mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-30 18:05:48 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			3999 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3999 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: BSD-3-Clause
 | |
| /*
 | |
|  * Copyright Altera Corporation (C) 2012-2015
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <log.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/arch/sdram.h>
 | |
| #include <errno.h>
 | |
| #include <hang.h>
 | |
| #include "sequencer.h"
 | |
| 
 | |
| static const struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
 | |
| 	(struct socfpga_sdr_rw_load_manager *)
 | |
| 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
 | |
| static const struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs
 | |
| 	= (struct socfpga_sdr_rw_load_jump_manager *)
 | |
| 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
 | |
| static const struct socfpga_sdr_reg_file *sdr_reg_file =
 | |
| 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
 | |
| static const struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
 | |
| 	(struct socfpga_sdr_scc_mgr *)
 | |
| 		(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
 | |
| static const struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
 | |
| 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
 | |
| static const struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
 | |
| 	(struct socfpga_phy_mgr_cfg *)
 | |
| 		(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
 | |
| static const struct socfpga_data_mgr *data_mgr =
 | |
| 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
 | |
| static const struct socfpga_sdr_ctrl *sdr_ctrl =
 | |
| 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
 | |
| 
 | |
| #define DELTA_D		1
 | |
| 
 | |
| /*
 | |
|  * In order to reduce ROM size, most of the selectable calibration steps are
 | |
|  * decided at compile time based on the user's calibration mode selection,
 | |
|  * as captured by the STATIC_CALIB_STEPS selection below.
 | |
|  *
 | |
|  * However, to support simulation-time selection of fast simulation mode, where
 | |
|  * we skip everything except the bare minimum, we need a few of the steps to
 | |
|  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
 | |
|  * check, which is based on the rtl-supplied value, or we dynamically compute
 | |
|  * the value to use based on the dynamically-chosen calibration mode
 | |
|  */
 | |
| 
 | |
| #define DLEVEL 0
 | |
| #define STATIC_IN_RTL_SIM 0
 | |
| #define STATIC_SKIP_DELAY_LOOPS 0
 | |
| 
 | |
| #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
 | |
| 	STATIC_SKIP_DELAY_LOOPS)
 | |
| 
 | |
| #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
 | |
| 	((non_skip_value) & seq->skip_delay_mask)
 | |
| 
 | |
| bool dram_is_ddr(const u8 ddr)
 | |
| {
 | |
| 	const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config();
 | |
| 	const u8 type = (cfg->ctrl_cfg >> SDR_CTRLGRP_CTRLCFG_MEMTYPE_LSB) &
 | |
| 			SDR_CTRLGRP_CTRLCFG_MEMTYPE_MASK;
 | |
| 
 | |
| 	if (ddr == 2 && type == 1)	/* DDR2 */
 | |
| 		return true;
 | |
| 
 | |
| 	if (ddr == 3 && type == 2)	/* DDR3 */
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void set_failing_group_stage(struct socfpga_sdrseq *seq,
 | |
| 				    u32 group, u32 stage, u32 substage)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only set the global stage if there was not been any other
 | |
| 	 * failing group
 | |
| 	 */
 | |
| 	if (seq->gbl.error_stage == CAL_STAGE_NIL)	{
 | |
| 		seq->gbl.error_substage = substage;
 | |
| 		seq->gbl.error_stage = stage;
 | |
| 		seq->gbl.error_group = group;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reg_file_set_group(u16 set_group)
 | |
| {
 | |
| 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
 | |
| }
 | |
| 
 | |
| static void reg_file_set_stage(u8 set_stage)
 | |
| {
 | |
| 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
 | |
| }
 | |
| 
 | |
| static void reg_file_set_sub_stage(u8 set_sub_stage)
 | |
| {
 | |
| 	set_sub_stage &= 0xff;
 | |
| 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * phy_mgr_initialize() - Initialize PHY Manager
 | |
|  *
 | |
|  * Initialize PHY Manager.
 | |
|  */
 | |
| static void phy_mgr_initialize(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	u32 ratio;
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 	/* Calibration has control over path to memory */
 | |
| 	/*
 | |
| 	 * In Hard PHY this is a 2-bit control:
 | |
| 	 * 0: AFI Mux Select
 | |
| 	 * 1: DDIO Mux Select
 | |
| 	 */
 | |
| 	writel(0x3, &phy_mgr_cfg->mux_sel);
 | |
| 
 | |
| 	/* USER memory clock is not stable we begin initialization  */
 | |
| 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
 | |
| 
 | |
| 	/* USER calibration status all set to zero */
 | |
| 	writel(0, &phy_mgr_cfg->cal_status);
 | |
| 
 | |
| 	writel(0, &phy_mgr_cfg->cal_debug_info);
 | |
| 
 | |
| 	/* Init params only if we do NOT skip calibration. */
 | |
| 	if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
 | |
| 		return;
 | |
| 
 | |
| 	ratio = seq->rwcfg->mem_dq_per_read_dqs /
 | |
| 		seq->rwcfg->mem_virtual_groups_per_read_dqs;
 | |
| 	seq->param.read_correct_mask_vg = (1 << ratio) - 1;
 | |
| 	seq->param.write_correct_mask_vg = (1 << ratio) - 1;
 | |
| 	seq->param.read_correct_mask = (1 << seq->rwcfg->mem_dq_per_read_dqs)
 | |
| 		- 1;
 | |
| 	seq->param.write_correct_mask = (1 << seq->rwcfg->mem_dq_per_write_dqs)
 | |
| 		- 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_rank_and_odt_mask() - Set Rank and ODT mask
 | |
|  * @rank:	Rank mask
 | |
|  * @odt_mode:	ODT mode, OFF or READ_WRITE
 | |
|  *
 | |
|  * Set Rank and ODT mask (On-Die Termination).
