feat(Blogger): support blog posts TF-IDF analyse

This commit is contained in:
DanyLE 2023-04-24 16:41:26 +02:00
parent 545f630b0e
commit f9f27321ab
18 changed files with 1264 additions and 6 deletions

View File

@ -6,6 +6,7 @@ Blackend for my blog at https://blog.iohub.dev
## Change logs
### v0.2.x-a
* Patch 11: Add TFIDF analyse functionality
* Patch 10: Migrate code to typescript, use SQLiteDB lib for database access
* Patch 9: Update to use the new MDE library
* Patch 8: Support for antOS 2.0.x

View File

@ -0,0 +1,66 @@
local args = ...
local ret = {
error = false,
result = nil
}
local __dir__ = debug.getinfo(1).source:match("@?(.*/)")
LOG_DEBUG("CURRENT PATH:%s", __dir__)
local cluster = loadfile(__dir__.."/cluster.lua")()
local dbpath = require("vfs").ospath(args.dbpath)
LOG_DEBUG("DB PATH:%s", dbpath)
local gettext = {}
gettext.get = function(file)
local db = DBModel:new{db=file}
db:open()
if not db then return nil end
local data, sort = db:find("blogs", {
where = { publish = 1 },
fields = {"id", "content"}
})
db:close()
if not data or #data == 0 then return nil end
return data
end
gettext.stopwords = function(ospath)
local words = {}
for line in io.lines(ospath) do
words[line] = true
end
return words
end
local data = gettext.get(dbpath)
local documents = {}
if data then
local sw = gettext.stopwords(__dir__.."/stopwords.txt")
for k, v in pairs(data) do
local bag = cluster.bow(data[k].content, sw)
documents[data[k].id] = bag
end
cluster.tfidf(documents)
--local v = cluster.search("arm", documents)
--echo(JSON.encode(v))
local vectors, maxv, size = cluster.get_vectors(documents)
local analytical = DBModel:new{db=dbpath}
analytical:open()
-- purge the table
analytical:delete("st_similarity", nil)
-- get similarity and put to the table
for id, v in pairs(vectors) do
local top = cluster.top_similarity(id, vectors, args.top, 0.1)
for a, b in pairs(top) do
local record = {pid = id, sid = a, score = b}
analytical:insert("st_similarity", record)
end
end
analytical:close()
ret.result = "Analyse complete"
else
ret.error = "Unable to query database for post"
end
return ret

