mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-31 10:26:10 +01:00 
			
		
		
		
	This header is needed so struct udevice can be used in dev_xxx(). Signed-off-by: Sean Anderson <seanga2@gmail.com> Tested-by: Patrick Delaunay <patrick.delaunay@st.com>
		
			
				
	
	
		
			2646 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2646 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 | |
|  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 | |
|  *
 | |
|  * Copyright (C) 2005, Intec Automation Inc.
 | |
|  * Copyright (C) 2014, Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * Synced from Linux v4.19
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <log.h>
 | |
| #include <dm.h>
 | |
| #include <dm/device_compat.h>
 | |
| #include <dm/devres.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/spi-nor.h>
 | |
| #include <spi-mem.h>
 | |
| #include <spi.h>
 | |
| 
 | |
| #include "sf_internal.h"
 | |
| 
 | |
| /* Define max times to check status register before we give up. */
 | |
| 
 | |
| /*
 | |
|  * For everything but full-chip erase; probably could be much smaller, but kept
 | |
|  * around for safety for now
 | |
|  */
 | |
| 
 | |
| #define HZ					CONFIG_SYS_HZ
 | |
| 
 | |
| #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
 | |
| 
 | |
| static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
 | |
| 		*op, void *buf)
 | |
| {
 | |
| 	if (op->data.dir == SPI_MEM_DATA_IN)
 | |
| 		op->data.buf.in = buf;
 | |
| 	else
 | |
| 		op->data.buf.out = buf;
 | |
| 	return spi_mem_exec_op(nor->spi, op);
 | |
| }
 | |
| 
 | |
| static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
 | |
| {
 | |
| 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
 | |
| 					  SPI_MEM_OP_NO_ADDR,
 | |
| 					  SPI_MEM_OP_NO_DUMMY,
 | |
| 					  SPI_MEM_OP_DATA_IN(len, NULL, 1));
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spi_nor_read_write_reg(nor, &op, val);
 | |
| 	if (ret < 0)
 | |
| 		dev_dbg(nor->dev, "error %d reading %x\n", ret, code);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 | |
| {
 | |
| 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
 | |
| 					  SPI_MEM_OP_NO_ADDR,
 | |
| 					  SPI_MEM_OP_NO_DUMMY,
 | |
| 					  SPI_MEM_OP_DATA_OUT(len, NULL, 1));
 | |
| 
 | |
| 	return spi_nor_read_write_reg(nor, &op, buf);
 | |
| }
 | |
| 
 | |
| static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
 | |
| 				 u_char *buf)
 | |
| {
 | |
| 	struct spi_mem_op op =
 | |
| 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
 | |
| 				   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
 | |
| 				   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
 | |
| 				   SPI_MEM_OP_DATA_IN(len, buf, 1));
 | |
| 	size_t remaining = len;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* get transfer protocols. */
 | |
| 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
 | |
| 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
 | |
| 	op.dummy.buswidth = op.addr.buswidth;
 | |
| 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
 | |
| 
 | |
| 	/* convert the dummy cycles to the number of bytes */
 | |
| 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
 | |
| 
 | |
| 	while (remaining) {
 | |
| 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
 | |
| 		ret = spi_mem_adjust_op_size(nor->spi, &op);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = spi_mem_exec_op(nor->spi, &op);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		op.addr.val += op.data.nbytes;
 | |
| 		remaining -= op.data.nbytes;
 | |
| 		op.data.buf.in += op.data.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
 | |
| 				  const u_char *buf)
 | |
| {
 | |
| 	struct spi_mem_op op =
 | |
| 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
 | |
| 				   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
 | |
| 				   SPI_MEM_OP_NO_DUMMY,
 | |
| 				   SPI_MEM_OP_DATA_OUT(len, buf, 1));
 | |
| 	int ret;
 | |
| 
 | |
| 	/* get transfer protocols. */
 | |
| 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
 | |
| 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
 | |
| 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
 | |
| 
 | |
| 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
 | |
| 		op.addr.nbytes = 0;
 | |
| 
 | |
| 	ret = spi_mem_adjust_op_size(nor->spi, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
 | |
| 
 | |
| 	ret = spi_mem_exec_op(nor->spi, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return op.data.nbytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the status register, returning its value in the location
 | |
|  * Return the status register value.
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| static int read_sr(struct spi_nor *nor)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 val;
 | |
| 
 | |
| 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
 | |
| 	if (ret < 0) {
 | |
| 		pr_debug("error %d reading SR\n", (int)ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the flag status register, returning its value in the location
 | |
|  * Return the status register value.
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| static int read_fsr(struct spi_nor *nor)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 val;
 | |
| 
 | |
| 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
 | |
| 	if (ret < 0) {
 | |
| 		pr_debug("error %d reading FSR\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read configuration register, returning its value in the
 | |
|  * location. Return the configuration register value.
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | |
| static int read_cr(struct spi_nor *nor)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 val;
 | |
| 
 | |
| 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Write status register 1 byte
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| static int write_sr(struct spi_nor *nor, u8 val)
 | |
| {
 | |
| 	nor->cmd_buf[0] = val;
 | |
| 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set write enable latch with Write Enable command.
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| static int write_enable(struct spi_nor *nor)
 | |
| {
 | |
| 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send write disable instruction to the chip.
 | |
|  */
 | |
| static int write_disable(struct spi_nor *nor)
 | |
| {
 | |
| 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
 | |
| }
 | |
| 
 | |
| static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
 | |
| {
 | |
| 	return mtd->priv;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPI_FLASH_BAR
 | |
| static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		if (table[i][0] == opcode)
 | |
| 			return table[i][1];
 | |
| 
 | |
| 	/* No conversion found, keep input op code. */
 | |
| 	return opcode;
 | |
| }
 | |
| 
 | |
| static u8 spi_nor_convert_3to4_read(u8 opcode)
 | |
| {
 | |
| 	static const u8 spi_nor_3to4_read[][2] = {
 | |
| 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
 | |
| 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
 | |
| 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
 | |
| 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
 | |
| 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
 | |
| 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
 | |
| 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
 | |
| 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
 | |
| 
 | |
| 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
 | |
| 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
 | |
| 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
 | |
| 	};
 | |
| 
 | |
| 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
 | |
| 				      ARRAY_SIZE(spi_nor_3to4_read));
 | |
| }
 | |
| 
 | |
| static u8 spi_nor_convert_3to4_program(u8 opcode)
 | |
| {
 | |
| 	static const u8 spi_nor_3to4_program[][2] = {
 | |
| 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
 | |
| 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
 | |
| 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
 | |
| 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
 | |
| 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
 | |
| 	};
 | |
| 
 | |
| 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
 | |
| 				      ARRAY_SIZE(spi_nor_3to4_program));
 | |
| }
 | |
| 
 | |
| static u8 spi_nor_convert_3to4_erase(u8 opcode)
 | |
| {
 | |
| 	static const u8 spi_nor_3to4_erase[][2] = {
 | |
| 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
 | |
| 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
 | |
| 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
 | |
| 	};
 | |
| 
 | |
| 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
 | |
| 				      ARRAY_SIZE(spi_nor_3to4_erase));
 | |
| }
 | |
| 
 | |
| static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
 | |
| 				      const struct flash_info *info)
 | |
| {
 | |
| 	/* Do some manufacturer fixups first */
 | |
| 	switch (JEDEC_MFR(info)) {
 | |
| 	case SNOR_MFR_SPANSION:
 | |
| 		/* No small sector erase for 4-byte command set */
 | |
| 		nor->erase_opcode = SPINOR_OP_SE;
 | |
| 		nor->mtd.erasesize = info->sector_size;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
 | |
| 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
 | |
| 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
 | |
| }
 | |
| #endif /* !CONFIG_SPI_FLASH_BAR */
 | |
| 
 | |
| /* Enable/disable 4-byte addressing mode. */
 | |
| static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
 | |
| 		     int enable)
 | |
| {
 | |
| 	int status;
 | |
| 	bool need_wren = false;
 | |
| 	u8 cmd;
 | |
| 
 | |
| 	switch (JEDEC_MFR(info)) {
 | |
| 	case SNOR_MFR_ST:
 | |
| 	case SNOR_MFR_MICRON:
 | |
| 		/* Some Micron need WREN command; all will accept it */
 | |
| 		need_wren = true;
 | |
| 	case SNOR_MFR_ISSI:
 | |
| 	case SNOR_MFR_MACRONIX:
 | |
| 	case SNOR_MFR_WINBOND:
 | |
| 		if (need_wren)
 | |
| 			write_enable(nor);
 | |
| 
 | |
| 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 | |
| 		status = nor->write_reg(nor, cmd, NULL, 0);
 | |
| 		if (need_wren)
 | |
| 			write_disable(nor);
 | |
| 
 | |
| 		if (!status && !enable &&
 | |
| 		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
 | |
| 			/*
 | |
| 			 * On Winbond W25Q256FV, leaving 4byte mode causes
 | |
| 			 * the Extended Address Register to be set to 1, so all
 | |
| 			 * 3-byte-address reads come from the second 16M.
 | |
| 			 * We must clear the register to enable normal behavior.
 | |
| 			 */
 | |
| 			write_enable(nor);
 | |
| 			nor->cmd_buf[0] = 0;
 | |
| 			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
 | |
| 			write_disable(nor);
 | |
| 		}
 | |
| 
 | |
| 		return status;
 | |
| 	default:
 | |
| 		/* Spansion style */
 | |
| 		nor->cmd_buf[0] = enable << 7;
 | |
| 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int spi_nor_sr_ready(struct spi_nor *nor)
 | |
| {
 | |
| 	int sr = read_sr(nor);
 | |
| 
 | |
| 	if (sr < 0)
 | |
| 		return sr;
 | |
| 
 | |
| 	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
 | |
| 		if (sr & SR_E_ERR)
 | |
| 			dev_dbg(nor->dev, "Erase Error occurred\n");
 | |
| 		else
 | |
| 			dev_dbg(nor->dev, "Programming Error occurred\n");
 | |
| 
 | |
| 		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return !(sr & SR_WIP);
 | |
| }
 | |
| 
 | |
| static int spi_nor_fsr_ready(struct spi_nor *nor)
 | |
| {
 | |
| 	int fsr = read_fsr(nor);
 | |
| 
 | |
| 	if (fsr < 0)
 | |
| 		return fsr;
 | |
| 
 | |
| 	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
 | |
| 		if (fsr & FSR_E_ERR)
 | |
| 			dev_err(nor->dev, "Erase operation failed.\n");
 | |
| 		else
 | |
| 			dev_err(nor->dev, "Program operation failed.\n");
 | |
| 
 | |
| 		if (fsr & FSR_PT_ERR)
 | |
| 			dev_err(nor->dev,
 | |
| 				"Attempted to modify a protected sector.\n");
 | |
| 
 | |
| 		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return fsr & FSR_READY;
 | |
| }
 | |
| 
 | |
| static int spi_nor_ready(struct spi_nor *nor)
 | |
| {
 | |
| 	int sr, fsr;
 | |
| 
 | |
| 	sr = spi_nor_sr_ready(nor);
 | |
| 	if (sr < 0)
 | |
| 		return sr;
 | |
| 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
 | |
| 	if (fsr < 0)
 | |
| 		return fsr;
 | |
| 	return sr && fsr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Service routine to read status register until ready, or timeout occurs.