 | |
|  */
 | |
| static void set_rank_and_odt_mask(struct socfpga_sdrseq *seq,
 | |
| 				  const u32 rank, const u32 odt_mode)
 | |
| {
 | |
| 	u32 odt_mask_0 = 0;
 | |
| 	u32 odt_mask_1 = 0;
 | |
| 	u32 cs_and_odt_mask;
 | |
| 
 | |
| 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
 | |
| 		odt_mask_0 = 0x0;
 | |
| 		odt_mask_1 = 0x0;
 | |
| 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
 | |
| 		switch (seq->rwcfg->mem_number_of_ranks) {
 | |
| 		case 1:	/* 1 Rank */
 | |
| 			/* Read: ODT = 0 ; Write: ODT = 1 */
 | |
| 			odt_mask_0 = 0x0;
 | |
| 			odt_mask_1 = 0x1;
 | |
| 			break;
 | |
| 		case 2:	/* 2 Ranks */
 | |
| 			if (seq->rwcfg->mem_number_of_cs_per_dimm == 1) {
 | |
| 				/*
 | |
| 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
 | |
| 				 *   OR
 | |
| 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
 | |
| 				 *
 | |
| 				 * Since MEM_NUMBER_OF_RANKS is 2, they
 | |
| 				 * are both single rank with 2 CS each
 | |
| 				 * (special for RDIMM).
 | |
| 				 *
 | |
| 				 * Read: Turn on ODT on the opposite rank
 | |
| 				 * Write: Turn on ODT on all ranks
 | |
| 				 */
 | |
| 				odt_mask_0 = 0x3 & ~(1 << rank);
 | |
| 				odt_mask_1 = 0x3;
 | |
| 				if (dram_is_ddr(2))
 | |
| 					odt_mask_1 &= ~(1 << rank);
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
 | |
| 				 *
 | |
| 				 * Read: Turn on ODT off on all ranks
 | |
| 				 * Write: Turn on ODT on active rank
 | |
| 				 */
 | |
| 				odt_mask_0 = 0x0;
 | |
| 				odt_mask_1 = 0x3 & (1 << rank);
 | |
| 			}
 | |
| 			break;
 | |
| 		case 4:	/* 4 Ranks */
 | |
| 			/*
 | |
| 			 * DDR3 Read, DDR2 Read/Write:
 | |
| 			 * ----------+-----------------------+
 | |
| 			 *           |         ODT           |
 | |
| 			 *           +-----------------------+
 | |
| 			 *   Rank    |  3  |  2  |  1  |  0  |
 | |
| 			 * ----------+-----+-----+-----+-----+
 | |
| 			 *     0     |  0  |  1  |  0  |  0  |
 | |
| 			 *     1     |  1  |  0  |  0  |  0  |
 | |
| 			 *     2     |  0  |  0  |  0  |  1  |
 | |
| 			 *     3     |  0  |  0  |  1  |  0  |
 | |
| 			 * ----------+-----+-----+-----+-----+
 | |
| 			 *
 | |
| 			 * DDR3 Write:
 | |
| 			 * ----------+-----------------------+
 | |
| 			 *           |         ODT           |
 | |
| 			 * Write To  +-----------------------+
 | |
| 			 *   Rank    |  3  |  2  |  1  |  0  |
 | |
| 			 * ----------+-----+-----+-----+-----+
 | |
| 			 *     0     |  0  |  1  |  0  |  1  |
 | |
| 			 *     1     |  1  |  0  |  1  |  0  |
 | |
| 			 *     2     |  0  |  1  |  0  |  1  |
 | |
| 			 *     3     |  1  |  0  |  1  |  0  |
 | |
| 			 * ----------+-----+-----+-----+-----+
 | |
| 			 */
 | |
| 			switch (rank) {
 | |
| 			case 0:
 | |
| 				odt_mask_0 = 0x4;
 | |
| 				if (dram_is_ddr(2))
 | |
| 					odt_mask_1 = 0x4;
 | |
| 				else if (dram_is_ddr(3))
 | |
| 					odt_mask_1 = 0x5;
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				odt_mask_0 = 0x8;
 | |
| 				if (dram_is_ddr(2))
 | |
| 					odt_mask_1 = 0x8;
 | |
| 				else if (dram_is_ddr(3))
 | |
| 					odt_mask_1 = 0xA;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				odt_mask_0 = 0x1;
 | |
| 				if (dram_is_ddr(2))
 | |
| 					odt_mask_1 = 0x1;
 | |
| 				else if (dram_is_ddr(3))
 | |
| 					odt_mask_1 = 0x5;
 | |
| 				break;
 | |
| 			case 3:
 | |
| 				odt_mask_0 = 0x2;
 | |
| 				if (dram_is_ddr(2))
 | |
| 					odt_mask_1 = 0x2;
 | |
| 				else if (dram_is_ddr(3))
 | |
| 					odt_mask_1 = 0xA;
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
 | |
| 			  ((0xFF & odt_mask_0) << 8) |
 | |
| 			  ((0xFF & odt_mask_1) << 16);
 | |
| 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_set() - Set SCC Manager register
 | |
|  * @off:	Base offset in SCC Manager space
 | |
|  * @grp:	Read/Write group
 | |
|  * @val:	Value to be set
 | |
|  *
 | |
|  * This function sets the SCC Manager (Scan Chain Control Manager) register.
