb_y >> 1) * p->v_stride;
int j;
for (j = 0; j < mb_h; ++j) {
memcpy(y_dst + j * p->stride, io->y + j * io->y_stride, w);
}
for (j = 0; j < (mb_h + 1) / 2; ++j) {
memcpy(u_dst + j * p->u_stride, io->u + j * io->uv_stride, uv_w);
memcpy(v_dst + j * p->v_stride, io->v + j * io->uv_stride, uv_w);
}
} else {
uint8_t* dst = p->output + io->mb_y * p->stride;
if (io->fancy_upscaling) {
#ifdef FANCY_UPSCALING
const uint8_t* cur_y = io->y;
const uint8_t* cur_u = io->u;
const uint8_t* cur_v = io->v;
const uint8_t* top_u = p->top_u;
const uint8_t* top_v = p->top_v;
int y = io->mb_y;
int y_end = io->mb_y + io->mb_h;
if (y == 0) {
// First line is special cased. We mirror the u/v samples at boundary.
UpscaleLinePair(NULL, cur_y, cur_u, cur_v, cur_u, cur_v,
NULL, dst, w, p->mode);
} else {
// We can finish the left-over line from previous call
UpscaleLinePair(p->top_y, cur_y, top_u, top_v, cur_u, cur_v,
dst - p->stride, dst, w, p->mode);
}
// Loop over each output pairs of row.
for (; y + 2 < y_end; y += 2) {
top_u = cur_u;
top_v = cur_v;
cur_u += io->uv_stride;
cur_v += io->uv_stride;
dst += 2 * p->stride;
cur_y += 2 * io->y_stride;
UpscaleLinePair(cur_y - io->y_stride, cur_y,
top_u, top_v, cur_u, cur_v,
dst - p->stride, dst, w, p->mode);
}
// move to last row
cur_y += io->y_stride;
if (y_end != io->height) {
// Save the unfinished samples for next call (as we're not done yet).
memcpy(p->top_y, cur_y, w * sizeof(*p->top_y));
memcpy(p->top_u, cur_u, uv_w * sizeof(*p->top_u));
memcpy(p->top_v, cur_v, uv_w * sizeof(*p->top_v));
// The fancy upscaler leaves a row unfinished behind
// (except for the very last row)
p->last_y -= 1;
} else {
// Process the very last row of even-sized picture
if (!(y_end & 1)) {
UpscaleLinePair(cur_y, NULL, cur_u, cur_v, cur_u, cur_v,
dst + p->stride, NULL, w, p->mode);
}
}
#else
assert(0); // shouldn't happen.
#endif
} else {
// Point-sampling U/V upscaler.
int j;
for (j = 0; j < mb_h; ++j) {
const uint8_t* y_src = io->y + j * io->y_stride;
int i;
for (i = 0; i < w; ++i) {
const int y = y_src[i];
const int u = io->u[(j / 2) * io->uv_stride + (i / 2)];
const int v = io->v[(j / 2) * io->uv_stride + (i / 2)];
if (p->mode == MODE_RGB) {
VP8YuvToRgb(y, u, v, dst + i * 3);
} else if (p->mode == MODE_BGR) {
VP8YuvToBgr(y, u, v, dst + i * 3);
} else if (p->mode == MODE_RGBA) {
VP8YuvToRgb(y, u, v, dst + i * 4);
} else {
VP8YuvToBgr(y, u, v, dst + i * 4);
}
}
dst += p->stride;
}
}
}
// Alpha handling
if (p->mode == MODE_RGBA || p->mode == MODE_BGRA) {
int i, j;
uint8_t* dst = p->output + io->mb_y * p->stride + 3;
const uint8_t* alpha = io->a;
const int has_alpha = (alpha != NULL);
#ifdef WEBP_EXPERIMENTAL_FEATURES
if (has_alpha) {
for (j = 0; j < mb_h; ++j) {
for (i = 0; i < w; ++i) {
dst[4 * i] = alpha[i];
}
alpha += io->width;
dst += p->stride;
}
}
#endif
if (!has_alpha) { // fill-in with 0xFFs
for (j = 0; j < mb_h; ++j) {
for (i = 0; i < w; ++i) {
dst[4 * i] = 0xff;
}
dst += p->stride;
}
}
}
return 1;
}
//-----------------------------------------------------------------------------
static int CustomSetup(VP8Io* io) {
#ifdef FANCY_UPSCALING
WebPDecParams *p = (WebPDecParams*)io->opaque;
p->top_y = p->top_u = p->top_v = NULL;
if (p->mode != MODE_YUV) {
const int uv_width = (io->width + 1) >> 1;
p->top_y = (uint8_t*)malloc(io->width + 2 * uv_width);
if (p->top_y == NULL) {
return 0; // memory error.