 | |
|  * Returns non-zero if error.
 | |
|  */
 | |
| static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
 | |
| 						unsigned long timeout)
 | |
| {
 | |
| 	unsigned long timebase;
 | |
| 	int ret;
 | |
| 
 | |
| 	timebase = get_timer(0);
 | |
| 
 | |
| 	while (get_timer(timebase) < timeout) {
 | |
| 		ret = spi_nor_ready(nor);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (ret)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	dev_err(nor->dev, "flash operation timed out\n");
 | |
| 
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static int spi_nor_wait_till_ready(struct spi_nor *nor)
 | |
| {
 | |
| 	return spi_nor_wait_till_ready_with_timeout(nor,
 | |
| 						    DEFAULT_READY_WAIT_JIFFIES);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPI_FLASH_BAR
 | |
| /*
 | |
|  * This "clean_bar" is necessary in a situation when one was accessing
 | |
|  * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
 | |
|  *
 | |
|  * After it the BA24 bit shall be cleared to allow access to correct
 | |
|  * memory region after SW reset (by calling "reset" command).
 | |
|  *
 | |
|  * Otherwise, the BA24 bit may be left set and then after reset, the
 | |
|  * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
 | |
|  */
 | |
| static int clean_bar(struct spi_nor *nor)
 | |
| {
 | |
| 	u8 cmd, bank_sel = 0;
 | |
| 
 | |
| 	if (nor->bank_curr == 0)
 | |
| 		return 0;
 | |
| 	cmd = nor->bank_write_cmd;
 | |
| 	nor->bank_curr = 0;
 | |
| 	write_enable(nor);
 | |
| 
 | |
| 	return nor->write_reg(nor, cmd, &bank_sel, 1);
 | |
| }
 | |
| 
 | |
| static int write_bar(struct spi_nor *nor, u32 offset)
 | |
| {
 | |
| 	u8 cmd, bank_sel;
 | |
| 	int ret;
 | |
| 
 | |
| 	bank_sel = offset / SZ_16M;
 | |
| 	if (bank_sel == nor->bank_curr)
 | |
| 		goto bar_end;
 | |
| 
 | |
| 	cmd = nor->bank_write_cmd;
 | |
| 	write_enable(nor);
 | |
| 	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
 | |
| 	if (ret < 0) {
 | |
| 		debug("SF: fail to write bank register\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| bar_end:
 | |
| 	nor->bank_curr = bank_sel;
 | |
| 	return nor->bank_curr;
 | |
| }
 | |
| 
 | |
| static int read_bar(struct spi_nor *nor, const struct flash_info *info)
 | |
| {
 | |
| 	u8 curr_bank = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (JEDEC_MFR(info)) {
 | |
| 	case SNOR_MFR_SPANSION:
 | |
| 		nor->bank_read_cmd = SPINOR_OP_BRRD;
 | |
| 		nor->bank_write_cmd = SPINOR_OP_BRWR;
 | |
| 		break;
 | |
| 	default:
 | |
| 		nor->bank_read_cmd = SPINOR_OP_RDEAR;
 | |
| 		nor->bank_write_cmd = SPINOR_OP_WREAR;
 | |
| 	}
 | |
| 
 | |
| 	ret = nor->read_reg(nor, nor->bank_read_cmd,
 | |
| 				    &curr_bank, 1);
 | |
| 	if (ret) {
 | |
| 		debug("SF: fail to read bank addr register\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 	nor->bank_curr = curr_bank;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initiate the erasure of a single sector
 | |
|  */
 | |
| static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
 | |
| {
 | |
| 	struct spi_mem_op op =
 | |
| 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
 | |
| 			   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
 | |
| 			   SPI_MEM_OP_NO_DUMMY,
 | |
| 			   SPI_MEM_OP_NO_DATA);
 | |
| 
 | |
| 	if (nor->erase)
 | |
| 		return nor->erase(nor, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Default implementation, if driver doesn't have a specialized HW
 | |
| 	 * control
 | |
| 	 */
 | |
| 	return spi_mem_exec_op(nor->spi, &op);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Erase an address range on the nor chip.  The address range may extend
 | |
|  * one or more erase sectors.  Return an error is there is a problem erasing.
 | |
|  */
 | |
| static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
 | |
| {
 | |
| 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | |
| 	u32 addr, len, rem;
 | |
| 	int ret;
 | |
| 
 | |
| 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
 | |
| 		(long long)instr->len);
 | |
| 
 | |
| 	if (!instr->len)
 | |
| 		return 0;
 | |
| 
 | |
| 	div_u64_rem(instr->len, mtd->erasesize, &rem);
 | |
| 	if (rem)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr = instr->addr;
 | |
| 	len = instr->len;
 | |
| 
 | |
| 	while (len) {
 | |
| #ifdef CONFIG_SPI_FLASH_BAR
 | |
| 		ret = write_bar(nor, addr);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| #endif
 | |
| 		write_enable(nor);
 | |
| 
 | |
| 		ret = spi_nor_erase_sector(nor, addr);
 | |
| 		if (ret)
 | |
| 			goto erase_err;
 | |
| 
 | |
| 		addr += mtd->erasesize;
 | |
| 		len -= mtd->erasesize;
 | |
| 
 | |
| 		ret = spi_nor_wait_till_ready(nor);
 | |
| 		if (ret)
 | |
| 			goto erase_err;
 | |
| 	}
 | |
| 
 | |
| erase_err:
 | |
| #ifdef CONFIG_SPI_FLASH_BAR
 | |
| 	ret = clean_bar(nor);
 | |
| #endif
 | |
| 	write_disable(nor);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
 | |
| /* Write status register and ensure bits in mask match written values */
 | |
| static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	write_enable(nor);
 | |
| 	ret = write_sr(nor, status_new);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spi_nor_wait_till_ready(nor);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = read_sr(nor);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
 | |
| }
 | |
| 
 | |
| static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
 | |
| 				 uint64_t *len)
 | |
| {
 | |
| 	struct mtd_info *mtd = &nor->mtd;
 | |
| 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 | |
| 	int shift = ffs(mask) - 1;
 | |
| 	int pow;
 | |
| 
 | |
| 	if (!(sr & mask)) {
 | |
| 		/* No protection */
 | |
| 		*ofs = 0;
 | |
| 		*len = 0;
 | |
| 	} else {
 | |
| 		pow = ((sr & mask) ^ mask) >> shift;
 | |
| 		*len = mtd->size >> pow;
 | |
| 		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
 | |
| 			*ofs = 0;
 | |
| 		else
 | |
| 			*ofs = mtd->size - *len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 | |
|  * @locked is false); 0 otherwise
 | |
|  */
 | |
| static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
 | |
| 				    u8 sr, bool locked)
 | |
| {
 | |
| 	loff_t lock_offs;
 | |
| 	uint64_t lock_len;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 1;
 | |
| 
 | |
| 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
 | |
| 
 | |
| 	if (locked)
 | |
| 		/* Requested range is a sub-range of locked range */
 | |
| 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
 | |
| 	else
 | |
| 		/* Requested range does not overlap with locked range */
 | |
| 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
 | |
| }
 | |
| 
 | |
| static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
 | |
| 			    u8 sr)
 | |
| {
 | |
| 	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
 | |
| }
 | |
| 
 | |
| static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
 | |
| 			      u8 sr)
 | |
| {
 | |
| 	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock a region of the flash. Compatible with ST Micro and similar flash.
 | |
|  * Supports the block protection bits BP{0,1,2} in the status register
 | |
|  * (SR). Does not support these features found in newer SR bitfields:
 | |
|  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 | |
|  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 | |
|  *
 | |
|  * Support for the following is provided conditionally for some flash:
 | |
|  *   - TB: top/bottom protect
 | |
|  *
 | |
|  * Sample table portion for 8MB flash (Winbond w25q64fw):
 | |
|  *
 | |
|  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 | |
|  *  --------------------------------------------------------------------------
 | |
|  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 | |
|  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 | |
|  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 | |
|  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 | |
|  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 | |
|  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 | |
|  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 | |
|  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
 | |
|  *  ------|-------|-------|-------|-------|---------------|-------------------
 | |
|  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 | |
|  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 | |
|  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 | |
|  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 | |
|  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 | |
|  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
 | |
|  *
 | |
|  * Returns negative on errors, 0 on success.
 | |
|  */
 | |
| static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	struct mtd_info *mtd = &nor->mtd;
 | |
| 	int status_old, status_new;
 | |
| 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 | |
| 	u8 shift = ffs(mask) - 1, pow, val;
 | |
| 	loff_t lock_len;
 | |
| 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
 | |
| 	bool use_top;
 | |
| 
 | |
| 	status_old = read_sr(nor);
 | |
| 	if (status_old < 0)
 | |
| 		return status_old;
 | |
| 
 | |
| 	/* If nothing in our range is unlocked, we don't need to do anything */
 | |
| 	if (stm_is_locked_sr(nor, ofs, len, status_old))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If anything below us is unlocked, we can't use 'bottom' protection */
 | |
| 	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
 | |
| 		can_be_bottom = false;
 | |
| 
 | |
| 	/* If anything above us is unlocked, we can't use 'top' protection */
 | |
| 	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
 | |
| 			      status_old))
 | |
| 		can_be_top = false;
 | |
| 
 | |
| 	if (!can_be_bottom && !can_be_top)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Prefer top, if both are valid */
 | |
| 	use_top = can_be_top;
 | |
| 
 | |
| 	/* lock_len: length of region that should end up locked */
 | |
| 	if (use_top)
 | |
| 		lock_len = mtd->size - ofs;
 | |
| 	else
 | |
| 		lock_len = ofs + len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Need smallest pow such that:
 | |
| 	 *
 | |
| 	 *   1 / (2^pow) <= (len / size)
 | |
| 	 *
 | |
| 	 * so (assuming power-of-2 size) we do:
 | |
| 	 *
 | |
| 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
 | |
| 	 */
 | |
| 	pow = ilog2(mtd->size) - ilog2(lock_len);
 | |
| 	val = mask - (pow << shift);
 | |
| 	if (val & ~mask)
 | |
| 		return -EINVAL;
 | |
| 	/* Don't "lock" with no region! */
 | |
| 	if (!(val & mask))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	status_new = (status_old & ~mask & ~SR_TB) | val;
 | |
| 
 | |
| 	/* Disallow further writes if WP pin is asserted */
 | |
| 	status_new |= SR_SRWD;
 | |
| 
 | |
| 	if (!use_top)
 | |
| 		status_new |= SR_TB;
 | |
| 
 | |
| 	/* Don't bother if they're the same */
 | |
| 	if (status_new == status_old)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Only modify protection if it will not unlock other areas */
 | |
| 	if ((status_new & mask) < (status_old & mask))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return write_sr_and_check(nor, status_new, mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock a region of the flash. See stm_lock() for more info
 | |
|  *
 | |
|  * Returns negative on errors, 0 on success.