346
Blogger/api/ai/cluster.lua Normal file
View File

@ -0,0 +1,346 @@
local doclassify = {}
local st = require("stmr")
doclassify.bow = function(data, stopwords)
-- first step get a table of worlds that contain
-- world: occurences
local bag = {}
for w in data:gmatch('%w+') do
local word = w:lower()
if not stopwords[word] then
word = st.stmr(word)
if bag[word] then
bag[word].count = bag[word].count + 1
else
bag[word] = {count=0, tf=0, tfidf=0.0}
bag[word].count = 1
end
end
end
-- now calculate the tf of the bag
for k,v in pairs(bag) do
bag[k].tf = math.log(1 + bag[k].count)
end
return bag
end
doclassify.len = function(table)
local cnt = 0
for k,v in pairs(table) do cnt = cnt+1 end
return cnt
end
doclassify.tfidf = function(documents)
-- now for each term in a bag, calculate
-- the inverse document frequency, which
-- is a measure of how much information
-- the word provides, that is, whether the
-- term is common or rare across all documents
local ndoc = doclassify.len(documents)
for k,bag in pairs(documents) do
-- for eacht term in bag
-- calculate its idf across all documents
for term,b in pairs(bag) do
local n = 0
for id,doc in pairs(documents) do
if doc[term] then n = n+1 end
end
--echo("term:"..term.." appears in"..n.." documents")
b.tfidf = b.tf*math.log(ndoc/n)
end
end
end
doclassify.search = function(term, documents)
local r = {}
for id, doc in pairs(documents) do
if doc[term:lower()] then
r[id] = doc[term].tfidf
end
end
return r
end
doclassify.get_vectors = function(documents)
-- get a list of vector from documents
local index = 0
local vectors = {}
local maps = {}
local terms = {}
local maxv = 0
for id in pairs(documents) do
maps[id] = {}
vectors[id] = {}
end
-- first loop, get the term
for id, doc in pairs(documents) do
for k,v in pairs(doc) do
-- get max value
if v.tfidf > maxv then
maxv = v.tfidf
end
-- get the term
if not terms[k] then
index = index + 1
terms[k] = index
end
for pid in pairs(documents) do
if not maps[pid][k] then
if id == pid then
maps[pid][k] = v.tfidf
else
maps[pid][k] = 0
end
else
if maps[pid][k] == 0 and id == pid then
maps[pid][k] = v.tfidf
end
end
end
end
end
-- reindexing the vectors
for id in pairs(documents) do
for k,v in pairs(maps[id]) do
vectors[id][terms[k]] = v
end
end
--echo("Max tfidf "..maxv.." in document #"..maxid.." of term "..term)
return vectors, maxv, index, terms
end
doclassify.similarity = function(va, vb)
-- using cosin similarity
local dotp = 0
local maga = 0
local magb = 0
for k = 1,#va do
dotp = dotp + va[k]*vb[k]
maga = maga + va[k]*va[k]
magb = magb + vb[k]*vb[k]
end
maga = math.sqrt(maga)
magb = math.sqrt(magb)
local d = 0
if maga ~= 0 and magb ~= 0 then
d = dotp/ (magb*maga)
end
return d
end
doclassify.similarities = function(v1, collection)
local similarities = {}
assert(#v1 == #(collection[1]), "Incorrect vectors size")
for i=1,#collection do
similarities[i] = doclassify.similarity(v1, collection[i])
end
return similarities
end
doclassify.mean_similarity = function(v1, v2)
assert(#v1 == #v2, "Incorrect vectors size")
local similarities = {}
for i = 1,#v1 do similarities[i] = doclassify.similarity(v1[i], v2[i]) end
return doclassify.mean(similarities)
end
doclassify.similarity_chart = function(id, vectors)
local vs = {}
local cnt = 0
local lut = {}
for k,v in pairs(vectors) do
if k ~= id then
cnt = cnt + 1
vs[cnt] = v
lut[cnt] = k
end
end
if not vs[1] then return {} end
return doclassify.similarities(vectors[id], vs), lut
end
doclassify.top_similarity = function(id, vectors, n, th)
local chart,lut = doclassify.similarity_chart(id,vectors)
--echo(JSON.encode(chart))
--echo(JSON.encode(lut))
if not lut or #lut <= 0 then return nil end
local top = {}
local j=0
local goon = true
if not th then