 | |
|  */
 | |
| static void scc_mgr_set(u32 off, u32 grp, u32 val)
 | |
| {
 | |
| 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_initialize() - Initialize SCC Manager registers
 | |
|  *
 | |
|  * Initialize SCC Manager registers.
 | |
|  */
 | |
| static void scc_mgr_initialize(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Clear register file for HPS. 16 (2^4) is the size of the
 | |
| 	 * full register file in the scc mgr:
 | |
| 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
 | |
| 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
 | |
| 	 */
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
 | |
| 			   __func__, __LINE__, i);
 | |
| 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqs_io_in_delay(struct socfpga_sdrseq *seq,
 | |
| 					u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
 | |
| 		    seq->rwcfg->mem_dq_per_write_dqs, delay);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dm_in_delay(struct socfpga_sdrseq *seq, u32 dm,
 | |
| 				    u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
 | |
| 		    seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
 | |
| 		    delay);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqs_out1_delay(struct socfpga_sdrseq *seq,
 | |
| 				       u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
 | |
| 		    seq->rwcfg->mem_dq_per_write_dqs, delay);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dm_out1_delay(struct socfpga_sdrseq *seq, u32 dm,
 | |
| 				      u32 delay)
 | |
| {
 | |
| 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
 | |
| 		    seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
 | |
| 		    delay);
 | |
| }
 | |
| 
 | |
| /* load up dqs config settings */
 | |
| static void scc_mgr_load_dqs(u32 dqs)
 | |
| {
 | |
| 	writel(dqs, &sdr_scc_mgr->dqs_ena);
 | |
| }
 | |
| 
 | |
| /* load up dqs io config settings */
 | |
| static void scc_mgr_load_dqs_io(void)
 | |
| {
 | |
| 	writel(0, &sdr_scc_mgr->dqs_io_ena);
 | |
| }
 | |
| 
 | |
| /* load up dq config settings */
 | |
| static void scc_mgr_load_dq(u32 dq_in_group)
 | |
| {
 | |
| 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
 | |
| }
 | |
| 
 | |
| /* load up dm config settings */
 | |
| static void scc_mgr_load_dm(u32 dm)
 | |
| {
 | |
| 	writel(dm, &sdr_scc_mgr->dm_ena);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
 | |
|  * @off:	Base offset in SCC Manager space
 | |
|  * @grp:	Read/Write group
 | |
|  * @val:	Value to be set
 | |
|  * @update:	If non-zero, trigger SCC Manager update for all ranks
 | |
|  *
 | |
|  * This function sets the SCC Manager (Scan Chain Control Manager) register
 | |
|  * and optionally triggers the SCC update for all ranks.
 | |
|  */
 | |
| static void scc_mgr_set_all_ranks(struct socfpga_sdrseq *seq,
 | |
| 				  const u32 off, const u32 grp, const u32 val,
 | |
| 				  const int update)
 | |
| {
 | |
| 	u32 r;
 | |
| 
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     r += NUM_RANKS_PER_SHADOW_REG) {
 | |
| 		scc_mgr_set(off, grp, val);
 | |
| 
 | |
| 		if (update || (r == 0)) {
 | |
| 			writel(grp, &sdr_scc_mgr->dqs_ena);
 | |
| 			writel(0, &sdr_scc_mgr->update);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqs_en_phase_all_ranks(struct socfpga_sdrseq *seq,
 | |
| 					       u32 read_group, u32 phase)
 | |
| {
 | |
| 	/*
 | |
| 	 * USER although the h/w doesn't support different phases per
 | |
| 	 * shadow register, for simplicity our scc manager modeling
 | |
| 	 * keeps different phase settings per shadow reg, and it's
 | |
| 	 * important for us to keep them in sync to match h/w.
 | |
| 	 * for efficiency, the scan chain update should occur only
 | |
| 	 * once to sr0.
 | |
| 	 */
 | |
| 	scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_PHASE_OFFSET,
 | |
| 			      read_group, phase, 0);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqdqs_output_phase_all_ranks(struct socfpga_sdrseq *seq,
 | |
| 						     u32 write_group, u32 phase)
 | |
| {
 | |
| 	/*
 | |
| 	 * USER although the h/w doesn't support different phases per
 | |
| 	 * shadow register, for simplicity our scc manager modeling
 | |
| 	 * keeps different phase settings per shadow reg, and it's
 | |
| 	 * important for us to keep them in sync to match h/w.