 | |
|  */
 | |
| static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	struct mtd_info *mtd = &nor->mtd;
 | |
| 	int status_old, status_new;
 | |
| 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 | |
| 	u8 shift = ffs(mask) - 1, pow, val;
 | |
| 	loff_t lock_len;
 | |
| 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
 | |
| 	bool use_top;
 | |
| 
 | |
| 	status_old = read_sr(nor);
 | |
| 	if (status_old < 0)
 | |
| 		return status_old;
 | |
| 
 | |
| 	/* If nothing in our range is locked, we don't need to do anything */
 | |
| 	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If anything below us is locked, we can't use 'top' protection */
 | |
| 	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
 | |
| 		can_be_top = false;
 | |
| 
 | |
| 	/* If anything above us is locked, we can't use 'bottom' protection */
 | |
| 	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
 | |
| 				status_old))
 | |
| 		can_be_bottom = false;
 | |
| 
 | |
| 	if (!can_be_bottom && !can_be_top)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Prefer top, if both are valid */
 | |
| 	use_top = can_be_top;
 | |
| 
 | |
| 	/* lock_len: length of region that should remain locked */
 | |
| 	if (use_top)
 | |
| 		lock_len = mtd->size - (ofs + len);
 | |
| 	else
 | |
| 		lock_len = ofs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Need largest pow such that:
 | |
| 	 *
 | |
| 	 *   1 / (2^pow) >= (len / size)
 | |
| 	 *
 | |
| 	 * so (assuming power-of-2 size) we do:
 | |
| 	 *
 | |
| 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
 | |
| 	 */
 | |
| 	pow = ilog2(mtd->size) - order_base_2(lock_len);
 | |
| 	if (lock_len == 0) {
 | |
| 		val = 0; /* fully unlocked */
 | |
| 	} else {
 | |
| 		val = mask - (pow << shift);
 | |
| 		/* Some power-of-two sizes are not supported */
 | |
| 		if (val & ~mask)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	status_new = (status_old & ~mask & ~SR_TB) | val;
 | |
| 
 | |
| 	/* Don't protect status register if we're fully unlocked */
 | |
| 	if (lock_len == 0)
 | |
| 		status_new &= ~SR_SRWD;
 | |
| 
 | |
| 	if (!use_top)
 | |
| 		status_new |= SR_TB;
 | |
| 
 | |
| 	/* Don't bother if they're the same */
 | |
| 	if (status_new == status_old)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Only modify protection if it will not lock other areas */
 | |
| 	if ((status_new & mask) > (status_old & mask))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return write_sr_and_check(nor, status_new, mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a region of the flash is (completely) locked. See stm_lock() for
 | |
|  * more info.
 | |
|  *
 | |
|  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 | |
|  * negative on errors.
 | |
|  */
 | |
| static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	status = read_sr(nor);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	return stm_is_locked_sr(nor, ofs, len, status);
 | |
| }
 | |
| #endif /* CONFIG_SPI_FLASH_STMICRO */
 | |
| 
 | |
| static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
 | |
| {
 | |
| 	int			tmp;
 | |
| 	u8			id[SPI_NOR_MAX_ID_LEN];
 | |
| 	const struct flash_info	*info;
 | |
| 
 | |
| 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
 | |
| 	if (tmp < 0) {
 | |
| 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
 | |
| 		return ERR_PTR(tmp);
 | |
| 	}
 | |
| 
 | |
| 	info = spi_nor_ids;
 | |
| 	for (; info->name; info++) {
 | |
| 		if (info->id_len) {
 | |
| 			if (!memcmp(info->id, id, info->id_len))
 | |
| 				return info;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
 | |
| 		id[0], id[1], id[2]);
 | |
| 	return ERR_PTR(-ENODEV);
 | |
| }
 | |
| 
 | |
| static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
 | |
| 			size_t *retlen, u_char *buf)
 | |
| {
 | |
| 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | |
| 	int ret;
 | |
| 
 | |
| 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
 | |
| 
 | |
| 	while (len) {
 | |
| 		loff_t addr = from;
 | |
| 		size_t read_len = len;
 | |
| 
 | |
| #ifdef CONFIG_SPI_FLASH_BAR
 | |
| 		u32 remain_len;
 | |
| 
 | |
| 		ret = write_bar(nor, addr);
 | |
| 		if (ret < 0)
 | |
| 			return log_ret(ret);
 | |
| 		remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
 | |
| 
 | |
| 		if (len < remain_len)
 | |
| 			read_len = len;
 | |
| 		else
 | |
| 			read_len = remain_len;
 | |
| #endif
 | |
| 
 | |
| 		ret = nor->read(nor, addr, read_len, buf);
 | |
| 		if (ret == 0) {
 | |
| 			/* We shouldn't see 0-length reads */
 | |
| 			ret = -EIO;
 | |
| 			goto read_err;
 | |
| 		}
 | |
| 		if (ret < 0)
 | |
| 			goto read_err;
 | |
| 
 | |
| 		*retlen += ret;
 | |
| 		buf += ret;
 | |
| 		from += ret;
 | |
| 		len -= ret;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 
 | |
| read_err:
 | |
| #ifdef CONFIG_SPI_FLASH_BAR
 | |
| 	ret = clean_bar(nor);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPI_FLASH_SST
 | |
| /*
 | |
|  * sst26 flash series has its own block protection implementation:
 | |
|  * 4x   - 8  KByte blocks - read & write protection bits - upper addresses
 | |
|  * 1x   - 32 KByte blocks - write protection bits
 | |
|  * rest - 64 KByte blocks - write protection bits
 | |
|  * 1x   - 32 KByte blocks - write protection bits
 | |
|  * 4x   - 8  KByte blocks - read & write protection bits - lower addresses
 | |
|  *
 | |
|  * We'll support only per 64k lock/unlock so lower and upper 64 KByte region
 | |
|  * will be treated as single block.
 | |
|  */
 | |
| #define SST26_BPR_8K_NUM		4
 | |
| #define SST26_MAX_BPR_REG_LEN		(18 + 1)
 | |
| #define SST26_BOUND_REG_SIZE		((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
 | |
| 
 | |
| enum lock_ctl {
 | |
| 	SST26_CTL_LOCK,
 | |
| 	SST26_CTL_UNLOCK,
 | |
| 	SST26_CTL_CHECK
 | |
| };
 | |
| 
 | |
| static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
 | |
| {
 | |
| 	switch (ctl) {
 | |
| 	case SST26_CTL_LOCK:
 | |
| 		cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
 | |
| 		break;
 | |
| 	case SST26_CTL_UNLOCK:
 | |
| 		cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
 | |
| 		break;
 | |
| 	case SST26_CTL_CHECK:
 | |
| 		return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock, unlock or check lock status of the flash region of the flash (depending
 | |
|  * on the lock_ctl value)
 | |
|  */
 | |
| static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
 | |
| {
 | |
| 	struct mtd_info *mtd = &nor->mtd;
 | |
| 	u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
 | |
| 	bool lower_64k = false, upper_64k = false;
 | |
| 	u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Check length and offset for 64k alignment */
 | |
| 	if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
 | |
| 		dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (ofs + len > mtd->size) {
 | |
| 		dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
 | |
| 			ofs, len, mtd->size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
 | |
| 	if (mtd->size != SZ_2M &&
 | |
| 	    mtd->size != SZ_4M &&
 | |
| 	    mtd->size != SZ_8M)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	bpr_size = 2 + (mtd->size / SZ_64K / 8);
 | |
| 
 | |
| 	ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(nor->dev, "fail to read block-protection register\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
 | |
| 	lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
 | |
| 
 | |
| 	upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
 | |
| 	lower_64k = (ofs < SST26_BOUND_REG_SIZE);
 | |
| 
 | |
| 	/* Lower bits in block-protection register are about 64k region */
 | |
| 	bpr_ptr = lptr_64k / SZ_64K - 1;
 | |
| 
 | |
| 	/* Process 64K blocks region */
 | |
| 	while (lptr_64k < rptr_64k) {
 | |
| 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | |
| 			return EACCES;
 | |
| 
 | |
| 		bpr_ptr++;
 | |
| 		lptr_64k += SZ_64K;
 | |
| 	}
 | |
| 
 | |
| 	/* 32K and 8K region bits in BPR are after 64k region bits */
 | |
| 	bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
 | |
| 
 | |
| 	/* Process lower 32K block region */
 | |
| 	if (lower_64k)
 | |
| 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | |
| 			return EACCES;
 | |
| 
 | |
| 	bpr_ptr++;
 | |
| 
 | |
| 	/* Process upper 32K block region */
 | |
| 	if (upper_64k)
 | |
| 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | |
| 			return EACCES;
 | |
| 
 | |
| 	bpr_ptr++;
 | |
| 
 | |
| 	/* Process lower 8K block regions */
 | |
| 	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
 | |
| 		if (lower_64k)
 | |
| 			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | |
| 				return EACCES;
 | |
| 
 | |
| 		/* In 8K area BPR has both read and write protection bits */
 | |
| 		bpr_ptr += 2;
 | |
| 	}
 | |
| 
 | |
| 	/* Process upper 8K block regions */
 | |
| 	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
 | |
| 		if (upper_64k)
 | |
| 			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
 | |
| 				return EACCES;
 | |
| 
 | |
| 		/* In 8K area BPR has both read and write protection bits */
 | |
| 		bpr_ptr += 2;
 | |
| 	}
 | |
| 
 | |
| 	/* If we check region status we don't need to write BPR back */
 | |
| 	if (ctl == SST26_CTL_CHECK)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(nor->dev, "fail to write block-protection register\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
 | |
| }
 | |
| 
 | |
| static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
 | |
|  * and negative on errors.