goon = false
th = 0
end
while j < n or goon
do
local i,maxv = doclassify.argmax(chart)
top[lut[i]] = maxv
chart[i] = 0.0
j=j+1
if maxv < th and goon then
goon = false
end
end
--for j=1,n do
-- local i,maxv = doclassify.argmax(chart)
-- top[lut[i]] = maxv
-- chart[i] = 0.0
--end
return top
end
doclassify.save_vectors = function(vectors, name)
local f = io.open(name,"w")
if f == nil then return false end
for id, v in pairs(vectors) do
f:write(id)
for i=1,#v do f:write(","..v[i]) end
f:write("\n")
end
f:close()
return true
end
doclassify.save_topchart = function(vectors, name,n)
local f = io.open(name,"w")
if f == nil then return false end
for k,v in pairs(vectors) do
local top = doclassify.top_similarity(k,vectors,n, 0.1)
for a,b in pairs(top) do
f:write(k.." "..a.." "..b.."\n")
end
end
f:close()
return true
end
doclassify.kmean = function(nclass, documents, maxstep, ids)
-- now
local vectors, maxv, size = doclassify.get_vectors(documents)
-- random centroids
local centroids = {}
local old_centroids = {}
local clusters = {}
--for pid in pairs(documents) do clusters[pid] = 0 end
-- add noise to mean_vector
for i = 1,nclass do
if ids == nil then
centroids[i] = doclassify.random(size,math.floor(maxv))
else
centroids[i] = vectors[ids[i]]
end
old_centroids[i] = doclassify.zeros(size)
end
-- loop until convergence or maxstep reached
local similarity = doclassify.mean_similarity(centroids, old_centroids)
local step = maxstep
while 1.0-similarity > 1e-9 and step > 0 do
clusters = {}
--echo(JSON.encode(centroids))
for id,v in pairs(vectors) do
local similarities = doclassify.similarities(v, centroids)
--echo(JSON.encode(similarities))
local cluster, maxvalue = doclassify.argmax(similarities)
--echo("doc #"..id.." is in clusters #"..cluster.." max value is "..maxvalue)
clusters[id] = cluster
end
-- storing the old centroids
old_centroids = centroids
-- calculate new centroids
local new_centroids = {}
for class in pairs(centroids) do
local cnt = 0
local cvectors = {}
for id,v in pairs(vectors) do
if clusters[id] == class then
cnt = cnt + 1
cvectors[cnt] = v
end
end
new_centroids[class] = doclassify.mean_vector(cvectors, size)
end
centroids = new_centroids
--echo(JSON.encode(centroids))
--echo(JSON.encode(old_centroids))
similarity = doclassify.mean_similarity(centroids, old_centroids)
echo("step #"..step..", similarity "..similarity)
step = step - 1
end
local results = {}
for i = 1,nclass do
local list = {}
local cnt = 0
for id,c in pairs(clusters) do
if c == i then
cnt = cnt + 1
list[cnt] = id
end
end
results[i] = list
end
return results, clusters, centroids
end
doclassify.zeros = function(n)
local vector = {}
for i = 1,n do vector[i] = 0.0 end
return vector
end
doclassify.random = function(n,maxv)
local vector = {}
for i=1,n do
vector[i] = math.random() + math.random(0, maxv)
end
return vector
end
doclassify.sum = function(v)
local sum = 0.0
for i=1,#v do sum = sum + v[i] end
return sum
end
doclassify.mean = function(v)
return doclassify.sum(v)/#v
end
doclassify.mean_vector = function(vectors, size)
local means = doclassify.zeros(size)
if not vectors or #vectors == 0 then return means end
--local size = #(vectors[1])
local times = 0
for k,v in pairs(vectors) do
for i=1,#v do means[i] = means[i] + v[i] end
times = times + 1
end
for i = 1,size do means[i] = means[i]/times end
return means
end
doclassify.argmin = function(v)
local minv = 0.0
local mini = 0.0
for i = 1,#v do
if v[i] <= minv then
mini = i
minv = v[i]
end
end
--echo("min index"..mini.." val "..minv)
return mini, minv
end
doclassify.argmax = function(v)
local maxv = 0.0
local maxi = 0.0
for i = 1,#v do
if v[i] >= maxv then
maxi = i
maxv = v[i]
end
end
return maxi,maxv
end
return doclassify