}
p->top_u = p->top_y + io->width;
p->top_v = p->top_u + uv_width;
io->fancy_upscaling = 1; // activate fancy upscaling
}
#endif
return 1;
}
static void CustomTeardown(const VP8Io* io) {
#ifdef FANCY_UPSCALING
WebPDecParams *p = (WebPDecParams*)io->opaque;
if (p->top_y) {
free(p->top_y);
p->top_y = p->top_u = p->top_v = NULL;
}
#endif
}
void WebPInitCustomIo(VP8Io* const io) {
io->put = CustomPut;
io->setup = CustomSetup;
io->teardown = CustomTeardown;
}
//-----------------------------------------------------------------------------
// Init/Check/Free decoding parameters and buffer
int WebPInitDecParams(const uint8_t* data, uint32_t data_size, int* width,
int* height, WebPDecParams* const params) {
int w, h;
if (!WebPGetInfo(data, data_size, &w, &h)) {
return 0;
}
if (width) *width = w;
if (height) *height = h;
if (!params->external_buffer) {
int stride;
int uv_stride = 0;
int size;
int uv_size = 0;
uint8_t* output;
WEBP_CSP_MODE mode = params->mode;
// initialize output buffer, now that dimensions are known.
stride = (mode == MODE_RGB || mode == MODE_BGR) ? 3 * w
: (mode == MODE_RGBA || mode == MODE_BGRA) ? 4 * w
: w;
size = stride * h;
if (mode == MODE_YUV) {
uv_stride = (w + 1) / 2;
uv_size = uv_stride * ((h + 1) / 2);
}
output = (uint8_t*)malloc(size + 2 * uv_size);
if (!output) {
return 0;
}
params->output = output;
params->stride = stride;
params->output_size = size;
if (mode == MODE_YUV) {
params->u = output + size;
params->u_stride = uv_stride;
params->output_u_size = uv_size;
params->v = output + size + uv_size;
params->v_stride = uv_stride;
params->output_v_size = uv_size;
}
}
return 1;
}
int WebPCheckDecParams(const VP8Io* io, const WebPDecParams* params) {
int ok = 1;
WEBP_CSP_MODE mode = params->mode;
ok &= (params->stride * io->height <= params->output_size);
if (mode == MODE_RGB || mode == MODE_BGR) {
ok &= (params->stride >= io->width * 3);
} else if (mode == MODE_RGBA || mode == MODE_BGRA) {
ok &= (params->stride >= io->width * 4);
} else {
// some extra checks for U/V
const int u_size = params->u_stride * ((io->height + 1) / 2);
const int v_size = params->v_stride * ((io->height + 1) / 2);
ok &= (params->stride >= io->width);
ok &= (params->u_stride >= (io->width + 1) / 2) &&
(params->v_stride >= (io->width + 1) / 2);
ok &= (u_size <= params->output_u_size &&
v_size <= params->output_v_size);
}
return ok;
}
// WebPDecParams
void WebPResetDecParams(WebPDecParams* const params) {
assert(params);
memset(params, 0, sizeof(*params));
}
void WebPClearDecParams(WebPDecParams* params) {
assert(params);
if (!params->external_buffer) {
free(params->output);
if (params) {
memset(params, 0, sizeof(*params));
}
WebPResetDecParams(params);
}
//-----------------------------------------------------------------------------
// "Into" variants
// "Into" decoding variants
static uint8_t* DecodeInto(const uint8_t* data, uint32_t data_size,
WebPDecParams* params) {
// Main flow
static VP8StatusCode DecodeInto(const uint8_t* data, uint32_t data_size,
WebPDecParams* const params) {
VP8Decoder* dec = VP8New();
VP8StatusCode status = VP8_STATUS_OK;
VP8Io io;
int ok = 1;
assert(params);
if (dec == NULL) {
return NULL;
return VP8_STATUS_INVALID_PARAM;
}
VP8InitIo(&io);
io.data = data;
io.data_size = data_size;
WebPInitCustomIo(params, &io); // Plug the I/O functions.
io.opaque = params;
WebPInitCustomIo(&io);
// Decode bitstream header, update io->width/io->height.
if (!VP8GetHeaders(dec, &io)) {
VP8Delete(dec);
return NULL;
status = VP8_STATUS_BITSTREAM_ERROR;
} else {
// Allocate/check output buffers.