 | |
| 	 * for efficiency, the scan chain update should occur only
 | |
| 	 * once to sr0.
 | |
| 	 */
 | |
| 	scc_mgr_set_all_ranks(seq, SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
 | |
| 			      write_group, phase, 0);
 | |
| }
 | |
| 
 | |
| static void scc_mgr_set_dqs_en_delay_all_ranks(struct socfpga_sdrseq *seq,
 | |
| 					       u32 read_group, u32 delay)
 | |
| {
 | |
| 	/*
 | |
| 	 * In shadow register mode, the T11 settings are stored in
 | |
| 	 * registers in the core, which are updated by the DQS_ENA
 | |
| 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
 | |
| 	 * save lots of rank switching overhead, by calling
 | |
| 	 * select_shadow_regs_for_update with update_scan_chains
 | |
| 	 * set to 0.
 | |
| 	 */
 | |
| 	scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_DELAY_OFFSET,
 | |
| 			      read_group, delay, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
 | |
|  * @write_group:	Write group
 | |
|  * @delay:		Delay value
 | |
|  *
 | |
|  * This function sets the OCT output delay in SCC manager.
 | |
|  */
 | |
| static void scc_mgr_set_oct_out1_delay(struct socfpga_sdrseq *seq,
 | |
| 				       const u32 write_group, const u32 delay)
 | |
| {
 | |
| 	const int ratio = seq->rwcfg->mem_if_read_dqs_width /
 | |
| 			 seq->rwcfg->mem_if_write_dqs_width;
 | |
| 	const int base = write_group * ratio;
 | |
| 	int i;
 | |
| 	/*
 | |
| 	 * Load the setting in the SCC manager
 | |
| 	 * Although OCT affects only write data, the OCT delay is controlled
 | |
| 	 * by the DQS logic block which is instantiated once per read group.
 | |
| 	 * For protocols where a write group consists of multiple read groups,
 | |
| 	 * the setting must be set multiple times.
 | |
| 	 */
 | |
| 	for (i = 0; i < ratio; i++)
 | |
| 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_set_hhp_extras() - Set HHP extras.
 | |
|  *
 | |
|  * Load the fixed setting in the SCC manager HHP extras.
 | |
|  */
 | |
| static void scc_mgr_set_hhp_extras(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Load the fixed setting in the SCC manager
 | |
| 	 * bits: 0:0 = 1'b1	- DQS bypass
 | |
| 	 * bits: 1:1 = 1'b1	- DQ bypass
 | |
| 	 * bits: 4:2 = 3'b001	- rfifo_mode
 | |
| 	 * bits: 6:5 = 2'b01	- rfifo clock_select
 | |
| 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
 | |
| 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
 | |
| 	 */
 | |
| 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
 | |
| 			  (1 << 2) | (1 << 1) | (1 << 0);
 | |
| 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
 | |
| 			 SCC_MGR_HHP_GLOBALS_OFFSET |
 | |
| 			 SCC_MGR_HHP_EXTRAS_OFFSET;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
 | |
| 		   __func__, __LINE__);
 | |
| 	writel(value, addr);
 | |
| 	debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
 | |
| 		   __func__, __LINE__);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_zero_all() - Zero all DQS config
 | |
|  *
 | |
|  * Zero all DQS config.
 | |
|  */
 | |
| static void scc_mgr_zero_all(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	int i, r;
 | |
| 
 | |
| 	/*
 | |
| 	 * USER Zero all DQS config settings, across all groups and all
 | |
| 	 * shadow registers
 | |
| 	 */
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     r += NUM_RANKS_PER_SHADOW_REG) {
 | |
| 		for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
 | |
| 			/*
 | |
| 			 * The phases actually don't exist on a per-rank basis,
 | |
| 			 * but there's no harm updating them several times, so
 | |
| 			 * let's keep the code simple.
 | |
| 			 */
 | |
| 			scc_mgr_set_dqs_bus_in_delay(i,
 | |
| 						     seq->iocfg->dqs_in_reserve
 | |
| 						     );
 | |
| 			scc_mgr_set_dqs_en_phase(i, 0);
 | |
| 			scc_mgr_set_dqs_en_delay(i, 0);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
 | |
| 			scc_mgr_set_dqdqs_output_phase(i, 0);
 | |
| 			/* Arria V/Cyclone V don't have out2. */
 | |
| 			scc_mgr_set_oct_out1_delay(seq, i,
 | |
| 						   seq->iocfg->dqs_out_reserve);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Multicast to all DQS group enables. */
 | |
| 	writel(0xff, &sdr_scc_mgr->dqs_ena);
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
 | |
|  * @write_group:	Write group
 | |
|  *
 | |
|  * Set bypass mode and trigger SCC update.