View File

@ -0,0 +1,151 @@
i
me
my
myself
we
our
ours
ourselves
you
your
yours
yourself
yourselves
he
him
his
himself
she
her
hers
herself
it
its
itself
they
them
their
theirs
themselves
what
which
who
whom
this
that
these
those
am
is
are
was
were
be
been
being
have
has
had
having
do
does
did
doing
a
an
the
and
but
if
or
because
as
until
while
of
at
by
for
with
about
against
between
into
through
during
before
after
above
below
to
from
up
down
in
out
on
off
over
under
again
further
then
once
here
there
when
where
why
how
all
any
both
each
few
more
most
other
some
such
no
nor
not
only
own
same
so
than
too
very
s
t
can
will
just
don
should
now
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
w
r
s
t
x
y
z

50
Blogger/api/ai/test.lua Normal file
View File

@ -0,0 +1,50 @@
local path = require("fs/vfs").ospath("home://aiws/blog-clustering")
local gettext = loadfile(path.."/gettext.lua")()
local cluster = loadfile(path.."/cluster.lua")()
local refresh = false
local file = "/home/mrsang/test.csv"
if refresh then
local data = gettext.get({publish=1})
local documents = {}
if data then
local sw = gettext.stopwords("home://aiws/blog-clustering/stopwords.txt")
for k,v in pairs(data) do
local bag = cluster.bow(data[k].content, sw)
documents[data[k].id] = bag
end
cluster.tfidf(documents)
--local v = cluster.search("arm", documents)
--echo(JSON.encode(v))
local vectors, maxv, size = cluster.get_vectors(documents)
local s = cluster.save_topchart(vectors,file, 3)
if s then echo("file saved") else echo("error save file") end
--echo(JSON.encode(r))
--r = cluster.similarity(vectors["14"],vectors["16"])
--echo("Similarity "..r)
--local c,l = cluster.kmean(3, documents, 10)
--echo(JSON.encode(c))
--echo(JSON.encode(l))
else
echo("Data missing")
end
else
local f = io.open(file,"r")
local result = {}
for line in f:lines() do
local arr = {}
local cnt = 0
for i in line:gmatch( "%S+") do
cnt = cnt + 1
arr[cnt] = i
end
if not result[arr[1]] then result[arr[1]] = {} end
result[arr[1]][arr[2]] = tonumber(arr[3])
end
f:close()
echo(JSON.encode(result))
--local r = cluster.top_similarity("2",vectors, 3)
--echo(JSON.encode(r))
end

View File

@ -55,7 +55,7 @@
"data": {
"src": [
"scheme.html",
"api/sendmail.lua",
"api",
"package.json",
"README.md",
"main.css"

View File

@ -6,6 +6,7 @@ Blackend for my blog at https://blog.iohub.dev
## Change logs
### v0.2.x-a
* Patch 11: Add TFIDF analyse functionality
* Patch 10: Migrate code to typescript, use SQLiteDB lib for database access
* Patch 9: Update to use the new MDE library
* Patch 8: Support for antOS 2.0.x

View File

@ -0,0 +1,66 @@
local args = ...
local ret = {
error = false,
result = nil
}
local __dir__ = debug.getinfo(1).source:match("@?(.*/)")
LOG_DEBUG("CURRENT PATH:%s", __dir__)
local cluster = loadfile(__dir__.."/cluster.lua")()
local dbpath = require("vfs").ospath(args.dbpath)
LOG_DEBUG("DB PATH:%s", dbpath)
local gettext = {}
gettext.get = function(file)
local db = DBModel:new{db=file}
db:open()
if not db then return nil end
local data, sort = db:find("blogs", {
where = { publish = 1 },
fields = {"id", "content"}
})
db:close()
if not data or #data == 0 then return nil end
return data
end
gettext.stopwords = function(ospath)
local words = {}
for line in io.lines(ospath) do
words[line] = true
end
return words
end
local data = gettext.get(dbpath)
local documents = {}
if data then
local sw = gettext.stopwords(__dir__.."/stopwords.txt")
for k, v in pairs(data) do
local bag = cluster.bow(data[k].content, sw)
documents[data[k].id] = bag
end
cluster.tfidf(documents)
--local v = cluster.search("arm", documents)
--echo(JSON.encode(v))
local vectors, maxv, size = cluster.get_vectors(documents)
local analytical = DBModel:new{db=dbpath}
analytical:open()
-- purge the table
analytical:delete("st_similarity", nil)
-- get similarity and put to the table
for id, v in pairs(vectors) do
local top = cluster.top_similarity(id, vectors, args.top, 0.1)
for a, b in pairs(top) do
local record = {pid = id, sid = a, score = b}
analytical:insert("st_similarity", record)
end
end
analytical:close()
ret.result = "Analyse complete"
else
ret.error = "Unable to query database for post"
end
return ret

