mirror of
https://github.com/antos-rde/antosdk-apps.git
synced 2024-11-09 15:08:27 +01:00
347 lines
9.3 KiB
Lua
347 lines
9.3 KiB
Lua
|
local doclassify = {}
|
||
|
local st = require("stmr")
|
||
|
doclassify.bow = function(data, stopwords)
|
||
|
-- first step get a table of worlds that contain
|
||
|
-- world: occurences
|
||
|
local bag = {}
|
||
|
for w in data:gmatch('%w+') do
|
||
|
local word = w:lower()
|
||
|
if not stopwords[word] then
|
||
|
word = st.stmr(word)
|
||
|
if bag[word] then
|
||
|
bag[word].count = bag[word].count + 1
|
||
|
else
|
||
|
bag[word] = {count=0, tf=0, tfidf=0.0}
|
||
|
bag[word].count = 1
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
-- now calculate the tf of the bag
|
||
|
for k,v in pairs(bag) do
|
||
|
bag[k].tf = math.log(1 + bag[k].count)
|
||
|
end
|
||
|
return bag
|
||
|
end
|
||
|
doclassify.len = function(table)
|
||
|
local cnt = 0
|
||
|
for k,v in pairs(table) do cnt = cnt+1 end
|
||
|
return cnt
|
||
|
end
|
||
|
doclassify.tfidf = function(documents)
|
||
|
-- now for each term in a bag, calculate
|
||
|
-- the inverse document frequency, which
|
||
|
-- is a measure of how much information
|
||
|
-- the word provides, that is, whether the
|
||
|
-- term is common or rare across all documents
|
||
|
local ndoc = doclassify.len(documents)
|
||
|
for k,bag in pairs(documents) do
|
||
|
-- for eacht term in bag
|
||
|
-- calculate its idf across all documents
|
||
|
for term,b in pairs(bag) do
|
||
|
local n = 0
|
||
|
for id,doc in pairs(documents) do
|
||
|
if doc[term] then n = n+1 end
|
||
|
end
|
||
|
--echo("term:"..term.." appears in"..n.." documents")
|
||
|
b.tfidf = b.tf*math.log(ndoc/n)
|
||
|
end
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|
||
|
doclassify.search = function(term, documents)
|
||
|
local r = {}
|
||
|
for id, doc in pairs(documents) do
|
||
|
if doc[term:lower()] then
|
||
|
r[id] = doc[term].tfidf
|
||
|
end
|
||
|
end
|
||
|
return r
|
||
|
end
|
||
|
|
||
|
doclassify.get_vectors = function(documents)
|
||
|
-- get a list of vector from documents
|
||
|
local index = 0
|
||
|
local vectors = {}
|
||
|
local maps = {}
|
||
|
local terms = {}
|
||
|
local maxv = 0
|
||
|
|
||
|
for id in pairs(documents) do
|
||
|
maps[id] = {}
|
||
|
vectors[id] = {}
|
||
|
end
|
||
|
-- first loop, get the term
|
||
|
for id, doc in pairs(documents) do
|
||
|
for k,v in pairs(doc) do
|
||
|
-- get max value
|
||
|
if v.tfidf > maxv then
|
||
|
maxv = v.tfidf
|
||
|
end
|
||
|
-- get the term
|
||
|
if not terms[k] then
|
||
|
index = index + 1
|
||
|
terms[k] = index
|
||
|
end
|
||
|
for pid in pairs(documents) do
|
||
|
if not maps[pid][k] then
|
||
|
if id == pid then
|
||
|
maps[pid][k] = v.tfidf
|
||
|
else
|
||
|
maps[pid][k] = 0
|
||
|
end
|
||
|
else
|
||
|
if maps[pid][k] == 0 and id == pid then
|
||
|
maps[pid][k] = v.tfidf
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
-- reindexing the vectors
|
||
|
for id in pairs(documents) do
|
||
|
for k,v in pairs(maps[id]) do
|
||
|
vectors[id][terms[k]] = v
|
||
|
end
|
||
|
end
|
||
|
--echo("Max tfidf "..maxv.." in document #"..maxid.." of term "..term)
|
||
|
return vectors, maxv, index, terms
|
||
|
end
|
||
|
|
||
|
doclassify.similarity = function(va, vb)
|
||
|
-- using cosin similarity
|
||
|
local dotp = 0