 | |
|  */
 | |
| static void scc_set_bypass_mode(const u32 write_group)
 | |
| {
 | |
| 	/* Multicast to all DQ enables. */
 | |
| 	writel(0xff, &sdr_scc_mgr->dq_ena);
 | |
| 	writel(0xff, &sdr_scc_mgr->dm_ena);
 | |
| 
 | |
| 	/* Update current DQS IO enable. */
 | |
| 	writel(0, &sdr_scc_mgr->dqs_io_ena);
 | |
| 
 | |
| 	/* Update the DQS logic. */
 | |
| 	writel(write_group, &sdr_scc_mgr->dqs_ena);
 | |
| 
 | |
| 	/* Hit update. */
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
 | |
|  * @write_group:	Write group
 | |
|  *
 | |
|  * Load DQS settings for Write Group, do not trigger SCC update.
 | |
|  */
 | |
| static void scc_mgr_load_dqs_for_write_group(struct socfpga_sdrseq *seq,
 | |
| 					     const u32 write_group)
 | |
| {
 | |
| 	const int ratio = seq->rwcfg->mem_if_read_dqs_width /
 | |
| 			  seq->rwcfg->mem_if_write_dqs_width;
 | |
| 	const int base = write_group * ratio;
 | |
| 	int i;
 | |
| 	/*
 | |
| 	 * Load the setting in the SCC manager
 | |
| 	 * Although OCT affects only write data, the OCT delay is controlled
 | |
| 	 * by the DQS logic block which is instantiated once per read group.
 | |
| 	 * For protocols where a write group consists of multiple read groups,
 | |
| 	 * the setting must be set multiple times.
 | |
| 	 */
 | |
| 	for (i = 0; i < ratio; i++)
 | |
| 		writel(base + i, &sdr_scc_mgr->dqs_ena);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_zero_group() - Zero all configs for a group
 | |
|  *
 | |
|  * Zero DQ, DM, DQS and OCT configs for a group.
 | |
|  */
 | |
| static void scc_mgr_zero_group(struct socfpga_sdrseq *seq,
 | |
| 			       const u32 write_group, const int out_only)
 | |
| {
 | |
| 	int i, r;
 | |
| 
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     r += NUM_RANKS_PER_SHADOW_REG) {
 | |
| 		/* Zero all DQ config settings. */
 | |
| 		for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
 | |
| 			scc_mgr_set_dq_out1_delay(i, 0);
 | |
| 			if (!out_only)
 | |
| 				scc_mgr_set_dq_in_delay(i, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* Multicast to all DQ enables. */
 | |
| 		writel(0xff, &sdr_scc_mgr->dq_ena);
 | |
| 
 | |
| 		/* Zero all DM config settings. */
 | |
| 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
 | |
| 			if (!out_only)
 | |
| 				scc_mgr_set_dm_in_delay(seq, i, 0);
 | |
| 			scc_mgr_set_dm_out1_delay(seq, i, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* Multicast to all DM enables. */
 | |
| 		writel(0xff, &sdr_scc_mgr->dm_ena);
 | |
| 
 | |
| 		/* Zero all DQS IO settings. */
 | |
| 		if (!out_only)
 | |
| 			scc_mgr_set_dqs_io_in_delay(seq, 0);
 | |
| 
 | |
| 		/* Arria V/Cyclone V don't have out2. */
 | |
| 		scc_mgr_set_dqs_out1_delay(seq, seq->iocfg->dqs_out_reserve);
 | |
| 		scc_mgr_set_oct_out1_delay(seq, write_group,
 | |
| 					   seq->iocfg->dqs_out_reserve);
 | |
| 		scc_mgr_load_dqs_for_write_group(seq, write_group);
 | |
| 
 | |
| 		/* Multicast to all DQS IO enables (only 1 in total). */
 | |
| 		writel(0, &sdr_scc_mgr->dqs_io_ena);
 | |
| 
 | |
| 		/* Hit update to zero everything. */
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * apply and load a particular input delay for the DQ pins in a group
 | |
|  * group_bgn is the index of the first dq pin (in the write group)
 | |
|  */
 | |
| static void scc_mgr_apply_group_dq_in_delay(struct socfpga_sdrseq *seq,
 | |
| 					    u32 group_bgn, u32 delay)
 | |
| {
 | |
| 	u32 i, p;
 | |
| 
 | |
| 	for (i = 0, p = group_bgn; i < seq->rwcfg->mem_dq_per_read_dqs;
 | |
| 	     i++, p++) {
 | |
| 		scc_mgr_set_dq_in_delay(p, delay);
 | |
| 		scc_mgr_load_dq(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the
 | |
|  * DQ pins in a group
 | |
|  * @delay:		Delay value
 | |
|  *
 | |
|  * Apply and load a particular output delay for the DQ pins in a group.