status = WebPAllocateDecBuffer(io.width, io.height, params->options,
params->output);
if (status == VP8_STATUS_OK) {
// Decode
if (!VP8Decode(dec, &io)) {
status = dec->status_;
}
}
}
// check output buffers
ok = WebPCheckDecParams(&io, params);
if (!ok) {
VP8Delete(dec);
return NULL;
}
if (params->mode != MODE_YUV) {
VP8YUVInit();
}
ok = VP8Decode(dec, &io);
VP8Delete(dec);
return ok ? params->output : NULL;
if (status != VP8_STATUS_OK) {
WebPFreeDecBuffer(params->output);
}
return status;
}
// Helpers
static uint8_t* DecodeIntoRGBABuffer(WEBP_CSP_MODE colorspace,
const uint8_t* data, uint32_t data_size,
uint8_t* rgba, int stride, int size) {
WebPDecParams params;
WebPDecBuffer buf;
if (rgba == NULL) {
return NULL;
}
WebPInitDecBuffer(&buf);
WebPResetDecParams(&params);
params.output = &buf;
buf.colorspace = colorspace;
buf.u.RGBA.rgba = rgba;
buf.u.RGBA.stride = stride;
buf.u.RGBA.size = size;
buf.is_external_memory = 1;
if (DecodeInto(data, data_size, &params) != VP8_STATUS_OK) {
return NULL;
}
return rgba;
}
uint8_t* WebPDecodeRGBInto(const uint8_t* data, uint32_t data_size,
uint8_t* output, int output_size,
int output_stride) {
WebPDecParams params;
if (output == NULL) {
return NULL;
}
WebPResetDecParams(&params);
params.mode = MODE_RGB;
params.output = output;
params.stride = output_stride;
params.output_size = output_size;
return DecodeInto(data, data_size, &params);
uint8_t* output, int size, int stride) {
return DecodeIntoRGBABuffer(MODE_RGB, data, data_size, output, stride, size);
}
uint8_t* WebPDecodeRGBAInto(const uint8_t* data, uint32_t data_size,
uint8_t* output, int output_size,
int output_stride) {
WebPDecParams params;
if (output == NULL) {
return NULL;
}
WebPResetDecParams(&params);
params.mode = MODE_RGBA;
params.output = output;
params.stride = output_stride;
params.output_size = output_size;
return DecodeInto(data, data_size, &params);
uint8_t* output, int size, int stride) {
return DecodeIntoRGBABuffer(MODE_RGBA, data, data_size, output, stride, size);
}
uint8_t* WebPDecodeBGRInto(const uint8_t* data, uint32_t data_size,
uint8_t* output, int output_size,
int output_stride) {
WebPDecParams params;
if (output == NULL) {
return NULL;
}
WebPResetDecParams(&params);
params.mode = MODE_BGR;
params.output = output;
params.stride = output_stride;
params.output_size = output_size;
return DecodeInto(data, data_size, &params);
uint8_t* output, int size, int stride) {
return DecodeIntoRGBABuffer(MODE_BGR, data, data_size, output, stride, size);
}
uint8_t* WebPDecodeBGRAInto(const uint8_t* data, uint32_t data_size,
uint8_t* output, int output_size,
int output_stride) {
WebPDecParams params;
if (output == NULL) {
return NULL;
}
WebPResetDecParams(&params);
params.mode = MODE_BGRA;
params.output = output;
params.stride = output_stride;
params.output_size = output_size;
return DecodeInto(data, data_size, &params);
uint8_t* output, int size, int stride) {
return DecodeIntoRGBABuffer(MODE_BGRA, data, data_size, output, stride, size);
}
uint8_t* WebPDecodeYUVInto(const uint8_t* data, uint32_t data_size,
@ -541,85 +161,93 @@ uint8_t* WebPDecodeYUVInto(const uint8_t* data, uint32_t data_size,
uint8_t* u, int u_size, int u_stride,
uint8_t* v, int v_size, int v_stride) {
WebPDecParams params;
if (luma == NULL) {
WebPDecBuffer output;
if (luma == NULL) return NULL;
WebPInitDecBuffer(&output);
WebPResetDecParams(&params);
params.output = &output;
output.colorspace = MODE_YUV;
output.u.YUVA.y = luma;
output.u.YUVA.y_stride = luma_stride;
output.u.YUVA.y_size = luma_size;
output.u.YUVA.u = u;
output.u.YUVA.u_stride = u_stride;
output.u.YUVA.u_size = u_size;
output.u.YUVA.v = v;
output.u.YUVA.v_stride = v_stride;
output.u.YUVA.v_size = v_size;
output.is_external_memory = 1;
if (DecodeInto(data, data_size, &params) != VP8_STATUS_OK) {
return NULL;
}
WebPResetDecParams(&params);
params.mode = MODE_YUV;
params.output = luma;
params.stride = luma_stride;
params.output_size = luma_size;
params.u = u;
params.u_stride = u_stride;
params.output_u_size = u_size;
params.v = v;
params.v_stride = v_stride;
params.output_v_size = v_size;
return DecodeInto(data, data_size, &params);
return luma;
}
//-----------------------------------------------------------------------------
static uint8_t* Decode(WEBP_CSP_MODE mode, const uint8_t* data,
uint32_t data_size, int* width, int* height,
WebPDecParams* params_out) {
uint8_t* output;
WebPDecBuffer* keep_info) {
WebPDecParams params;
WebPDecBuffer output;
WebPInitDecBuffer(&output);
WebPResetDecParams(&params);
params.mode = mode;
if (!WebPInitDecParams(data, data_size, width, height, &params)) {
params.output = &output;
output.colorspace = mode;
// Retrieve (and report back) the required dimensions from bitstream.