 | |
|  */
 | |
| static int sst26_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	/*
 | |
| 	 * is_locked function is used for check before reading or erasing flash
 | |
| 	 * region, so offset and length might be not 64k allighned, so adjust
 | |
| 	 * them to be 64k allighned as sst26_lock_ctl works only with 64k
 | |
| 	 * allighned regions.
 | |
| 	 */
 | |
| 	ofs -= ofs & (SZ_64K - 1);
 | |
| 	len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
 | |
| 
 | |
| 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
 | |
| }
 | |
| 
 | |
| static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
 | |
| 				 size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	size_t actual;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (actual = 0; actual < len; actual++) {
 | |
| 		nor->program_opcode = SPINOR_OP_BP;
 | |
| 
 | |
| 		write_enable(nor);
 | |
| 		/* write one byte. */
 | |
| 		ret = nor->write(nor, to, 1, buf + actual);
 | |
| 		if (ret < 0)
 | |
| 			goto sst_write_err;
 | |
| 		ret = spi_nor_wait_till_ready(nor);
 | |
| 		if (ret)
 | |
| 			goto sst_write_err;
 | |
| 		to++;
 | |
| 	}
 | |
| 
 | |
| sst_write_err:
 | |
| 	write_disable(nor);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 		     size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | |
| 	struct spi_slave *spi = nor->spi;
 | |
| 	size_t actual;
 | |
| 	int ret;
 | |
| 
 | |
| 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 | |
| 	if (spi->mode & SPI_TX_BYTE)
 | |
| 		return sst_write_byteprogram(nor, to, len, retlen, buf);
 | |
| 
 | |
| 	write_enable(nor);
 | |
| 
 | |
| 	nor->sst_write_second = false;
 | |
| 
 | |
| 	actual = to % 2;
 | |
| 	/* Start write from odd address. */
 | |
| 	if (actual) {
 | |
| 		nor->program_opcode = SPINOR_OP_BP;
 | |
| 
 | |
| 		/* write one byte. */
 | |
| 		ret = nor->write(nor, to, 1, buf);
 | |
| 		if (ret < 0)
 | |
| 			goto sst_write_err;
 | |
| 		ret = spi_nor_wait_till_ready(nor);
 | |
| 		if (ret)
 | |
| 			goto sst_write_err;
 | |
| 	}
 | |
| 	to += actual;
 | |
| 
 | |
| 	/* Write out most of the data here. */
 | |
| 	for (; actual < len - 1; actual += 2) {
 | |
| 		nor->program_opcode = SPINOR_OP_AAI_WP;
 | |
| 
 | |
| 		/* write two bytes. */
 | |
| 		ret = nor->write(nor, to, 2, buf + actual);
 | |
| 		if (ret < 0)
 | |
| 			goto sst_write_err;
 | |
| 		ret = spi_nor_wait_till_ready(nor);
 | |
| 		if (ret)
 | |
| 			goto sst_write_err;
 | |
| 		to += 2;
 | |
| 		nor->sst_write_second = true;
 | |
| 	}
 | |
| 	nor->sst_write_second = false;
 | |
| 
 | |
| 	write_disable(nor);
 | |
| 	ret = spi_nor_wait_till_ready(nor);
 | |
| 	if (ret)
 | |
| 		goto sst_write_err;
 | |
| 
 | |
| 	/* Write out trailing byte if it exists. */
 | |
| 	if (actual != len) {
 | |
| 		write_enable(nor);
 | |
| 
 | |
| 		nor->program_opcode = SPINOR_OP_BP;
 | |
| 		ret = nor->write(nor, to, 1, buf + actual);
 | |
| 		if (ret < 0)
 | |
| 			goto sst_write_err;
 | |
| 		ret = spi_nor_wait_till_ready(nor);
 | |
| 		if (ret)
 | |
| 			goto sst_write_err;
 | |
| 		write_disable(nor);
 | |
| 		actual += 1;
 | |
| 	}
 | |
| sst_write_err:
 | |
| 	*retlen += actual;
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| /*
 | |
|  * Write an address range to the nor chip.  Data must be written in
 | |
|  * FLASH_PAGESIZE chunks.  The address range may be any size provided
 | |
|  * it is within the physical boundaries.
 | |
|  */
 | |
| static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 	size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
 | |
| 	size_t page_offset, page_remain, i;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| #ifdef CONFIG_SPI_FLASH_SST
 | |
| 	/* sst nor chips use AAI word program */
 | |
| 	if (nor->info->flags & SST_WRITE)
 | |
| 		return sst_write(mtd, to, len, retlen, buf);
 | |
| #endif
 | |
| 
 | |
| 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < len; ) {
 | |
| 		ssize_t written;
 | |
| 		loff_t addr = to + i;
 | |
| 
 | |
| 		/*
 | |
| 		 * If page_size is a power of two, the offset can be quickly
 | |
| 		 * calculated with an AND operation. On the other cases we
 | |
| 		 * need to do a modulus operation (more expensive).
 | |
| 		 */
 | |
| 		if (is_power_of_2(nor->page_size)) {
 | |
| 			page_offset = addr & (nor->page_size - 1);
 | |
| 		} else {
 | |
| 			u64 aux = addr;
 | |
| 
 | |
| 			page_offset = do_div(aux, nor->page_size);
 | |
| 		}
 | |
| 		/* the size of data remaining on the first page */
 | |
| 		page_remain = min_t(size_t,
 | |
| 				    nor->page_size - page_offset, len - i);
 | |
| 
 | |
| #ifdef CONFIG_SPI_FLASH_BAR
 | |
| 		ret = write_bar(nor, addr);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| #endif
 | |
| 		write_enable(nor);
 | |
| 		ret = nor->write(nor, addr, page_remain, buf + i);
 | |
| 		if (ret < 0)
 | |
| 			goto write_err;
 | |
| 		written = ret;
 | |
| 
 | |
| 		ret = spi_nor_wait_till_ready(nor);
 | |
| 		if (ret)
 | |
| 			goto write_err;
 | |
| 		*retlen += written;
 | |
| 		i += written;
 | |
| 	}
 | |
| 
 | |
| write_err:
 | |
| #ifdef CONFIG_SPI_FLASH_BAR
 | |
| 	ret = clean_bar(nor);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
 | |
| /**
 | |
|  * macronix_quad_enable() - set QE bit in Status Register.
 | |
|  * @nor:	pointer to a 'struct spi_nor'
 | |
|  *
 | |
|  * Set the Quad Enable (QE) bit in the Status Register.
 | |
|  *
 | |
|  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
 | |
|  *
 | |
|  * Return: 0 on success, -errno otherwise.
 | |
|  */
 | |
| static int macronix_quad_enable(struct spi_nor *nor)
 | |
| {
 | |
| 	int ret, val;
 | |
| 
 | |
| 	val = read_sr(nor);
 | |
| 	if (val < 0)
 | |
| 		return val;
 | |
| 	if (val & SR_QUAD_EN_MX)
 | |
| 		return 0;
 | |
| 
 | |
| 	write_enable(nor);
 | |
| 
 | |
| 	write_sr(nor, val | SR_QUAD_EN_MX);
 | |
| 
 | |
| 	ret = spi_nor_wait_till_ready(nor);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = read_sr(nor);
 | |
| 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
 | |
| 		dev_err(nor->dev, "Macronix Quad bit not set\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | |
| /*
 | |
|  * Write status Register and configuration register with 2 bytes
 | |
|  * The first byte will be written to the status register, while the
 | |
|  * second byte will be written to the configuration register.
 | |
|  * Return negative if error occurred.
 | |
|  */
 | |
| static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	write_enable(nor);
 | |
| 
 | |
| 	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(nor->dev,
 | |
| 			"error while writing configuration register\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = spi_nor_wait_till_ready(nor);
 | |
| 	if (ret) {
 | |
| 		dev_dbg(nor->dev,
 | |
| 			"timeout while writing configuration register\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
 | |
|  * @nor:	pointer to a 'struct spi_nor'
 | |
|  *
 | |
|  * Set the Quad Enable (QE) bit in the Configuration Register.
 | |
|  * This function should be used with QSPI memories supporting the Read
 | |
|  * Configuration Register (35h) instruction.
 | |
|  *
 | |
|  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 | |
|  * memories.
 | |
|  *
 | |
|  * Return: 0 on success, -errno otherwise.
 | |
|  */
 | |
| static int spansion_read_cr_quad_enable(struct spi_nor *nor)
 | |
| {
 | |
| 	u8 sr_cr[2];
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Check current Quad Enable bit value. */
 | |
| 	ret = read_cr(nor);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(nor->dev,
 | |
| 			"error while reading configuration register\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (ret & CR_QUAD_EN_SPAN)
 | |
| 		return 0;
 | |
| 
 | |
| 	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
 | |
| 
 | |
| 	/* Keep the current value of the Status Register. */
 | |
| 	ret = read_sr(nor);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(nor->dev, "error while reading status register\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	sr_cr[0] = ret;
 | |
| 
 | |
| 	ret = write_sr_cr(nor, sr_cr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Read back and check it. */
 | |
| 	ret = read_cr(nor);
 | |
| 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
 | |
| 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
 | |
| /**
 | |
|  * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
 | |
|  * @nor:	pointer to a 'struct spi_nor'
 | |
|  *
 | |
|  * Set the Quad Enable (QE) bit in the Configuration Register.
 | |
|  * This function should be used with QSPI memories not supporting the Read
 | |
|  * Configuration Register (35h) instruction.
 | |
|  *
 | |
|  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 | |
|  * memories.
 | |
|  *
 | |
|  * Return: 0 on success, -errno otherwise.