 | |
|  */
 | |
| static void scc_mgr_apply_group_dq_out1_delay(struct socfpga_sdrseq *seq,
 | |
| 					      const u32 delay)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
 | |
| 		scc_mgr_set_dq_out1_delay(i, delay);
 | |
| 		scc_mgr_load_dq(i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* apply and load a particular output delay for the DM pins in a group */
 | |
| static void scc_mgr_apply_group_dm_out1_delay(struct socfpga_sdrseq *seq,
 | |
| 					      u32 delay1)
 | |
| {
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
 | |
| 		scc_mgr_set_dm_out1_delay(seq, i, delay1);
 | |
| 		scc_mgr_load_dm(i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* apply and load delay on both DQS and OCT out1 */
 | |
| static void scc_mgr_apply_group_dqs_io_and_oct_out1(struct socfpga_sdrseq *seq,
 | |
| 						    u32 write_group, u32 delay)
 | |
| {
 | |
| 	scc_mgr_set_dqs_out1_delay(seq, delay);
 | |
| 	scc_mgr_load_dqs_io();
 | |
| 
 | |
| 	scc_mgr_set_oct_out1_delay(seq, write_group, delay);
 | |
| 	scc_mgr_load_dqs_for_write_group(seq, write_group);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
 | |
|  * side: DQ, DM, DQS, OCT
 | |
|  * @write_group:	Write group
 | |
|  * @delay:		Delay value
 | |
|  *
 | |
|  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
 | |
|  */
 | |
| static void scc_mgr_apply_group_all_out_delay_add(struct socfpga_sdrseq *seq,
 | |
| 						  const u32 write_group,
 | |
| 						  const u32 delay)
 | |
| {
 | |
| 	u32 i, new_delay;
 | |
| 
 | |
| 	/* DQ shift */
 | |
| 	for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++)
 | |
| 		scc_mgr_load_dq(i);
 | |
| 
 | |
| 	/* DM shift */
 | |
| 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
 | |
| 		scc_mgr_load_dm(i);
 | |
| 
 | |
| 	/* DQS shift */
 | |
| 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
 | |
| 	if (new_delay > seq->iocfg->io_out2_delay_max) {
 | |
| 		debug_cond(DLEVEL >= 1,
 | |
| 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
 | |
| 			   __func__, __LINE__, write_group, delay, new_delay,
 | |
| 			   seq->iocfg->io_out2_delay_max,
 | |
| 			   new_delay - seq->iocfg->io_out2_delay_max);
 | |
| 		new_delay -= seq->iocfg->io_out2_delay_max;
 | |
| 		scc_mgr_set_dqs_out1_delay(seq, new_delay);
 | |
| 	}
 | |
| 
 | |
| 	scc_mgr_load_dqs_io();
 | |
| 
 | |
| 	/* OCT shift */
 | |
| 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
 | |
| 	if (new_delay > seq->iocfg->io_out2_delay_max) {
 | |
| 		debug_cond(DLEVEL >= 1,
 | |
| 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
 | |
| 			   __func__, __LINE__, write_group, delay,
 | |
| 			   new_delay, seq->iocfg->io_out2_delay_max,
 | |
| 			   new_delay - seq->iocfg->io_out2_delay_max);
 | |
| 		new_delay -= seq->iocfg->io_out2_delay_max;
 | |
| 		scc_mgr_set_oct_out1_delay(seq, write_group, new_delay);
 | |
| 	}
 | |
| 
 | |
| 	scc_mgr_load_dqs_for_write_group(seq, write_group);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
 | |
|  * side to all ranks
 | |
|  * @write_group:	Write group
 | |
|  * @delay:		Delay value
 | |
|  *
 | |
|  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
 | |
|  */
 | |
| static void
 | |
| scc_mgr_apply_group_all_out_delay_add_all_ranks(struct socfpga_sdrseq *seq,
 | |
| 						const u32 write_group,
 | |
| 						const u32 delay)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     r += NUM_RANKS_PER_SHADOW_REG) {
 | |
| 		scc_mgr_apply_group_all_out_delay_add(seq, write_group, delay);
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_jump_as_return() - Return instruction optimization
 | |
|  *
 | |
|  * Optimization used to recover some slots in ddr3 inst_rom could be
 | |
|  * applied to other protocols if we wanted to
 | |
|  */
 | |
| static void set_jump_as_return(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	/*
 | |
| 	 * To save space, we replace return with jump to special shared
 | |
| 	 * RETURN instruction so we set the counter to large value so that
 | |
| 	 * we always jump.
 | |
| 	 */
 | |
| 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 	writel(seq->rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * delay_for_n_mem_clocks() - Delay for N memory clocks
 | |
|  * @clocks:	Length of the delay
 | |
|  *
 | |
|  * Delay for N memory clocks.
 | |
|  */
 | |
| static void delay_for_n_mem_clocks(struct socfpga_sdrseq *seq,
 | |
| 				   const u32 clocks)
 | |
| {
 | |
| 	u32 afi_clocks;
 | |
| 	u16 c_loop;
 | |
| 	u8 inner;
 | |
| 	u8 outer;
 | |
| 
 | |
| 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
 | |
| 
 | |
| 	/* Scale (rounding up) to get afi clocks. */
 | |
| 	afi_clocks = DIV_ROUND_UP(clocks, seq->misccfg->afi_rate_ratio);
 | |
| 	if (afi_clocks)	/* Temporary underflow protection */
 | |
| 		afi_clocks--;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note, we don't bother accounting for being off a little
 | |
| 	 * bit because of a few extra instructions in outer loops.