if (!WebPGetInfo(data, data_size, &output.width, &output.height)) {
return NULL;
}
if (width) *width = output.width;
if (height) *height = output.height;
params.output_size = params.stride * (*height);
params.output_u_size = params.output_v_size =
params.u_stride * ((*height + 1) / 2);
output = DecodeInto(data, data_size, &params);
if (!output) {
WebPClearDecParams(&params);
// Decode
if (DecodeInto(data, data_size, &params) != VP8_STATUS_OK) {
return NULL;
}
if (params_out) {
*params_out = params;
if (keep_info) { // keep track of the side-info
WebPCopyDecBuffer(&output, keep_info);
}
return output;
// return decoded samples (don't clear 'output'!)
return (mode >= MODE_YUV) ? output.u.YUVA.y : output.u.RGBA.rgba;
}
uint8_t* WebPDecodeRGB(const uint8_t* data, uint32_t data_size,
int *width, int *height) {
int* width, int* height) {
return Decode(MODE_RGB, data, data_size, width, height, NULL);
}
uint8_t* WebPDecodeRGBA(const uint8_t* data, uint32_t data_size,
int *width, int *height) {
int* width, int* height) {
return Decode(MODE_RGBA, data, data_size, width, height, NULL);
}
uint8_t* WebPDecodeBGR(const uint8_t* data, uint32_t data_size,
int *width, int *height) {
int* width, int* height) {
return Decode(MODE_BGR, data, data_size, width, height, NULL);
}
uint8_t* WebPDecodeBGRA(const uint8_t* data, uint32_t data_size,
int *width, int *height) {
int* width, int* height) {
return Decode(MODE_BGRA, data, data_size, width, height, NULL);
}
uint8_t* WebPDecodeYUV(const uint8_t* data, uint32_t data_size,
int *width, int *height, uint8_t** u, uint8_t** v,
int *stride, int* uv_stride) {
WebPDecParams params;
int* width, int* height, uint8_t** u, uint8_t** v,
int* stride, int* uv_stride) {
WebPDecBuffer output; // only to preserve the side-infos
uint8_t* const out = Decode(MODE_YUV, data, data_size,
width, height, &params);
width, height, &output);
if (out) {
*u = params.u;
*v = params.v;
*stride = params.stride;
*uv_stride = params.u_stride;
assert(params.u_stride == params.v_stride);
const WebPYUVABuffer* const buf = &output.u.YUVA;
*u = buf->u;
*v = buf->v;
*stride = buf->y_stride;
*uv_stride = buf->u_stride;
assert(buf->u_stride == buf->v_stride);
}
return out;
}
@ -628,16 +256,91 @@ uint8_t* WebPDecodeYUV(const uint8_t* data, uint32_t data_size,
// WebPGetInfo()
int WebPGetInfo(const uint8_t* data, uint32_t data_size,
int *width, int *height) {
int* width, int* height) {
const uint32_t chunk_size = WebPCheckRIFFHeader(&data, &data_size);
if (!chunk_size) {
return 0; // unsupported RIFF header
}
// Validate raw video data
if (data_size < 10) {
return 0; // not enough data
return VP8GetInfo(data, data_size, chunk_size, width, height, NULL);
}
static void DefaultFeatures(WebPBitstreamFeatures* const features) {
assert(features);
memset(features, 0, sizeof(*features));
features->bitstream_version = 0;
}
static VP8StatusCode GetFeatures(const uint8_t** data, uint32_t* data_size,
WebPBitstreamFeatures* const features) {
uint32_t chunk_size;
if (features == NULL) {
return VP8_STATUS_INVALID_PARAM;
}
return VP8GetInfo(data, chunk_size, width, height);
DefaultFeatures(features);
if (data == NULL || *data == NULL || data_size == 0) {
return VP8_STATUS_INVALID_PARAM;
}
chunk_size = WebPCheckRIFFHeader(data, data_size);
if (chunk_size == 0) {
return VP8_STATUS_BITSTREAM_ERROR; // unsupported RIFF header
}
if (!VP8GetInfo(*data, *data_size, chunk_size,
&features->width, &features->height, &features->has_alpha)) {
return VP8_STATUS_BITSTREAM_ERROR;
}
return VP8_STATUS_OK;
}
//-----------------------------------------------------------------------------
// Advance decoding API
int WebPInitDecoderConfigInternal(WebPDecoderConfig* const config,
int version) {
if (version != WEBP_DECODER_ABI_VERSION) {
return 0; // version mismatch
}
if (config == NULL) {
return 0;
}
memset(config, 0, sizeof(*config));
DefaultFeatures(&config->input);
WebPInitDecBuffer(&config->output);
return 1;
}
VP8StatusCode WebPGetFeaturesInternal(const uint8_t* data, uint32_t data_size,
WebPBitstreamFeatures* const features,
int version) {
if (version != WEBP_DECODER_ABI_VERSION) {
return VP8_STATUS_INVALID_PARAM; // version mismatch
}
if (features == NULL) {
return VP8_STATUS_INVALID_PARAM;
}
return GetFeatures(&data, &data_size, features);
}
VP8StatusCode WebPDecode(const uint8_t* data, uint32_t data_size,
WebPDecoderConfig* const config) {
WebPDecParams params;
VP8StatusCode status;
if (!config) {
return VP8_STATUS_INVALID_PARAM;
}
status = GetFeatures(&data, &data_size, &config->input);
if (status != VP8_STATUS_OK) {
return status;
}
WebPResetDecParams(&params);
params.output = &config->output;
params.options = &config->options;
status = DecodeInto(data, data_size, &params);
return status;
}
#if defined(__cplusplus) || defined(c_plusplus)

View File

@ -18,46 +18,81 @@ extern "C" {
#include "../webp/decode_vp8.h"
// Decoding output parameters.