|
||
|
local maga = 0
|
||
|
local magb = 0
|
||
|
for k = 1,#va do
|
||
|
dotp = dotp + va[k]*vb[k]
|
||
|
maga = maga + va[k]*va[k]
|
||
|
magb = magb + vb[k]*vb[k]
|
||
|
end
|
||
|
maga = math.sqrt(maga)
|
||
|
magb = math.sqrt(magb)
|
||
|
local d = 0
|
||
|
if maga ~= 0 and magb ~= 0 then
|
||
|
d = dotp/ (magb*maga)
|
||
|
end
|
||
|
return d
|
||
|
end
|
||
|
doclassify.similarities = function(v1, collection)
|
||
|
local similarities = {}
|
||
|
assert(#v1 == #(collection[1]), "Incorrect vectors size")
|
||
|
for i=1,#collection do
|
||
|
similarities[i] = doclassify.similarity(v1, collection[i])
|
||
|
end
|
||
|
return similarities
|
||
|
end
|
||
|
|
||
|
doclassify.mean_similarity = function(v1, v2)
|
||
|
assert(#v1 == #v2, "Incorrect vectors size")
|
||
|
local similarities = {}
|
||
|
for i = 1,#v1 do similarities[i] = doclassify.similarity(v1[i], v2[i]) end
|
||
|
return doclassify.mean(similarities)
|
||
|
end
|
||
|
doclassify.similarity_chart = function(id, vectors)
|
||
|
local vs = {}
|
||
|
local cnt = 0
|
||
|
local lut = {}
|
||
|
for k,v in pairs(vectors) do
|
||
|
if k ~= id then
|
||
|
cnt = cnt + 1
|
||
|
vs[cnt] = v
|
||
|
lut[cnt] = k
|
||
|
end
|
||
|
end
|
||
|
if not vs[1] then return {} end
|
||
|
return doclassify.similarities(vectors[id], vs), lut
|
||
|
end
|
||
|
|
||
|
doclassify.top_similarity = function(id, vectors, n, th)
|
||
|
local chart,lut = doclassify.similarity_chart(id,vectors)
|
||
|
--echo(JSON.encode(chart))
|
||
|
--echo(JSON.encode(lut))
|
||
|
if not lut or #lut <= 0 then return nil end
|
||
|
local top = {}
|
||
|
|
||
|
local j=0
|
||
|
local goon = true
|
||
|
if not th then
|
||
|
goon = false
|
||
|
th = 0
|
||
|
end
|
||
|
|
||
|
while j < n or goon
|
||
|
do
|
||
|
local i,maxv = doclassify.argmax(chart)
|
||
|
top[lut[i]] = maxv
|
||
|
chart[i] = 0.0
|
||
|
j=j+1
|
||
|
if maxv < th and goon then
|
||
|
goon = false
|
||
|
end
|
||
|
end
|
||
|
|
||
|
--for j=1,n do
|
||
|
-- local i,maxv = doclassify.argmax(chart)
|
||
|
-- top[lut[i]] = maxv
|
||
|
-- chart[i] = 0.0
|
||
|
--end
|
||
|
return top
|
||
|
|
||
|
end
|
||
|
doclassify.save_vectors = function(vectors, name)
|
||
|
local f = io.open(name,"w")
|
||
|
if f == nil then return false end
|
||
|
for id, v in pairs(vectors) do
|
||
|
f:write(id)
|
||
|
for i=1,#v do f:write(","..v[i]) end
|
||
|
f:write("\n")
|
||
|
end
|
||
|
f:close()
|
||
|
return true
|
||
|
end
|
||
|
doclassify.save_topchart = function(vectors, name,n)
|
||
|
local f = io.open(name,"w")
|
||
|
if f == nil then return false end
|
||
|
for k,v in pairs(vectors) do
|
||
|
local top = doclassify.top_similarity(k,vectors,n, 0.1)
|
||
|
for a,b in pairs(top) do
|
||
|
f:write(k.." "..a.." "..b.."\n")
|
||
|
end
|
||
|
end
|
||
|
f:close()
|
||
|
return true
|
||
|
end
|
||
|
doclassify.kmean = function(nclass, documents, maxstep, ids)
|
||
|
-- now
|
||
|
local vectors, maxv, size = doclassify.get_vectors(documents)
|
||
|
-- random centroids
|
||
|
local centroids = {}
|
||
|
local old_centroids = {}
|
||
|
local clusters = {}
|
||
|
--for pid in pairs(documents) do clusters[pid] = 0 end
|
||
|
-- add noise to mean_vector
|
||
|
for i = 1,nclass do
|
||
|
if ids == nil then
|
||
|
centroids[i] = doclassify.random(size,math.floor(maxv))
|
||
|
else
|
||
|