View File

@ -0,0 +1,346 @@
local doclassify = {}
local st = require("stmr")
doclassify.bow = function(data, stopwords)
-- first step get a table of worlds that contain
-- world: occurences
local bag = {}
for w in data:gmatch('%w+') do
local word = w:lower()
if not stopwords[word] then
word = st.stmr(word)
if bag[word] then
bag[word].count = bag[word].count + 1
else
bag[word] = {count=0, tf=0, tfidf=0.0}
bag[word].count = 1
end
end
end
-- now calculate the tf of the bag
for k,v in pairs(bag) do
bag[k].tf = math.log(1 + bag[k].count)
end
return bag
end
doclassify.len = function(table)
local cnt = 0
for k,v in pairs(table) do cnt = cnt+1 end
return cnt
end
doclassify.tfidf = function(documents)
-- now for each term in a bag, calculate
-- the inverse document frequency, which
-- is a measure of how much information
-- the word provides, that is, whether the
-- term is common or rare across all documents
local ndoc = doclassify.len(documents)
for k,bag in pairs(documents) do
-- for eacht term in bag
-- calculate its idf across all documents
for term,b in pairs(bag) do
local n = 0
for id,doc in pairs(documents) do
if doc[term] then n = n+1 end
end
--echo("term:"..term.." appears in"..n.." documents")
b.tfidf = b.tf*math.log(ndoc/n)
end
end
end
doclassify.search = function(term, documents)
local r = {}
for id, doc in pairs(documents) do
if doc[term:lower()] then
r[id] = doc[term].tfidf
end
end
return r
end
doclassify.get_vectors = function(documents)
-- get a list of vector from documents
local index = 0
local vectors = {}
local maps = {}
local terms = {}
local maxv = 0
for id in pairs(documents) do
maps[id] = {}
vectors[id] = {}
end
-- first loop, get the term
for id, doc in pairs(documents) do
for k,v in pairs(doc) do
-- get max value
if v.tfidf > maxv then
maxv = v.tfidf
end
-- get the term
if not terms[k] then
index = index + 1
terms[k] = index
end
for pid in pairs(documents) do
if not maps[pid][k] then
if id == pid then
maps[pid][k] = v.tfidf
else
maps[pid][k] = 0
end
else
if maps[pid][k] == 0 and id == pid then
maps[pid][k] = v.tfidf
end
end
end
end
end
-- reindexing the vectors
for id in pairs(documents) do
for k,v in pairs(maps[id]) do
vectors[id][terms[k]] = v
end
end
--echo("Max tfidf "..maxv.." in document #"..maxid.." of term "..term)
return vectors, maxv, index, terms
end
doclassify.similarity = function(va, vb)
-- using cosin similarity
local dotp = 0
local maga = 0
local magb = 0
for k = 1,#va do
dotp = dotp + va[k]*vb[k]
maga = maga + va[k]*va[k]
magb = magb + vb[k]*vb[k]
end
maga = math.sqrt(maga)
magb = math.sqrt(magb)
local d = 0
if maga ~= 0 and magb ~= 0 then
d = dotp/ (magb*maga)
end
return d
end
doclassify.similarities = function(v1, collection)
local similarities = {}
assert(#v1 == #(collection[1]), "Incorrect vectors size")
for i=1,#collection do
similarities[i] = doclassify.similarity(v1, collection[i])
end
return similarities
end
doclassify.mean_similarity = function(v1, v2)
assert(#v1 == #v2, "Incorrect vectors size")
local similarities = {}
for i = 1,#v1 do similarities[i] = doclassify.similarity(v1[i], v2[i]) end
return doclassify.mean(similarities)
end
doclassify.similarity_chart = function(id, vectors)
local vs = {}
local cnt = 0
local lut = {}
for k,v in pairs(vectors) do
if k ~= id then
cnt = cnt + 1
vs[cnt] = v
lut[cnt] = k
end
end
if not vs[1] then return {} end
return doclassify.similarities(vectors[id], vs), lut
end
doclassify.top_similarity = function(id, vectors, n, th)
local chart,lut = doclassify.similarity_chart(id,vectors)
--echo(JSON.encode(chart))
--echo(JSON.encode(lut))
if not lut or #lut <= 0 then return nil end
local top = {}
local j=0
local goon = true
if not th then
goon = false