//------------------------------------------------------------------------------
// WebPDecParams: Decoding output parameters. Transcient internal object.
typedef struct WebPDecParams WebPDecParams;
typedef int (*OutputFunc)(const VP8Io* const io, WebPDecParams* const p);
// Structure use for on-the-fly rescaling
typedef struct {
uint8_t* output; // rgb(a) or luma
uint8_t *u, *v; // chroma u/v
uint8_t *top_y, *top_u, *top_v; // cache for the fancy upscaler
int stride; // rgb(a) stride or luma stride
int u_stride; // chroma-u stride
int v_stride; // chroma-v stride
WEBP_CSP_MODE mode; // rgb(a) or yuv
int last_y; // coordinate of the line that was last output
int output_size; // size of 'output' buffer
int output_u_size; // size of 'u' buffer
int output_v_size; // size of 'v' buffer
int external_buffer; // If true, the output buffers are externally owned
} WebPDecParams;
int x_expand; // true if we're expanding in the x direction
int fy_scale, fx_scale; // fixed-point scaling factor
int64_t fxy_scale; // ''
// we need hpel-precise add/sub increments, for the downsampled U/V planes.
int y_accum; // vertical accumulator
int y_add, y_sub; // vertical increments (add ~= src, sub ~= dst)
int x_add, x_sub; // horizontal increments (add ~= src, sub ~= dst)
int src_width, src_height; // source dimensions
int dst_width, dst_height; // destination dimensions
uint8_t* dst;
int dst_stride;
int32_t* irow, *frow; // work buffer
} WebPRescaler;
struct WebPDecParams {
WebPDecBuffer* output; // output buffer.
uint8_t* tmp_y, *tmp_u, *tmp_v; // cache for the fancy upsampler
// or used for tmp rescaling
int last_y; // coordinate of the line that was last output
const WebPDecoderOptions* options; // if not NULL, use alt decoding features
// rescalers
WebPRescaler scaler_y, scaler_u, scaler_v, scaler_a;
void* memory; // overall scratch memory for the output work.
OutputFunc emit; // output RGB or YUV samples
OutputFunc emit_alpha; // output alpha channel
};
// Should be called first, before any use of the WebPDecParams object.
void WebPResetDecParams(WebPDecParams* const params);
//------------------------------------------------------------------------------
// Misc utils
// If a RIFF container is detected, validate it and skip over it. Returns
// VP8 bit-stream size if RIFF header is valid else returns 0
uint32_t WebPCheckRIFFHeader(const uint8_t** data_ptr,
uint32_t *data_size_ptr);
uint32_t* data_size_ptr);
// Initializes VP8Io with custom setup, io and teardown functions
void WebPInitCustomIo(VP8Io* const io);
// Initializes VP8Io with custom setup, io and teardown functions. The default
// hooks will use the supplied 'params' as io->opaque handle.
void WebPInitCustomIo(WebPDecParams* const params, VP8Io* const io);
// Initializes params_out by allocating output buffer and setting the
// stride information. It also outputs width and height information of
// the WebP image. Returns 1 if succeeds.
int WebPInitDecParams(const uint8_t* data, uint32_t data_size, int* width,
int* height, WebPDecParams* const params_out);
//------------------------------------------------------------------------------
// Internal functions regarding WebPDecBuffer memory (in buffer.c).
// Don't really need to be externally visible for now.
// Verifies various size configurations (e.g stride >= width, specified
// output size <= stride * height etc.). Returns 0 if checks fail.
int WebPCheckDecParams(const VP8Io* io, const WebPDecParams* params);
// Prepare 'buffer' with the requested initial dimensions width/height.
// If no external storage is supplied, initializes buffer by allocating output
// memory and setting up the stride information. Validate the parameters. Return
// an error code in case of problem (no memory, or invalid stride / size /
// dimension / etc.). If *options is not NULL, also verify that the options'
// parameters are valid and apply them to the width/height dimensions of the
// output buffer. This takes cropping / scaling / rotation into account.