 | |
| 	 * Note, the loops have a test at the end, and do the test
 | |
| 	 * before the decrement, and so always perform the loop
 | |
| 	 * 1 time more than the counter value
 | |
| 	 */
 | |
| 	c_loop = afi_clocks >> 16;
 | |
| 	outer = c_loop ? 0xff : (afi_clocks >> 8);
 | |
| 	inner = outer ? 0xff : afi_clocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * rom instructions are structured as follows:
 | |
| 	 *
 | |
| 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
 | |
| 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
 | |
| 	 *                return
 | |
| 	 *
 | |
| 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
 | |
| 	 * TARGET_B is set to IDLE_LOOP2 as well
 | |
| 	 *
 | |
| 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
 | |
| 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
 | |
| 	 *
 | |
| 	 * a little confusing, but it helps save precious space in the inst_rom
 | |
| 	 * and sequencer rom and keeps the delays more accurate and reduces
 | |
| 	 * overhead
 | |
| 	 */
 | |
| 	if (afi_clocks < 0x100) {
 | |
| 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
 | |
| 		       &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 
 | |
| 		writel(seq->rwcfg->idle_loop1,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 
 | |
| 		writel(seq->rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 | |
| 	} else {
 | |
| 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
 | |
| 		       &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 
 | |
| 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
 | |
| 		       &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 
 | |
| 		writel(seq->rwcfg->idle_loop2,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| 
 | |
| 		writel(seq->rwcfg->idle_loop2,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 
 | |
| 		do {
 | |
| 			writel(seq->rwcfg->idle_loop2,
 | |
| 			       SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 			       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 | |
| 		} while (c_loop-- != 0);
 | |
| 	}
 | |
| 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
 | |
| }
 | |
| 
 | |
| static void delay_for_n_ns(struct socfpga_sdrseq *seq, const u32 ns)
 | |
| {
 | |
| 	delay_for_n_mem_clocks(seq, (ns * seq->misccfg->afi_clk_freq *
 | |
| 				seq->misccfg->afi_rate_ratio) / 1000);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_init_load_regs() - Load instruction registers
 | |
|  * @cntr0:	Counter 0 value
 | |
|  * @cntr1:	Counter 1 value
 | |
|  * @cntr2:	Counter 2 value
 | |
|  * @jump:	Jump instruction value
 | |
|  *
 | |
|  * Load instruction registers.
 | |
|  */
 | |
| static void rw_mgr_mem_init_load_regs(struct socfpga_sdrseq *seq,
 | |
| 				      u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
 | |
| {
 | |
| 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 | |
| 
 | |
| 	/* Load counters */
 | |
| 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
 | |
| 	       &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
 | |
| 	       &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
 | |
| 	       &sdr_rw_load_mgr_regs->load_cntr2);
 | |
| 
 | |
| 	/* Load jump address */
 | |
| 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 
 | |
| 	/* Execute count instruction */
 | |
| 	writel(jump, grpaddr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_load_user_ddr2() - Load user calibration values for DDR2
 | |
|  * @handoff:	Indicate whether this is initialization or handoff phase
 | |
|  *
 | |
|  * Load user calibration values and optionally precharge the banks.
 | |
|  */
 | |
| static void rw_mgr_mem_load_user_ddr2(struct socfpga_sdrseq *seq,
 | |
| 				      const int handoff)
 | |
| {
 | |
| 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 | |
| 	u32 r;
 | |
| 
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
 | |
| 		/* set rank */
 | |
| 		set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
 | |
| 
 | |
| 		/* precharge all banks ... */
 | |
| 		writel(seq->rwcfg->precharge_all, grpaddr);
 | |
| 
 | |
| 		writel(seq->rwcfg->emr2, grpaddr);
 | |
| 		writel(seq->rwcfg->emr3, grpaddr);
 | |
| 		writel(seq->rwcfg->emr, grpaddr);
 | |
| 
 | |
| 		if (handoff) {
 | |
| 			writel(seq->rwcfg->mr_user, grpaddr);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		writel(seq->rwcfg->mr_dll_reset, grpaddr);
 | |
| 
 | |
| 		writel(seq->rwcfg->precharge_all, grpaddr);
 | |
| 
 | |
| 		writel(seq->rwcfg->refresh, grpaddr);
 | |
| 		delay_for_n_ns(seq, 200);
 | |
| 		writel(seq->rwcfg->refresh, grpaddr);
 | |
| 		delay_for_n_ns(seq, 200);
 | |
| 
 | |
| 		writel(seq->rwcfg->mr_calib, grpaddr);
 | |
| 		writel(/*seq->rwcfg->*/0x0b, grpaddr);	// EMR_OCD_ENABLE
 | |
| 		writel(seq->rwcfg->emr, grpaddr);
 | |
| 		delay_for_n_mem_clocks(seq, 200);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_load_user_ddr3() - Load user calibration values
 | |
|  * @fin1:	Final instruction 1
 | |
|  * @fin2:	Final instruction 2
 | |
|  * @precharge:	If 1, precharge the banks at the end
 | |
|  *
 | |
|  * Load user calibration values and optionally precharge the banks.