th = 0
end
while j < n or goon
do
local i,maxv = doclassify.argmax(chart)
top[lut[i]] = maxv
chart[i] = 0.0
j=j+1
if maxv < th and goon then
goon = false
end
end
--for j=1,n do
-- local i,maxv = doclassify.argmax(chart)
-- top[lut[i]] = maxv
-- chart[i] = 0.0
--end
return top
end
doclassify.save_vectors = function(vectors, name)
local f = io.open(name,"w")
if f == nil then return false end
for id, v in pairs(vectors) do
f:write(id)
for i=1,#v do f:write(","..v[i]) end
f:write("\n")
end
f:close()
return true
end
doclassify.save_topchart = function(vectors, name,n)
local f = io.open(name,"w")
if f == nil then return false end
for k,v in pairs(vectors) do
local top = doclassify.top_similarity(k,vectors,n, 0.1)
for a,b in pairs(top) do
f:write(k.." "..a.." "..b.."\n")
end
end
f:close()
return true
end
doclassify.kmean = function(nclass, documents, maxstep, ids)
-- now
local vectors, maxv, size = doclassify.get_vectors(documents)
-- random centroids
local centroids = {}
local old_centroids = {}
local clusters = {}
--for pid in pairs(documents) do clusters[pid] = 0 end
-- add noise to mean_vector
for i = 1,nclass do
if ids == nil then
centroids[i] = doclassify.random(size,math.floor(maxv))
else
centroids[i] = vectors[ids[i]]
end
old_centroids[i] = doclassify.zeros(size)
end
-- loop until convergence or maxstep reached
local similarity = doclassify.mean_similarity(centroids, old_centroids)
local step = maxstep
while 1.0-similarity > 1e-9 and step > 0 do
clusters = {}
--echo(JSON.encode(centroids))
for id,v in pairs(vectors) do
local similarities = doclassify.similarities(v, centroids)
--echo(JSON.encode(similarities))
local cluster, maxvalue = doclassify.argmax(similarities)
--echo("doc #"..id.." is in clusters #"..cluster.." max value is "..maxvalue)
clusters[id] = cluster
end
-- storing the old centroids
old_centroids = centroids
-- calculate new centroids
local new_centroids = {}
for class in pairs(centroids) do
local cnt = 0
local cvectors = {}
for id,v in pairs(vectors) do
if clusters[id] == class then
cnt = cnt + 1
cvectors[cnt] = v
end
end
new_centroids[class] = doclassify.mean_vector(cvectors, size)
end
centroids = new_centroids
--echo(JSON.encode(centroids))
--echo(JSON.encode(old_centroids))
similarity = doclassify.mean_similarity(centroids, old_centroids)
echo("step #"..step..", similarity "..similarity)
step = step - 1
end
local results = {}
for i = 1,nclass do
local list = {}
local cnt = 0
for id,c in pairs(clusters) do
if c == i then
cnt = cnt + 1
list[cnt] = id
end
end
results[i] = list
end
return results, clusters, centroids
end
doclassify.zeros = function(n)
local vector = {}
for i = 1,n do vector[i] = 0.0 end
return vector
end
doclassify.random = function(n,maxv)
local vector = {}
for i=1,n do
vector[i] = math.random() + math.random(0, maxv)
end
return vector
end
doclassify.sum = function(v)
local sum = 0.0
for i=1,#v do sum = sum + v[i] end
return sum
end
doclassify.mean = function(v)
return doclassify.sum(v)/#v
end
doclassify.mean_vector = function(vectors, size)
local means = doclassify.zeros(size)
if not vectors or #vectors == 0 then return means end
--local size = #(vectors[1])
local times = 0
for k,v in pairs(vectors) do
for i=1,#v do means[i] = means[i] + v[i] end
times = times + 1
end
for i = 1,size do means[i] = means[i]/times end
return means
end
doclassify.argmin = function(v)
local minv = 0.0
local mini = 0.0
for i = 1,#v do
if v[i] <= minv then
mini = i
minv = v[i]
end
end
--echo("min index"..mini.." val "..minv)
return mini, minv
end
doclassify.argmax = function(v)
local maxv = 0.0
local maxi = 0.0
for i = 1,#v do
if v[i] >= maxv then
maxi = i
maxv = v[i]
end
end
return maxi,maxv
end
return doclassify