VP8StatusCode WebPAllocateDecBuffer(int width, int height,
const WebPDecoderOptions* const options,
WebPDecBuffer* const buffer);
// Deallocate memory allocated by WebPInitDecParams() and reset the
// WebPDecParams object.
void WebPClearDecParams(WebPDecParams* params);
// Copy 'src' into 'dst' buffer, making sure 'dst' is not marked as owner of the
// memory (still held by 'src').
void WebPCopyDecBuffer(const WebPDecBuffer* const src,
WebPDecBuffer* const dst);
// Copy and transfer ownership from src to dst (beware of parameter order!)
void WebPGrabDecBuffer(WebPDecBuffer* const src, WebPDecBuffer* const dst);
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"

View File

@ -26,7 +26,7 @@ extern int16_t VP8kVToR[256], VP8kUToB[256];
extern int32_t VP8kVToG[256], VP8kUToG[256];
extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
inline static void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
static inline void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgb) {
const int r_off = VP8kVToR[v];
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
@ -36,7 +36,7 @@ inline static void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
}
inline static void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
static inline void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const bgr) {
const int r_off = VP8kVToR[v];
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
@ -46,11 +46,18 @@ inline static void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
}
inline static void VP8YuvToBgra(int y, int u, int v, uint8_t* const bgra) {
static inline void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const bgra) {
VP8YuvToBgr(y, u, v, bgra);
bgra[3] = 0xff;
}
static inline void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgba) {
VP8YuvToRgb(y, u, v, rgba);
rgba[3] = 0xff;
}
// Must be called before everything, to initialize the tables.
void VP8YUVInit(void);

View File

@ -18,6 +18,8 @@
extern "C" {
#endif
#define WEBP_DECODER_ABI_VERSION 0x0002
// Return the decoder's version number, packed in hexadecimal using 8bits for
// each of major/minor/revision. E.g: v2.5.7 is 0x020507.
int WebPGetDecoderVersion(void);
@ -27,25 +29,25 @@ int WebPGetDecoderVersion(void);
// case of formatting error.
// Pointers *width/*height can be passed NULL if deemed irrelevant.
int WebPGetInfo(const uint8_t* data, uint32_t data_size,
int *width, int *height);
int* width, int* height);
// Decodes WEBP images pointed to by *data and returns RGB samples, along
// with the dimensions in *width and *height.
// The returned pointer should be deleted calling free().
// Returns NULL in case of error.
uint8_t* WebPDecodeRGB(const uint8_t* data, uint32_t data_size,
int *width, int *height);
int* width, int* height);
// Same as WebPDecodeRGB, but returning RGBA data.
uint8_t* WebPDecodeRGBA(const uint8_t* data, uint32_t data_size,
int *width, int *height);
int* width, int* height);
// This variant decode to BGR instead of RGB.
uint8_t* WebPDecodeBGR(const uint8_t* data, uint32_t data_size,
int *width, int *height);
int* width, int* height);
// This variant decodes to BGRA instead of RGBA.
uint8_t* WebPDecodeBGRA(const uint8_t* data, uint32_t data_size,
int *width, int *height);
int* width, int* height);
// Decode WEBP images stored in *data in Y'UV format(*). The pointer returned is
// the Y samples buffer. Upon return, *u and *v will point to the U and V
@ -57,8 +59,8 @@ uint8_t* WebPDecodeBGRA(const uint8_t* data, uint32_t data_size,
// Return NULL in case of error.
// (*) Also named Y'CbCr. See: http://en.wikipedia.org/wiki/YCbCr
uint8_t* WebPDecodeYUV(const uint8_t* data, uint32_t data_size,
int *width, int *height, uint8_t** u, uint8_t** v,
int *stride, int* uv_stride);
int* width, int* height, uint8_t** u, uint8_t** v,
int* stride, int* uv_stride);
// These three functions are variants of the above ones, that decode the image
// directly into a pre-allocated buffer 'output_buffer'. The maximum storage
@ -95,13 +97,59 @@ uint8_t* WebPDecodeYUVInto(const uint8_t* data, uint32_t data_size,
uint8_t* v, int v_size, int v_stride);
//-----------------------------------------------------------------------------
// Output colorspaces and buffer
// Output colorspaces
// Colorspaces
typedef enum { MODE_RGB = 0, MODE_RGBA = 1,
MODE_BGR = 2, MODE_BGRA = 3,
MODE_YUV = 4 } WEBP_CSP_MODE;
MODE_YUV = 4, MODE_YUVA = 5 // yuv 4:2:0
} WEBP_CSP_MODE;
// Generic structure for describing the sample buffer.
typedef struct { // view as RGBA
uint8_t* rgba; // pointer to RGBA samples
int stride; // stride in bytes from one scanline to the next.
int size; // total size of the *rgba buffer.
} WebPRGBABuffer;
typedef struct { // view as YUVA
uint8_t* y, *u, *v, *a; // pointer to luma, chroma U/V, alpha samples
int y_stride; // luma stride
int u_stride, v_stride; // chroma strides
int a_stride; // alpha stride
int y_size; // luma plane size
int u_size, v_size; // chroma planes size
int a_size; // alpha-plane size
} WebPYUVABuffer;
// Output buffer
typedef struct {
WEBP_CSP_MODE colorspace; // Colorspace.
int width, height; // Dimensions.
int is_external_memory; // If true, the *memory pointer is not owned.
union {
WebPRGBABuffer RGBA;
WebPYUVABuffer YUVA;
} u; // nameless union of buffer parameters.
uint8_t* memory; // main pointer (when is_external_memory is false)
} WebPDecBuffer;
// Internal, version-checked, entry point
int WebPInitDecBufferInternal(WebPDecBuffer* const, int);
// Initialize the structure as empty. Must be called before any other use.