 | |
|  */
 | |
| static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
 | |
| {
 | |
| 	u8 sr_cr[2];
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Keep the current value of the Status Register. */
 | |
| 	ret = read_sr(nor);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(nor->dev, "error while reading status register\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	sr_cr[0] = ret;
 | |
| 	sr_cr[1] = CR_QUAD_EN_SPAN;
 | |
| 
 | |
| 	return write_sr_cr(nor, sr_cr);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
 | |
| #endif /* CONFIG_SPI_FLASH_SPANSION */
 | |
| 
 | |
| struct spi_nor_read_command {
 | |
| 	u8			num_mode_clocks;
 | |
| 	u8			num_wait_states;
 | |
| 	u8			opcode;
 | |
| 	enum spi_nor_protocol	proto;
 | |
| };
 | |
| 
 | |
| struct spi_nor_pp_command {
 | |
| 	u8			opcode;
 | |
| 	enum spi_nor_protocol	proto;
 | |
| };
 | |
| 
 | |
| enum spi_nor_read_command_index {
 | |
| 	SNOR_CMD_READ,
 | |
| 	SNOR_CMD_READ_FAST,
 | |
| 	SNOR_CMD_READ_1_1_1_DTR,
 | |
| 
 | |
| 	/* Dual SPI */
 | |
| 	SNOR_CMD_READ_1_1_2,
 | |
| 	SNOR_CMD_READ_1_2_2,
 | |
| 	SNOR_CMD_READ_2_2_2,
 | |
| 	SNOR_CMD_READ_1_2_2_DTR,
 | |
| 
 | |
| 	/* Quad SPI */
 | |
| 	SNOR_CMD_READ_1_1_4,
 | |
| 	SNOR_CMD_READ_1_4_4,
 | |
| 	SNOR_CMD_READ_4_4_4,
 | |
| 	SNOR_CMD_READ_1_4_4_DTR,
 | |
| 
 | |
| 	/* Octo SPI */
 | |
| 	SNOR_CMD_READ_1_1_8,
 | |
| 	SNOR_CMD_READ_1_8_8,
 | |
| 	SNOR_CMD_READ_8_8_8,
 | |
| 	SNOR_CMD_READ_1_8_8_DTR,
 | |
| 
 | |
| 	SNOR_CMD_READ_MAX
 | |
| };
 | |
| 
 | |
| enum spi_nor_pp_command_index {
 | |
| 	SNOR_CMD_PP,
 | |
| 
 | |
| 	/* Quad SPI */
 | |
| 	SNOR_CMD_PP_1_1_4,
 | |
| 	SNOR_CMD_PP_1_4_4,
 | |
| 	SNOR_CMD_PP_4_4_4,
 | |
| 
 | |
| 	/* Octo SPI */
 | |
| 	SNOR_CMD_PP_1_1_8,
 | |
| 	SNOR_CMD_PP_1_8_8,
 | |
| 	SNOR_CMD_PP_8_8_8,
 | |
| 
 | |
| 	SNOR_CMD_PP_MAX
 | |
| };
 | |
| 
 | |
| struct spi_nor_flash_parameter {
 | |
| 	u64				size;
 | |
| 	u32				page_size;
 | |
| 
 | |
| 	struct spi_nor_hwcaps		hwcaps;
 | |
| 	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
 | |
| 	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];
 | |
| 
 | |
| 	int (*quad_enable)(struct spi_nor *nor);
 | |
| };
 | |
| 
 | |
| static void
 | |
| spi_nor_set_read_settings(struct spi_nor_read_command *read,
 | |
| 			  u8 num_mode_clocks,
 | |
| 			  u8 num_wait_states,
 | |
| 			  u8 opcode,
 | |
| 			  enum spi_nor_protocol proto)
 | |
| {
 | |
| 	read->num_mode_clocks = num_mode_clocks;
 | |
| 	read->num_wait_states = num_wait_states;
 | |
| 	read->opcode = opcode;
 | |
| 	read->proto = proto;
 | |
| }
 | |
| 
 | |
| static void
 | |
| spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
 | |
| 			u8 opcode,
 | |
| 			enum spi_nor_protocol proto)
 | |
| {
 | |
| 	pp->opcode = opcode;
 | |
| 	pp->proto = proto;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
 | |
| /*
 | |
|  * Serial Flash Discoverable Parameters (SFDP) parsing.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 | |
|  * @nor:	pointer to a 'struct spi_nor'
 | |
|  * @addr:	offset in the SFDP area to start reading data from
 | |
|  * @len:	number of bytes to read
 | |
|  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
 | |
|  *
 | |
|  * Whatever the actual numbers of bytes for address and dummy cycles are
 | |
|  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 | |
|  * followed by a 3-byte address and 8 dummy clock cycles.
 | |
|  *
 | |
|  * Return: 0 on success, -errno otherwise.
 | |
|  */
 | |
| static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
 | |
| 			     size_t len, void *buf)
 | |
| {
 | |
| 	u8 addr_width, read_opcode, read_dummy;
 | |
| 	int ret;
 | |
| 
 | |
| 	read_opcode = nor->read_opcode;
 | |
| 	addr_width = nor->addr_width;
 | |
| 	read_dummy = nor->read_dummy;
 | |
| 
 | |
| 	nor->read_opcode = SPINOR_OP_RDSFDP;
 | |
| 	nor->addr_width = 3;
 | |
| 	nor->read_dummy = 8;
 | |
| 
 | |
| 	while (len) {
 | |
| 		ret = nor->read(nor, addr, len, (u8 *)buf);
 | |
| 		if (!ret || ret > len) {
 | |
| 			ret = -EIO;
 | |
| 			goto read_err;
 | |
| 		}
 | |
| 		if (ret < 0)
 | |
| 			goto read_err;
 | |
| 
 | |
| 		buf += ret;
 | |
| 		addr += ret;
 | |
| 		len -= ret;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 
 | |
| read_err:
 | |
| 	nor->read_opcode = read_opcode;
 | |
| 	nor->addr_width = addr_width;
 | |
| 	nor->read_dummy = read_dummy;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct sfdp_parameter_header {
 | |
| 	u8		id_lsb;
 | |
| 	u8		minor;
 | |
| 	u8		major;
 | |
| 	u8		length; /* in double words */
 | |
| 	u8		parameter_table_pointer[3]; /* byte address */
 | |
| 	u8		id_msb;
 | |
| };
 | |
| 
 | |
| #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
 | |
| #define SFDP_PARAM_HEADER_PTP(p) \
 | |
| 	(((p)->parameter_table_pointer[2] << 16) | \
 | |
| 	 ((p)->parameter_table_pointer[1] <<  8) | \
 | |
| 	 ((p)->parameter_table_pointer[0] <<  0))
 | |
| 
 | |
| #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
 | |
| #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
 | |
| #define SFDP_SST_ID		0x01bf	/* Manufacturer specific Table */
 | |
| 
 | |
| #define SFDP_SIGNATURE		0x50444653U
 | |
| #define SFDP_JESD216_MAJOR	1
 | |
| #define SFDP_JESD216_MINOR	0
 | |
| #define SFDP_JESD216A_MINOR	5
 | |
| #define SFDP_JESD216B_MINOR	6
 | |
| 
 | |
| struct sfdp_header {
 | |
| 	u32		signature; /* Ox50444653U <=> "SFDP" */
 | |
| 	u8		minor;
 | |
| 	u8		major;
 | |
| 	u8		nph; /* 0-base number of parameter headers */
 | |
| 	u8		unused;
 | |
| 
 | |
| 	/* Basic Flash Parameter Table. */
 | |
| 	struct sfdp_parameter_header	bfpt_header;
 | |
| };
 | |
| 
 | |
| /* Basic Flash Parameter Table */
 | |
| 
 | |
| /*
 | |
|  * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
 | |
|  * They are indexed from 1 but C arrays are indexed from 0.
 | |
|  */
 | |
| #define BFPT_DWORD(i)		((i) - 1)
 | |
| #define BFPT_DWORD_MAX		16
 | |
| 
 | |
| /* The first version of JESB216 defined only 9 DWORDs. */
 | |
| #define BFPT_DWORD_MAX_JESD216			9
 | |
| 
 | |
| /* 1st DWORD. */
 | |
| #define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
 | |
| #define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
 | |
| #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
 | |
| #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
 | |
| #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
 | |
| #define BFPT_DWORD1_DTR				BIT(19)
 | |
| #define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
 | |
| #define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
 | |
| #define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
 | |
| 
 | |
| /* 5th DWORD. */
 | |
| #define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
 | |
| #define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
 | |
| 
 | |
| /* 11th DWORD. */
 | |
| #define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
 | |
| #define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
 | |
| 
 | |
| /* 15th DWORD. */
 | |
| 
 | |
| /*
 | |
|  * (from JESD216 rev B)
 | |
|  * Quad Enable Requirements (QER):
 | |
|  * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 | |
|  *         reads based on instruction. DQ3/HOLD# functions are hold during
 | |
|  *         instruction phase.
 | |
|  * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 | |
|  *         two data bytes where bit 1 of the second byte is one.
 | |
|  *         [...]
 | |
|  *         Writing only one byte to the status register has the side-effect of
 | |
|  *         clearing status register 2, including the QE bit. The 100b code is
 | |
|  *         used if writing one byte to the status register does not modify
 | |
|  *         status register 2.
 | |
|  * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 | |
|  *         one data byte where bit 6 is one.
 | |
|  *         [...]
 | |
|  * - 011b: QE is bit 7 of status register 2. It is set via Write status
 | |
|  *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 | |
|  *         [...]
 | |
|  *         The status register 2 is read using instruction 3Fh.
 | |
|  * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 | |
|  *         two data bytes where bit 1 of the second byte is one.
 | |
|  *         [...]
 | |
|  *         In contrast to the 001b code, writing one byte to the status
 | |
|  *         register does not modify status register 2.
 | |
|  * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 | |
|  *         Read Status instruction 05h. Status register2 is read using
 | |
|  *         instruction 35h. QE is set via Writ Status instruction 01h with
 | |
|  *         two data bytes where bit 1 of the second byte is one.
 | |
|  *         [...]
 | |
|  */
 | |
| #define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
 | |
| #define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
 | |
| #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
 | |
| #define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
 | |
| #define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
 | |
| #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
 | |
| #define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
 | |
| 
 | |
| struct sfdp_bfpt {
 | |
| 	u32	dwords[BFPT_DWORD_MAX];
 | |
| };
 | |
| 
 | |
| /* Fast Read settings. */
 | |
| 
 | |
| static void
 | |
| spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
 | |
| 				    u16 half,
 | |
| 				    enum spi_nor_protocol proto)
 | |
| {
 | |
| 	read->num_mode_clocks = (half >> 5) & 0x07;
 | |
| 	read->num_wait_states = (half >> 0) & 0x1f;
 | |
| 	read->opcode = (half >> 8) & 0xff;
 | |
| 	read->proto = proto;
 | |
| }
 | |
| 
 | |
| struct sfdp_bfpt_read {
 | |
| 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
 | |
| 	u32			hwcaps;
 | |
| 
 | |
| 	/*
 | |
| 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
 | |
| 	 * whether the Fast Read x-y-z command is supported.
 | |
| 	 */
 | |
| 	u32			supported_dword;
 | |
| 	u32			supported_bit;
 | |
| 
 | |
| 	/*
 | |
| 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
 | |
| 	 * encodes the op code, the number of mode clocks and the number of wait
 | |
| 	 * states to be used by Fast Read x-y-z command.