View File

@ -0,0 +1,151 @@
i
me
my
myself
we
our
ours
ourselves
you
your
yours
yourself
yourselves
he
him
his
himself
she
her
hers
herself
it
its
itself
they
them
their
theirs
themselves
what
which
who
whom
this
that
these
those
am
is
are
was
were
be
been
being
have
has
had
having
do
does
did
doing
a
an
the
and
but
if
or
because
as
until
while
of
at
by
for
with
about
against
between
into
through
during
before
after
above
below
to
from
up
down
in
out
on
off
over
under
again
further
then
once
here
there
when
where
why
how
all
any
both
each
few
more
most
other
some
such
no
nor
not
only
own
same
so
than
too
very
s
t
can
will
just
don
should
now
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
w
r
s
t
x
y
z

View File

@ -0,0 +1,50 @@
local path = require("fs/vfs").ospath("home://aiws/blog-clustering")
local gettext = loadfile(path.."/gettext.lua")()
local cluster = loadfile(path.."/cluster.lua")()
local refresh = false
local file = "/home/mrsang/test.csv"
if refresh then
local data = gettext.get({publish=1})
local documents = {}
if data then
local sw = gettext.stopwords("home://aiws/blog-clustering/stopwords.txt")
for k,v in pairs(data) do
local bag = cluster.bow(data[k].content, sw)
documents[data[k].id] = bag
end
cluster.tfidf(documents)
--local v = cluster.search("arm", documents)
--echo(JSON.encode(v))
local vectors, maxv, size = cluster.get_vectors(documents)
local s = cluster.save_topchart(vectors,file, 3)
if s then echo("file saved") else echo("error save file") end
--echo(JSON.encode(r))
--r = cluster.similarity(vectors["14"],vectors["16"])
--echo("Similarity "..r)
--local c,l = cluster.kmean(3, documents, 10)
--echo(JSON.encode(c))
--echo(JSON.encode(l))
else
echo("Data missing")
end
else
local f = io.open(file,"r")
local result = {}
for line in f:lines() do
local arr = {}
local cnt = 0
for i in line:gmatch( "%S+") do
cnt = cnt + 1
arr[cnt] = i
end
if not result[arr[1]] then result[arr[1]] = {} end
result[arr[1]][arr[2]] = tonumber(arr[3])
end
f:close()
echo(JSON.encode(result))
--local r = cluster.top_similarity("2",vectors, 3)
--echo(JSON.encode(r))
end

File diff suppressed because one or more lines are too long

View File

@ -6,7 +6,7 @@
"author": "Xuan Sang LE",
"email": "xsang.le@gmail.com"
},
"version": "0.2.10-a",
"version": "0.2.11-a",
"category": "Internet",
"iconclass": "fa fa-book",
"dependencies": [

Binary file not shown.

View File

@ -212,7 +212,7 @@ namespace OS {
if (emails.length === 0) { return this.notify(__("No email selected")); }
// send the email
const data = {
path: `${this.meta().path}/sendmail.lua`,
path: `${this.meta().path}/api/sendmail.lua`,
parameters: {
to: emails,
title: (this.find("mail-title") as HTMLInputElement).value,
@ -222,7 +222,7 @@ namespace OS {
}
};
return this._api.apigateway(data, false)
.then((d: { error: any; result: { join: (arg0: string) => any; }; }) => {
.then((d) => {
if (d.error) {
const str = d.result.join(',');
return this.notify(__("Unable to send mail to: {0}", str)); }

View File

@ -499,6 +499,36 @@ namespace OS {
this.error(__("Error sending mails: {0}", e.toString()), e);
}
}
},
"|",
{
name: __("TFIDF analyse"),
className: "fa fa-area-chart",
action: async (e: any) => {
try {
const q = await this.openDialog("PromptDialog",{
title: __("TFIDF Analyse"),
text: __("Max number of related posts to keep per post?"),
value: "5"
});
const data = {
path: `${this.meta().path}/api/ai/analyse.lua`,
parameters: {
dbpath: this.dbhandle.info.file.path,
top: parseInt(q)
}
};
const d = await this._api.apigateway(data, false);
if (d.error) {
throw new Error(d.error);
}
this.toast(d.result);
}
catch(e)
{
this.error(__("Error analysing posts: {0}", e.toString()), e);
}
}
}
]
});

View File

@ -6,7 +6,7 @@
"author": "Xuan Sang LE",
"email": "xsang.le@gmail.com"
},
"version": "0.2.10-a",
"version": "0.2.11-a",
"category": "Internet",
"iconclass": "fa fa-book",
"dependencies": [