// Returns false in case of version mismatch
static inline int WebPInitDecBuffer(WebPDecBuffer* const buffer) {
return WebPInitDecBufferInternal(buffer, WEBP_DECODER_ABI_VERSION);
}
// Free any memory associated with the buffer. Must always be called last.
// Note: doesn't free the 'buffer' structure itself.
void WebPFreeDecBuffer(WebPDecBuffer* const buffer);
//-----------------------------------------------------------------------------
// Enumeration of the status codes
typedef enum {
VP8_STATUS_OK = 0,
VP8_STATUS_OUT_OF_MEMORY,
@ -116,8 +164,8 @@ typedef enum {
//-----------------------------------------------------------------------------
// Incremental decoding
//
// This API allows streamlined decoding of partial data.
// Picture can be incrementally decoded as data become available thanks to the
// This API allows streamlined decoding of partial data.
// Picture can be incrementally decoded as data become available thanks to the
// WebPIDecoder object. This object can be left in a SUSPENDED state if the
// picture is only partially decoded, pending additional input.
// Code example:
@ -138,7 +186,16 @@ typedef enum {
typedef struct WebPIDecoder WebPIDecoder;
// Creates a new incremental decoder with the supplied buffer parameter.
// This output_buffer can be passed NULL, in which case a default output buffer
// is used (with MODE_RGB). Otherwise, an internal reference to 'output_buffer'
// is kept, which means that the lifespan of 'output_buffer' must be larger than
// that of the returned WebPIDecoder object.
// Returns NULL if the allocation failed.
WebPIDecoder* WebPINewDecoder(WebPDecBuffer* const output_buffer);
// Creates a WebPIDecoder object. Returns NULL in case of failure.
// TODO(skal): DEPRECATED. Prefer using WebPINewDecoder().
WebPIDecoder* WebPINew(WEBP_CSP_MODE mode);
// This function allocates and initializes an incremental-decoder object, which
@ -183,7 +240,7 @@ VP8StatusCode WebPIUpdate(WebPIDecoder* const idec, const uint8_t* data,
// specified in WebPINew()/WebPINewRGB(). *last_y is the index of last decoded
// row in raster scan order. Some pointers (*last_y, *width etc.) can be NULL if
// corresponding information is not needed.
uint8_t* WebPIDecGetRGB(const WebPIDecoder* const idec, int *last_y,
uint8_t* WebPIDecGetRGB(const WebPIDecoder* const idec, int* last_y,
int* width, int* height, int* stride);
// Same as above function to get YUV image. Returns pointer to the luma plane
@ -192,6 +249,122 @@ uint8_t* WebPIDecGetYUV(const WebPIDecoder* const idec, int* last_y,
uint8_t** u, uint8_t** v,
int* width, int* height, int* stride, int* uv_stride);
// Generic call to retrieve output buffer information.
// Returns NULL in case of error, otherwise returns the pointer to the internal
// representation. This structure is read-only and shouldn't be modified.
// TODO(skal): instead of 'last_y' only, we should pass *left/top/right/bottom,
// to get the visible area. Esp. useful for rotation.
const WebPDecBuffer* WebPIDecGetSamples(const WebPIDecoder* const idec,
int* last_y);
//-----------------------------------------------------------------------------
// Advanced decoding parametrization
//
// Code sample for using the advanced decoding API
/*
// A) Init a configuration object
WebPDecoderConfig config;
CHECK(WebPInitDecoderConfig(&config));
// B) optional: retrieve the bitstream's features.
CHECK(WebPGetFeatures(data, data_size, &config.input) == VP8_STATUS_OK);
// C) Adjust 'config', if needed
config.no_fancy = 1;
config.output.colorspace = MODE_BGRA;
// etc.
// Note that you can also make config.output point to an externally
// supplied memory buffer, provided it's big enough to store the decoded
// picture. Otherwise, config.output will just be used to allocate memory
// and store the decoded picture.
// D) Decode!
CHECK(WebPDecode(data, data_size, &config) == VP8_STATUS_OK);
// E) Decoded image is now in config.output (and config.output.u.RGBA)
// F) Reclaim memory allocated in config's object. It's safe to call
// this function even if the memory is external and wasn't allocated
// by WebPDecode().
WebPFreeDecBuffer(&config.output);
*/
// Features gathered from the bitstream
typedef struct {
int width; // the original width, as read from the bitstream
int height; // the original height, as read from the bitstream
int has_alpha; // true if bitstream contains an alpha channel
int no_incremental_decoding; // if true, using incremental decoding is not
// recommended.
int rotate; // TODO(later)
int uv_sampling; // should be 0 for now. TODO(later)
int bitstream_version; // should be 0 for now. TODO(later)
} WebPBitstreamFeatures;
// Internal, version-checked, entry point
extern VP8StatusCode WebPGetFeaturesInternal(const uint8_t*, uint32_t,
WebPBitstreamFeatures* const, int);
// Retrieve features from the bitstream. The *features structure is filled
// with informations gathered from the bitstream.