 | |
| 	 */
 | |
| 	u32			settings_dword;
 | |
| 	u32			settings_shift;
 | |
| 
 | |
| 	/* The SPI protocol for this Fast Read x-y-z command. */
 | |
| 	enum spi_nor_protocol	proto;
 | |
| };
 | |
| 
 | |
| static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
 | |
| 	/* Fast Read 1-1-2 */
 | |
| 	{
 | |
| 		SNOR_HWCAPS_READ_1_1_2,
 | |
| 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
 | |
| 		BFPT_DWORD(4), 0,	/* Settings */
 | |
| 		SNOR_PROTO_1_1_2,
 | |
| 	},
 | |
| 
 | |
| 	/* Fast Read 1-2-2 */
 | |
| 	{
 | |
| 		SNOR_HWCAPS_READ_1_2_2,
 | |
| 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
 | |
| 		BFPT_DWORD(4), 16,	/* Settings */
 | |
| 		SNOR_PROTO_1_2_2,
 | |
| 	},
 | |
| 
 | |
| 	/* Fast Read 2-2-2 */
 | |
| 	{
 | |
| 		SNOR_HWCAPS_READ_2_2_2,
 | |
| 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
 | |
| 		BFPT_DWORD(6), 16,	/* Settings */
 | |
| 		SNOR_PROTO_2_2_2,
 | |
| 	},
 | |
| 
 | |
| 	/* Fast Read 1-1-4 */
 | |
| 	{
 | |
| 		SNOR_HWCAPS_READ_1_1_4,
 | |
| 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
 | |
| 		BFPT_DWORD(3), 16,	/* Settings */
 | |
| 		SNOR_PROTO_1_1_4,
 | |
| 	},
 | |
| 
 | |
| 	/* Fast Read 1-4-4 */
 | |
| 	{
 | |
| 		SNOR_HWCAPS_READ_1_4_4,
 | |
| 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
 | |
| 		BFPT_DWORD(3), 0,	/* Settings */
 | |
| 		SNOR_PROTO_1_4_4,
 | |
| 	},
 | |
| 
 | |
| 	/* Fast Read 4-4-4 */
 | |
| 	{
 | |
| 		SNOR_HWCAPS_READ_4_4_4,
 | |
| 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
 | |
| 		BFPT_DWORD(7), 16,	/* Settings */
 | |
| 		SNOR_PROTO_4_4_4,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| struct sfdp_bfpt_erase {
 | |
| 	/*
 | |
| 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
 | |
| 	 * op code and erase sector size to be used by Sector Erase commands.
 | |
| 	 */
 | |
| 	u32			dword;
 | |
| 	u32			shift;
 | |
| };
 | |
| 
 | |
| static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
 | |
| 	/* Erase Type 1 in DWORD8 bits[15:0] */
 | |
| 	{BFPT_DWORD(8), 0},
 | |
| 
 | |
| 	/* Erase Type 2 in DWORD8 bits[31:16] */
 | |
| 	{BFPT_DWORD(8), 16},
 | |
| 
 | |
| 	/* Erase Type 3 in DWORD9 bits[15:0] */
 | |
| 	{BFPT_DWORD(9), 0},
 | |
| 
 | |
| 	/* Erase Type 4 in DWORD9 bits[31:16] */
 | |
| 	{BFPT_DWORD(9), 16},
 | |
| };
 | |
| 
 | |
| static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
 | |
| 
 | |
| /**
 | |
|  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 | |
|  * @nor:		pointer to a 'struct spi_nor'
 | |
|  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 | |
|  *			the Basic Flash Parameter Table length and version
 | |
|  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 | |
|  *			filled
 | |
|  *
 | |
|  * The Basic Flash Parameter Table is the main and only mandatory table as
 | |
|  * defined by the SFDP (JESD216) specification.
 | |
|  * It provides us with the total size (memory density) of the data array and
 | |
|  * the number of address bytes for Fast Read, Page Program and Sector Erase
 | |
|  * commands.
 | |
|  * For Fast READ commands, it also gives the number of mode clock cycles and
 | |
|  * wait states (regrouped in the number of dummy clock cycles) for each
 | |
|  * supported instruction op code.
 | |
|  * For Page Program, the page size is now available since JESD216 rev A, however
 | |
|  * the supported instruction op codes are still not provided.
 | |
|  * For Sector Erase commands, this table stores the supported instruction op
 | |
|  * codes and the associated sector sizes.
 | |
|  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 | |
|  * rev A. The QER bits encode the manufacturer dependent procedure to be
 | |
|  * executed to set the Quad Enable (QE) bit in some internal register of the
 | |
|  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 | |
|  * sending any Quad SPI command to the memory. Actually, setting the QE bit
 | |
|  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 | |
|  * and IO3 hence enabling 4 (Quad) I/O lines.
 | |
|  *
 | |
|  * Return: 0 on success, -errno otherwise.
 | |
|  */
 | |
| static int spi_nor_parse_bfpt(struct spi_nor *nor,
 | |
| 			      const struct sfdp_parameter_header *bfpt_header,
 | |
| 			      struct spi_nor_flash_parameter *params)
 | |
| {
 | |
| 	struct mtd_info *mtd = &nor->mtd;
 | |
| 	struct sfdp_bfpt bfpt;
 | |
| 	size_t len;
 | |
| 	int i, cmd, err;
 | |
| 	u32 addr;
 | |
| 	u16 half;
 | |
| 
 | |
| 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
 | |
| 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Read the Basic Flash Parameter Table. */
 | |
| 	len = min_t(size_t, sizeof(bfpt),
 | |
| 		    bfpt_header->length * sizeof(u32));
 | |
| 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
 | |
| 	memset(&bfpt, 0, sizeof(bfpt));
 | |
| 	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Fix endianness of the BFPT DWORDs. */
 | |
| 	for (i = 0; i < BFPT_DWORD_MAX; i++)
 | |
| 		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
 | |
| 
 | |
| 	/* Number of address bytes. */
 | |
| 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
 | |
| 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
 | |
| 		nor->addr_width = 3;
 | |
| 		break;
 | |
| 
 | |
| 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
 | |
| 		nor->addr_width = 4;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Flash Memory Density (in bits). */
 | |
| 	params->size = bfpt.dwords[BFPT_DWORD(2)];
 | |
| 	if (params->size & BIT(31)) {
 | |
| 		params->size &= ~BIT(31);
 | |
| 
 | |
| 		/*
 | |
| 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
 | |
| 		 * bits is unlikely to exist so this error probably means
 | |
| 		 * the BFPT we are reading is corrupted/wrong.
 | |
| 		 */
 | |
| 		if (params->size > 63)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		params->size = 1ULL << params->size;
 | |
| 	} else {
 | |
| 		params->size++;
 | |
| 	}
 | |
| 	params->size >>= 3; /* Convert to bytes. */
 | |
| 
 | |
| 	/* Fast Read settings. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
 | |
| 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
 | |
| 		struct spi_nor_read_command *read;
 | |
| 
 | |
| 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
 | |
| 			params->hwcaps.mask &= ~rd->hwcaps;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		params->hwcaps.mask |= rd->hwcaps;
 | |
| 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
 | |
| 		read = ¶ms->reads[cmd];
 | |
| 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
 | |
| 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
 | |
| 	}
 | |
| 
 | |
| 	/* Sector Erase settings. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
 | |
| 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
 | |
| 		u32 erasesize;
 | |
| 		u8 opcode;
 | |
| 
 | |
| 		half = bfpt.dwords[er->dword] >> er->shift;
 | |
| 		erasesize = half & 0xff;
 | |
| 
 | |
| 		/* erasesize == 0 means this Erase Type is not supported. */
 | |
| 		if (!erasesize)
 | |
| 			continue;
 | |
| 
 | |
| 		erasesize = 1U << erasesize;
 | |
| 		opcode = (half >> 8) & 0xff;
 | |
| #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
 | |
| 		if (erasesize == SZ_4K) {
 | |
| 			nor->erase_opcode = opcode;
 | |
| 			mtd->erasesize = erasesize;
 | |
| 			break;
 | |
| 		}
 | |
| #endif
 | |
| 		if (!mtd->erasesize || mtd->erasesize < erasesize) {
 | |
| 			nor->erase_opcode = opcode;
 | |
| 			mtd->erasesize = erasesize;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Stop here if not JESD216 rev A or later. */
 | |
| 	if (bfpt_header->length < BFPT_DWORD_MAX)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
 | |
| 	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
 | |
| 	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
 | |
| 	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
 | |
| 	params->page_size = 1U << params->page_size;
 | |
| 
 | |
| 	/* Quad Enable Requirements. */
 | |
| 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
 | |
| 	case BFPT_DWORD15_QER_NONE:
 | |
| 		params->quad_enable = NULL;
 | |
| 		break;
 | |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | |
| 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
 | |
| 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
 | |
| 		params->quad_enable = spansion_no_read_cr_quad_enable;
 | |
| 		break;
 | |
| #endif
 | |
| #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
 | |
| 	case BFPT_DWORD15_QER_SR1_BIT6:
 | |
| 		params->quad_enable = macronix_quad_enable;
 | |
| 		break;
 | |
| #endif
 | |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | |
| 	case BFPT_DWORD15_QER_SR2_BIT1:
 | |
| 		params->quad_enable = spansion_read_cr_quad_enable;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific
 | |
|  * SFDP table.
 | |
|  * @nor:		pointer to a 'struct spi_nor'.
 | |
|  * @param_header:	pointer to the SFDP parameter header.
 | |
|  *
 | |
|  * Return: 0 on success, -errno otherwise.
 | |
|  */
 | |
| static int
 | |
| spi_nor_parse_microchip_sfdp(struct spi_nor *nor,
 | |
| 			     const struct sfdp_parameter_header *param_header)
 | |
| {
 | |
| 	size_t size;
 | |
| 	u32 addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	size = param_header->length * sizeof(u32);
 | |
| 	addr = SFDP_PARAM_HEADER_PTP(param_header);
 | |
| 
 | |
| 	nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL);
 | |
| 	if (!nor->manufacturer_sfdp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
 | |
|  * @nor:		pointer to a 'struct spi_nor'
 | |
|  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 | |
|  *			filled
 | |
|  *
 | |
|  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
 | |
|  * specification. This is a standard which tends to supported by almost all
 | |
|  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
 | |
|  * runtime the main parameters needed to perform basic SPI flash operations such
 | |
|  * as Fast Read, Page Program or Sector Erase commands.
 | |
|  *
 | |
|  * Return: 0 on success, -errno otherwise.
 | |
|  */
 | |
| static int spi_nor_parse_sfdp(struct spi_nor *nor,
 | |
| 			      struct spi_nor_flash_parameter *params)
 | |
| {
 | |
| 	const struct sfdp_parameter_header *param_header, *bfpt_header;
 | |
| 	struct sfdp_parameter_header *param_headers = NULL;
 | |
| 	struct sfdp_header header;
 | |
| 	size_t psize;
 | |
| 	int i, err;
 | |
| 
 | |
| 	/* Get the SFDP header. */
 | |
| 	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Check the SFDP header version. */
 | |
| 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
 | |
| 	    header.major != SFDP_JESD216_MAJOR)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that the first and only mandatory parameter header is a
 | |
| 	 * Basic Flash Parameter Table header as specified in JESD216.