centroids[i] = vectors[ids[i]]
|
||
|
end
|
||
|
old_centroids[i] = doclassify.zeros(size)
|
||
|
end
|
||
|
|
||
|
-- loop until convergence or maxstep reached
|
||
|
local similarity = doclassify.mean_similarity(centroids, old_centroids)
|
||
|
local step = maxstep
|
||
|
while 1.0-similarity > 1e-9 and step > 0 do
|
||
|
clusters = {}
|
||
|
--echo(JSON.encode(centroids))
|
||
|
for id,v in pairs(vectors) do
|
||
|
local similarities = doclassify.similarities(v, centroids)
|
||
|
--echo(JSON.encode(similarities))
|
||
|
local cluster, maxvalue = doclassify.argmax(similarities)
|
||
|
--echo("doc #"..id.." is in clusters #"..cluster.." max value is "..maxvalue)
|
||
|
clusters[id] = cluster
|
||
|
end
|
||
|
-- storing the old centroids
|
||
|
old_centroids = centroids
|
||
|
-- calculate new centroids
|
||
|
local new_centroids = {}
|
||
|
for class in pairs(centroids) do
|
||
|
local cnt = 0
|
||
|
local cvectors = {}
|
||
|
for id,v in pairs(vectors) do
|
||
|
if clusters[id] == class then
|
||
|
cnt = cnt + 1
|
||
|
cvectors[cnt] = v
|
||
|
end
|
||
|
end
|
||
|
new_centroids[class] = doclassify.mean_vector(cvectors, size)
|
||
|
end
|
||
|
centroids = new_centroids
|
||
|
--echo(JSON.encode(centroids))
|
||
|
--echo(JSON.encode(old_centroids))
|
||
|
similarity = doclassify.mean_similarity(centroids, old_centroids)
|
||
|
echo("step #"..step..", similarity "..similarity)
|
||
|
step = step - 1
|
||
|
end
|
||
|
local results = {}
|
||
|
for i = 1,nclass do
|
||
|
local list = {}
|
||
|
local cnt = 0
|
||
|
for id,c in pairs(clusters) do
|
||
|
if c == i then
|
||
|
cnt = cnt + 1
|
||
|
list[cnt] = id
|
||
|
end
|
||
|
end
|
||
|
results[i] = list
|
||
|
end
|
||
|
return results, clusters, centroids
|
||
|
end
|
||
|
|
||
|
doclassify.zeros = function(n)
|
||
|
local vector = {}
|
||
|
for i = 1,n do vector[i] = 0.0 end
|
||
|
return vector
|
||
|
end
|
||
|
|
||
|
doclassify.random = function(n,maxv)
|
||
|
local vector = {}
|
||
|
for i=1,n do
|
||
|
vector[i] = math.random() + math.random(0, maxv)
|
||
|
end
|
||
|
return vector
|
||
|
end
|
||
|
|
||
|
doclassify.sum = function(v)
|
||
|
local sum = 0.0
|
||
|
for i=1,#v do sum = sum + v[i] end
|
||
|
return sum
|
||
|
end
|
||
|
|
||
|
doclassify.mean = function(v)
|
||
|
return doclassify.sum(v)/#v
|
||
|
|
||
|
end
|
||
|
|
||
|
doclassify.mean_vector = function(vectors, size)
|
||
|
local means = doclassify.zeros(size)
|
||
|
if not vectors or #vectors == 0 then return means end
|
||
|
--local size = #(vectors[1])
|
||
|
local times = 0
|
||
|
for k,v in pairs(vectors) do
|
||
|
for i=1,#v do means[i] = means[i] + v[i] end
|
||
|
times = times + 1
|
||
|
end
|
||
|
for i = 1,size do means[i] = means[i]/times end
|
||
|
return means
|
||
|
end
|
||
|
|
||
|
doclassify.argmin = function(v)
|
||
|
local minv = 0.0
|
||
|
local mini = 0.0
|
||
|
for i = 1,#v do
|
||
|
if v[i] <= minv then
|
||
|
mini = i
|
||
|
minv = v[i]
|
||
|
end
|
||
|
end
|
||
|
--echo("min index"..mini.." val "..minv)
|
||
|
return mini, minv
|
||
|
end
|
||
|
|
||
|
doclassify.argmax = function(v)
|
||
|
local maxv = 0.0
|
||
|
local maxi = 0.0
|
||
|
for i = 1,#v do
|
||
|
if v[i] >= maxv then
|
||
|
maxi = i
|
||
|
maxv = v[i]
|
||
|
end
|
||
|
end
|
||
|
return maxi,maxv
|
||
|
end
|
||
|
|
||
|
return doclassify
|