// Returns false in case of error or version mismatch.
// In case of error, features->bitstream_status will reflect the error code.
static inline
VP8StatusCode WebPGetFeatures(const uint8_t* data, uint32_t data_size,
WebPBitstreamFeatures* const features) {
return WebPGetFeaturesInternal(data, data_size, features,
WEBP_DECODER_ABI_VERSION);
}
// Decoding options
typedef struct {
int bypass_filtering; // if true, skip the in-loop filtering
int no_fancy_upsampling; // if true, use faster pointwise upsampler
int use_cropping; // if true, cropping is applied _first_
int crop_left, crop_top; // top-left position for cropping.
// Will be snapped to even values.
int crop_width, crop_height; // dimension of the cropping area
int use_scaling; // if true, scaling is applied _afterward_
int scaled_width, scaled_height; // final resolution
int force_rotation; // forced rotation (to be applied _last_)
int no_enhancement; // if true, discard enhancement layer
} WebPDecoderOptions;
// Main object storing the configuration for advanced decoding.
typedef struct {
WebPBitstreamFeatures input; // Immutable bitstream features (optional)
WebPDecBuffer output; // Output buffer (can point to external mem)
WebPDecoderOptions options; // Decoding options
} WebPDecoderConfig;
// Internal, version-checked, entry point
extern int WebPInitDecoderConfigInternal(WebPDecoderConfig* const, int);
// Initialize the configuration as empty. This function must always be
// called first, unless WebPGetFeatures() is to be called.
// Returns false in case of mismatched version.
static inline int WebPInitDecoderConfig(WebPDecoderConfig* const config) {
return WebPInitDecoderConfigInternal(config, WEBP_DECODER_ABI_VERSION);
}
// Instantiate a new incremental decoder object with requested configuration.
// The bitstream can be passed using *data and data_size parameter,
// in which case the features will be parsed and stored into config->input.
// Otherwise, 'data' can be NULL and now parsing will occur.
// Note that 'config' can be NULL too, in which case a default configuration is
// used.
// The return WebPIDecoder object must always be deleted calling WebPIDelete().
// Returns NULL in case of error (and config->status will then reflect
// the error condition).
WebPIDecoder* WebPIDecode(const uint8_t* data, uint32_t data_size,
WebPDecoderConfig* const config);
// Non-incremental version. This version decodes the full data at once, taking
// 'config' into account. Return decoding status (VP8_STATUS_OK if decoding
// was successful).
VP8StatusCode WebPDecode(const uint8_t* data, uint32_t data_size,
WebPDecoderConfig* const config);
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"

View File

@ -18,8 +18,6 @@
extern "C" {
#endif
#define WEBP_DECODER_ABI_VERSION 0x0002
//-----------------------------------------------------------------------------
// Lower-level API
//
@ -42,12 +40,16 @@ extern "C" {
typedef struct VP8Io VP8Io;
struct VP8Io {
// set by VP8GetHeaders()
int width, height; // picture dimensions, in pixels
int width, height; // picture dimensions, in pixels (invariable).
// These are the original, uncropped dimensions.
// The actual area passed to put() is stored
// in mb_w / mb_h fields.
// set before calling put()
int mb_y; // position of the current rows (in pixels)
int mb_w; // number of columns in the sample
int mb_h; // number of rows in the sample
const uint8_t *y, *u, *v; // rows to copy (in yuv420 format)
const uint8_t* y, *u, *v; // rows to copy (in yuv420 format)
int y_stride; // row stride for luma
int uv_stride; // row stride for chroma
@ -56,7 +58,8 @@ struct VP8Io {
// called when fresh samples are available. Currently, samples are in
// YUV420 format, and can be up to width x 24 in size (depending on the
// in-loop filtering level, e.g.). Should return false in case of error
// or abort request.
// or abort request. The actual size of the area to update is mb_w x mb_h
// in size, taking cropping into account.
int (*put)(const VP8Io* io);
// called just before starting to decode the blocks.
@ -69,7 +72,7 @@ struct VP8Io {
// this is a recommendation for the user-side yuv->rgb converter. This flag
// is set when calling setup() hook and can be overwritten by it. It then
// can be taken into consideration during the put() method.
int fancy_upscaling;
int fancy_upsampling;
// Input buffer.
uint32_t data_size;
@ -81,6 +84,14 @@ struct VP8Io {
// with the VP8 specifications.
int bypass_filtering;
// Cropping parameters.
int use_cropping;
int crop_left, crop_right, crop_top, crop_bottom;
// Scaling parameters.
int use_scaling;
int scaled_width, scaled_height;
// pointer to the alpha data (if present) corresponding to the rows
const uint8_t* a;
};