 | |
| 	 */
 | |
| 	bfpt_header = &header.bfpt_header;
 | |
| 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
 | |
| 	    bfpt_header->major != SFDP_JESD216_MAJOR)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate memory then read all parameter headers with a single
 | |
| 	 * Read SFDP command. These parameter headers will actually be parsed
 | |
| 	 * twice: a first time to get the latest revision of the basic flash
 | |
| 	 * parameter table, then a second time to handle the supported optional
 | |
| 	 * tables.
 | |
| 	 * Hence we read the parameter headers once for all to reduce the
 | |
| 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
 | |
| 	 * because we don't need to keep these parameter headers: the allocated
 | |
| 	 * memory is always released with kfree() before exiting this function.
 | |
| 	 */
 | |
| 	if (header.nph) {
 | |
| 		psize = header.nph * sizeof(*param_headers);
 | |
| 
 | |
| 		param_headers = kmalloc(psize, GFP_KERNEL);
 | |
| 		if (!param_headers)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		err = spi_nor_read_sfdp(nor, sizeof(header),
 | |
| 					psize, param_headers);
 | |
| 		if (err < 0) {
 | |
| 			dev_err(nor->dev,
 | |
| 				"failed to read SFDP parameter headers\n");
 | |
| 			goto exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check other parameter headers to get the latest revision of
 | |
| 	 * the basic flash parameter table.
 | |
| 	 */
 | |
| 	for (i = 0; i < header.nph; i++) {
 | |
| 		param_header = ¶m_headers[i];
 | |
| 
 | |
| 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
 | |
| 		    param_header->major == SFDP_JESD216_MAJOR &&
 | |
| 		    (param_header->minor > bfpt_header->minor ||
 | |
| 		     (param_header->minor == bfpt_header->minor &&
 | |
| 		      param_header->length > bfpt_header->length)))
 | |
| 			bfpt_header = param_header;
 | |
| 	}
 | |
| 
 | |
| 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* Parse other parameter headers. */
 | |
| 	for (i = 0; i < header.nph; i++) {
 | |
| 		param_header = ¶m_headers[i];
 | |
| 
 | |
| 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
 | |
| 		case SFDP_SECTOR_MAP_ID:
 | |
| 			dev_info(nor->dev,
 | |
| 				 "non-uniform erase sector maps are not supported yet.\n");
 | |
| 			break;
 | |
| 
 | |
| 		case SFDP_SST_ID:
 | |
| 			err = spi_nor_parse_microchip_sfdp(nor, param_header);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (err) {
 | |
| 			dev_warn(nor->dev,
 | |
| 				 "Failed to parse optional parameter table: %04x\n",
 | |
| 				 SFDP_PARAM_HEADER_ID(param_header));
 | |
| 			/*
 | |
| 			 * Let's not drop all information we extracted so far
 | |
| 			 * if optional table parsers fail. In case of failing,
 | |
| 			 * each optional parser is responsible to roll back to
 | |
| 			 * the previously known spi_nor data.
 | |
| 			 */
 | |
| 			err = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| exit:
 | |
| 	kfree(param_headers);
 | |
| 	return err;
 | |
| }
 | |
| #else
 | |
| static int spi_nor_parse_sfdp(struct spi_nor *nor,
 | |
| 			      struct spi_nor_flash_parameter *params)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif /* SPI_FLASH_SFDP_SUPPORT */
 | |
| 
 | |
| static int spi_nor_init_params(struct spi_nor *nor,
 | |
| 			       const struct flash_info *info,
 | |
| 			       struct spi_nor_flash_parameter *params)
 | |
| {
 | |
| 	/* Set legacy flash parameters as default. */
 | |
| 	memset(params, 0, sizeof(*params));
 | |
| 
 | |
| 	/* Set SPI NOR sizes. */
 | |
| 	params->size = info->sector_size * info->n_sectors;
 | |
| 	params->page_size = info->page_size;
 | |
| 
 | |
| 	/* (Fast) Read settings. */
 | |
| 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
 | |
| 	spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
 | |
| 				  0, 0, SPINOR_OP_READ,
 | |
| 				  SNOR_PROTO_1_1_1);
 | |
| 
 | |
| 	if (!(info->flags & SPI_NOR_NO_FR)) {
 | |
| 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
 | |
| 		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
 | |
| 					  0, 8, SPINOR_OP_READ_FAST,
 | |
| 					  SNOR_PROTO_1_1_1);
 | |
| 	}
 | |
| 
 | |
| 	if (info->flags & SPI_NOR_DUAL_READ) {
 | |
| 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
 | |
| 		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
 | |
| 					  0, 8, SPINOR_OP_READ_1_1_2,
 | |
| 					  SNOR_PROTO_1_1_2);
 | |
| 	}
 | |
| 
 | |
| 	if (info->flags & SPI_NOR_QUAD_READ) {
 | |
| 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
 | |
| 		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
 | |
| 					  0, 8, SPINOR_OP_READ_1_1_4,
 | |
| 					  SNOR_PROTO_1_1_4);
 | |
| 	}
 | |
| 
 | |
| 	if (info->flags & SPI_NOR_OCTAL_READ) {
 | |
| 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
 | |
| 		spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
 | |
| 					  0, 8, SPINOR_OP_READ_1_1_8,
 | |
| 					  SNOR_PROTO_1_1_8);
 | |
| 	}
 | |
| 
 | |
| 	/* Page Program settings. */
 | |
| 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
 | |
| 	spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
 | |
| 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
 | |
| 
 | |
| 	if (info->flags & SPI_NOR_QUAD_READ) {
 | |
| 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
 | |
| 		spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
 | |
| 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
 | |
| 	}
 | |
| 
 | |
| 	/* Select the procedure to set the Quad Enable bit. */
 | |
| 	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
 | |
| 				   SNOR_HWCAPS_PP_QUAD)) {
 | |
| 		switch (JEDEC_MFR(info)) {
 | |
| #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
 | |
| 		case SNOR_MFR_MACRONIX:
 | |
| 		case SNOR_MFR_ISSI:
 | |
| 			params->quad_enable = macronix_quad_enable;
 | |
| 			break;
 | |
| #endif
 | |
| 		case SNOR_MFR_ST:
 | |
| 		case SNOR_MFR_MICRON:
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 | |
| 			/* Kept only for backward compatibility purpose. */
 | |
| 			params->quad_enable = spansion_read_cr_quad_enable;
 | |
| #endif
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Override the parameters with data read from SFDP tables. */
 | |
| 	nor->addr_width = 0;
 | |
| 	nor->mtd.erasesize = 0;
 | |
| 	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
 | |
| 	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
 | |
| 		struct spi_nor_flash_parameter sfdp_params;
 | |
| 
 | |
| 		memcpy(&sfdp_params, params, sizeof(sfdp_params));
 | |
| 		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
 | |
| 			nor->addr_width = 0;
 | |
| 			nor->mtd.erasesize = 0;
 | |
| 		} else {
 | |
| 			memcpy(params, &sfdp_params, sizeof(*params));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		if (table[i][0] == (int)hwcaps)
 | |
| 			return table[i][1];
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
 | |
| {
 | |
| 	static const int hwcaps_read2cmd[][2] = {
 | |
| 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
 | |
| 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
 | |
| 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
 | |
| 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
 | |
| 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
 | |
| 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
 | |
| 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
 | |
| 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
 | |
| 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
 | |
| 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
 | |
| 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
 | |
| 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
 | |
| 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
 | |
| 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
 | |
| 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
 | |
| 	};
 | |
| 
 | |
| 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
 | |
| 				  ARRAY_SIZE(hwcaps_read2cmd));
 | |
| }
 | |
| 
 | |
| static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
 | |
| {
 | |
| 	static const int hwcaps_pp2cmd[][2] = {
 | |
| 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
 | |
| 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
 | |
| 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
 | |
| 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
 | |
| 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
 | |
| 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
 | |
| 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
 | |
| 	};
 | |
| 
 | |
| 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
 | |
| 				  ARRAY_SIZE(hwcaps_pp2cmd));
 | |
| }
 | |
| 
 | |
| static int spi_nor_select_read(struct spi_nor *nor,
 | |
| 			       const struct spi_nor_flash_parameter *params,
 | |
| 			       u32 shared_hwcaps)
 | |
| {
 | |
| 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
 | |
| 	const struct spi_nor_read_command *read;
 | |
| 
 | |
| 	if (best_match < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
 | |
| 	if (cmd < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	read = ¶ms->reads[cmd];
 | |
| 	nor->read_opcode = read->opcode;
 | |
| 	nor->read_proto = read->proto;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the spi-nor framework, we don't need to make the difference
 | |
| 	 * between mode clock cycles and wait state clock cycles.
 | |
| 	 * Indeed, the value of the mode clock cycles is used by a QSPI
 | |
| 	 * flash memory to know whether it should enter or leave its 0-4-4
 | |
| 	 * (Continuous Read / XIP) mode.
 | |
| 	 * eXecution In Place is out of the scope of the mtd sub-system.
 | |
| 	 * Hence we choose to merge both mode and wait state clock cycles
 | |
| 	 * into the so called dummy clock cycles.
 | |
| 	 */
 | |
| 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spi_nor_select_pp(struct spi_nor *nor,
 | |
| 			     const struct spi_nor_flash_parameter *params,
 | |
| 			     u32 shared_hwcaps)
 | |
| {
 | |
| 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
 | |
| 	const struct spi_nor_pp_command *pp;
 | |
| 
 | |
| 	if (best_match < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
 | |
| 	if (cmd < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pp = ¶ms->page_programs[cmd];
 | |
| 	nor->program_opcode = pp->opcode;
 | |
| 	nor->write_proto = pp->proto;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spi_nor_select_erase(struct spi_nor *nor,
 | |
| 				const struct flash_info *info)
 | |
| {
 | |
| 	struct mtd_info *mtd = &nor->mtd;
 | |
| 
 | |
| 	/* Do nothing if already configured from SFDP. */
 | |
| 	if (mtd->erasesize)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
 | |
| 	/* prefer "small sector" erase if possible */
 | |
| 	if (info->flags & SECT_4K) {
 | |
| 		nor->erase_opcode = SPINOR_OP_BE_4K;
 | |
| 		mtd->erasesize = 4096;
 | |
| 	} else if (info->flags & SECT_4K_PMC) {
 | |
| 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
 | |
| 		mtd->erasesize = 4096;
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		nor->erase_opcode = SPINOR_OP_SE;
 | |
| 		mtd->erasesize = info->sector_size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
 | |
| 			 const struct spi_nor_flash_parameter *params,
 | |
| 			 const struct spi_nor_hwcaps *hwcaps)
 | |
| {
 | |
| 	u32 ignored_mask, shared_mask;
 | |
| 	bool enable_quad_io;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep only the hardware capabilities supported by both the SPI
 | |
| 	 * controller and the SPI flash memory.
 | |
| 	 */
 | |
| 	shared_mask = hwcaps->mask & params->hwcaps.mask;
 | |
| 
 | |
| 	/* SPI n-n-n protocols are not supported yet. */
 | |
| 	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
 | |
| 			SNOR_HWCAPS_READ_4_4_4 |
 | |
| 			SNOR_HWCAPS_READ_8_8_8 |
 | |
| 			SNOR_HWCAPS_PP_4_4_4 |
 | |
| 			SNOR_HWCAPS_PP_8_8_8);
 | |
| 	if (shared_mask & ignored_mask) {
 | |
| 		dev_dbg(nor->dev,
 | |
| 			"SPI n-n-n protocols are not supported yet.\n");
 | |
| 		shared_mask &= ~ignored_mask;
 | |
| 	}
 | |
| 
 | |
| 	/* Select the (Fast) Read command. */
 | |
| 	err = spi_nor_select_read(nor, params, shared_mask);
 | |
| 	if (err) {
 | |
| 		dev_dbg(nor->dev,
 | |
| 			"can't select read settings supported by both the SPI controller and memory.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Select the Page Program command. */
 | |
| 	err = spi_nor_select_pp(nor, params, shared_mask);
 | |
| 	if (err) {
 | |
| 		dev_dbg(nor->dev,
 | |
| 			"can't select write settings supported by both the SPI controller and memory.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Select the Sector Erase command. */
 | |
| 	err = spi_nor_select_erase(nor, info);
 | |
| 	if (err) {
 | |
| 		dev_dbg(nor->dev,
 | |
| 			"can't select erase settings supported by both the SPI controller and memory.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable Quad I/O if needed. */
 | |
| 	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
 | |
| 			  spi_nor_get_protocol_width(nor->write_proto) == 4);
 | |
| 	if (enable_quad_io && params->quad_enable)
 | |
| 		nor->quad_enable = params->quad_enable;
 | |
| 	else
 | |
| 		nor->quad_enable = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int spi_nor_init(struct spi_nor *nor)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
 | |
| 	 * with the software protection bits set
 | |
| 	 */
 | |
| 	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
 | |
| 	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
 | |
| 	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
 | |
| 	    nor->info->flags & SPI_NOR_HAS_LOCK) {
 | |
| 		write_enable(nor);
 | |
| 		write_sr(nor, 0);
 | |
| 		spi_nor_wait_till_ready(nor);
 | |
| 	}
 | |
| 
 | |
| 	if (nor->quad_enable) {
 | |
| 		err = nor->quad_enable(nor);
 | |
| 		if (err) {
 | |
| 			dev_dbg(nor->dev, "quad mode not supported\n");
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nor->addr_width == 4 &&
 | |
| 	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
 | |
| 	    !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
 | |
| 		/*
 | |
| 		 * If the RESET# pin isn't hooked up properly, or the system
 | |
| 		 * otherwise doesn't perform a reset command in the boot
 | |
| 		 * sequence, it's impossible to 100% protect against unexpected
 | |
| 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
 | |
| 		 * designer) that this is bad.
 | |
| 		 */
 | |
| 		if (nor->flags & SNOR_F_BROKEN_RESET)
 | |
| 			debug("enabling reset hack; may not recover from unexpected reboots\n");
 | |
| 		set_4byte(nor, nor->info, 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int spi_nor_scan(struct spi_nor *nor)
 | |
| {
 | |
| 	struct spi_nor_flash_parameter params;
 | |
| 	const struct flash_info *info = NULL;
 | |
| 	struct mtd_info *mtd = &nor->mtd;
 | |
| 	struct spi_nor_hwcaps hwcaps = {
 | |
| 		.mask = SNOR_HWCAPS_READ |
 | |
| 			SNOR_HWCAPS_READ_FAST |
 | |
| 			SNOR_HWCAPS_PP,
 | |
| 	};
 | |
| 	struct spi_slave *spi = nor->spi;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Reset SPI protocol for all commands. */
 | |
| 	nor->reg_proto = SNOR_PROTO_1_1_1;
 | |
| 	nor->read_proto = SNOR_PROTO_1_1_1;
 | |
| 	nor->write_proto = SNOR_PROTO_1_1_1;
 | |
| 	nor->read = spi_nor_read_data;
 | |
| 	nor->write = spi_nor_write_data;
 | |
| 	nor->read_reg = spi_nor_read_reg;
 | |
| 	nor->write_reg = spi_nor_write_reg;
 | |
| 
 | |
| 	if (spi->mode & SPI_RX_OCTAL) {
 | |
| 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
 | |
| 
 | |
| 		if (spi->mode & SPI_TX_OCTAL)
 | |
| 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_8_8 |
 | |
| 					SNOR_HWCAPS_PP_1_1_8 |
 | |
| 					SNOR_HWCAPS_PP_1_8_8);
 | |
| 	} else if (spi->mode & SPI_RX_QUAD) {
 | |
| 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
 | |
| 
 | |
| 		if (spi->mode & SPI_TX_QUAD)
 | |
| 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
 | |
| 					SNOR_HWCAPS_PP_1_1_4 |
 | |
| 					SNOR_HWCAPS_PP_1_4_4);
 | |
| 	} else if (spi->mode & SPI_RX_DUAL) {
 | |
| 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
 | |
| 
 | |
| 		if (spi->mode & SPI_TX_DUAL)
 | |
| 			hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
 | |
| 	}
 | |
| 
 | |
| 	info = spi_nor_read_id(nor);
 | |
| 	if (IS_ERR_OR_NULL(info))
 | |
| 		return -ENOENT;
 | |
| 	/* Parse the Serial Flash Discoverable Parameters table. */
 | |
| 	ret = spi_nor_init_params(nor, info, ¶ms);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!mtd->name)
 | |
| 		mtd->name = info->name;
 | |
| 	mtd->priv = nor;
 | |
| 	mtd->type = MTD_NORFLASH;
 | |
| 	mtd->writesize = 1;
 | |
| 	mtd->flags = MTD_CAP_NORFLASH;
 | |
| 	mtd->size = params.size;
 | |
| 	mtd->_erase = spi_nor_erase;
 | |
| 	mtd->_read = spi_nor_read;
 | |
| 	mtd->_write = spi_nor_write;
 | |
| 
 | |
| #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
 | |
| 	/* NOR protection support for STmicro/Micron chips and similar */
 | |
| 	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
 | |
| 	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
 | |
| 	    JEDEC_MFR(info) == SNOR_MFR_SST ||
 | |
| 			info->flags & SPI_NOR_HAS_LOCK) {
 | |
| 		nor->flash_lock = stm_lock;
 | |
| 		nor->flash_unlock = stm_unlock;
 | |
| 		nor->flash_is_locked = stm_is_locked;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPI_FLASH_SST
 | |
| 	/*
 | |
| 	 * sst26 series block protection implementation differs from other
 | |
| 	 * series.
 | |
| 	 */
 | |
| 	if (info->flags & SPI_NOR_HAS_SST26LOCK) {
 | |
| 		nor->flash_lock = sst26_lock;
 | |
| 		nor->flash_unlock = sst26_unlock;
 | |
| 		nor->flash_is_locked = sst26_is_locked;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (info->flags & USE_FSR)
 | |
| 		nor->flags |= SNOR_F_USE_FSR;
 | |
| 	if (info->flags & SPI_NOR_HAS_TB)
 | |
| 		nor->flags |= SNOR_F_HAS_SR_TB;
 | |
| 	if (info->flags & NO_CHIP_ERASE)
 | |
| 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
 | |
| 	if (info->flags & USE_CLSR)
 | |
| 		nor->flags |= SNOR_F_USE_CLSR;
 | |
| 
 | |
| 	if (info->flags & SPI_NOR_NO_ERASE)
 | |
| 		mtd->flags |= MTD_NO_ERASE;
 | |
| 
 | |
| 	nor->page_size = params.page_size;
 | |
| 	mtd->writebufsize = nor->page_size;
 | |
| 
 | |
| 	/* Some devices cannot do fast-read, no matter what DT tells us */
 | |
| 	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
 | |
| 		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the SPI memory:
 | |
| 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
 | |
| 	 * - set the number of dummy cycles (mode cycles + wait states).
 | |
| 	 * - set the SPI protocols for register and memory accesses.
 | |
| 	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
 | |
| 	 */
 | |
| 	ret = spi_nor_setup(nor, info, ¶ms, &hwcaps);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (nor->addr_width) {
 | |
| 		/* already configured from SFDP */
 | |
| 	} else if (info->addr_width) {
 | |
| 		nor->addr_width = info->addr_width;
 | |
| 	} else if (mtd->size > SZ_16M) {
 | |
| #ifndef CONFIG_SPI_FLASH_BAR
 | |
| 		/* enable 4-byte addressing if the device exceeds 16MiB */
 | |
| 		nor->addr_width = 4;
 | |
| 		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
 | |
| 		    info->flags & SPI_NOR_4B_OPCODES)
 | |
| 			spi_nor_set_4byte_opcodes(nor, info);
 | |
| #else
 | |
| 	/* Configure the BAR - discover bank cmds and read current bank */
 | |
| 	nor->addr_width = 3;
 | |
| 	ret = read_bar(nor, info);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| #endif
 | |
| 	} else {
 | |
| 		nor->addr_width = 3;
 | |
| 	}
 | |
| 
 | |
| 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
 | |
| 		dev_dbg(nor->dev, "address width is too large: %u\n",
 | |
| 			nor->addr_width);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Send all the required SPI flash commands to initialize device */
 | |
| 	nor->info = info;
 | |
| 	ret = spi_nor_init(nor);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	nor->name = mtd->name;
 | |
| 	nor->size = mtd->size;
 | |
| 	nor->erase_size = mtd->erasesize;
 | |
| 	nor->sector_size = mtd->erasesize;
 | |
| 
 | |
| #ifndef CONFIG_SPL_BUILD
 | |
| 	printf("SF: Detected %s with page size ", nor->name);
 | |
| 	print_size(nor->page_size, ", erase size ");
 | |
| 	print_size(nor->erase_size, ", total ");
 | |
| 	print_size(nor->size, "");
 | |
| 	puts("\n");
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 |