 | |
|  */
 | |
| static void rw_mgr_mem_load_user_ddr3(struct socfpga_sdrseq *seq,
 | |
| 				 const u32 fin1, const u32 fin2,
 | |
| 				 const int precharge)
 | |
| {
 | |
| 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 | |
| 	u32 r;
 | |
| 
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
 | |
| 		/* set rank */
 | |
| 		set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
 | |
| 
 | |
| 		/* precharge all banks ... */
 | |
| 		if (precharge)
 | |
| 			writel(seq->rwcfg->precharge_all, grpaddr);
 | |
| 
 | |
| 		/*
 | |
| 		 * USER Use Mirror-ed commands for odd ranks if address
 | |
| 		 * mirrorring is on
 | |
| 		 */
 | |
| 		if ((seq->rwcfg->mem_address_mirroring >> r) & 0x1) {
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(seq->rwcfg->mrs2_mirr, grpaddr);
 | |
| 			delay_for_n_mem_clocks(seq, 4);
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(seq->rwcfg->mrs3_mirr, grpaddr);
 | |
| 			delay_for_n_mem_clocks(seq, 4);
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(seq->rwcfg->mrs1_mirr, grpaddr);
 | |
| 			delay_for_n_mem_clocks(seq, 4);
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(fin1, grpaddr);
 | |
| 		} else {
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(seq->rwcfg->mrs2, grpaddr);
 | |
| 			delay_for_n_mem_clocks(seq, 4);
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(seq->rwcfg->mrs3, grpaddr);
 | |
| 			delay_for_n_mem_clocks(seq, 4);
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(seq->rwcfg->mrs1, grpaddr);
 | |
| 			set_jump_as_return(seq);
 | |
| 			writel(fin2, grpaddr);
 | |
| 		}
 | |
| 
 | |
| 		if (precharge)
 | |
| 			continue;
 | |
| 
 | |
| 		set_jump_as_return(seq);
 | |
| 		writel(seq->rwcfg->zqcl, grpaddr);
 | |
| 
 | |
| 		/* tZQinit = tDLLK = 512 ck cycles */
 | |
| 		delay_for_n_mem_clocks(seq, 512);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_load_user() - Load user calibration values
 | |
|  * @fin1:	Final instruction 1
 | |
|  * @fin2:	Final instruction 2
 | |
|  * @precharge:	If 1, precharge the banks at the end
 | |
|  *
 | |
|  * Load user calibration values and optionally precharge the banks.
 | |
|  */
 | |
| static void rw_mgr_mem_load_user(struct socfpga_sdrseq *seq,
 | |
| 				 const u32 fin1, const u32 fin2,
 | |
| 				 const int precharge)
 | |
| {
 | |
| 	if (dram_is_ddr(2))
 | |
| 		rw_mgr_mem_load_user_ddr2(seq, precharge);
 | |
| 	else if (dram_is_ddr(3))
 | |
| 		rw_mgr_mem_load_user_ddr3(seq, fin1, fin2, precharge);
 | |
| 	else
 | |
| 		hang();
 | |
| }
 | |
| /**
 | |
|  * rw_mgr_mem_initialize() - Initialize RW Manager
 | |
|  *
 | |
|  * Initialize RW Manager.
 | |
|  */
 | |
| static void rw_mgr_mem_initialize(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 
 | |
| 	/* The reset / cke part of initialization is broadcasted to all ranks */
 | |
| 	if (dram_is_ddr(3)) {
 | |
| 		writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 					RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Here's how you load register for a loop
 | |
| 	 * Counters are located @ 0x800
 | |
| 	 * Jump address are located @ 0xC00
 | |
| 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
 | |
| 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
 | |
| 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
 | |
| 	 * significant bits
 | |
| 	 */
 | |
| 
 | |
| 	/* Start with memory RESET activated */
 | |
| 
 | |
| 	/* tINIT = 200us */
 | |
| 
 | |
| 	/*
 | |
| 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
 | |
| 	 * If a and b are the number of iteration in 2 nested loops
 | |
| 	 * it takes the following number of cycles to complete the operation:
 | |
| 	 * number_of_cycles = ((2 + n) * a + 2) * b
 | |
| 	 * where n is the number of instruction in the inner loop
 | |
| 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
 | |
| 	 * b = 6A
 | |
| 	 */
 | |
| 	rw_mgr_mem_init_load_regs(seq, seq->misccfg->tinit_cntr0_val,
 | |
| 				  seq->misccfg->tinit_cntr1_val,
 | |
| 				  seq->misccfg->tinit_cntr2_val,
 | |
| 				  seq->rwcfg->init_reset_0_cke_0);
 | |
| 
 | |
| 	/* Indicate that memory is stable. */
 | |
| 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
 | |
| 
 | |
| 	if (dram_is_ddr(2)) {
 | |
| 		writel(seq->rwcfg->nop, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 | |
| 
 | |
| 		/* Bring up clock enable. */
 | |
| 
 | |
| 		/* tXRP < 400 ck cycles */
 | |
| 		delay_for_n_ns(seq, 400);
 | |
| 	} else if (dram_is_ddr(3)) {
 | |
| 		/*
 | |
| 		 * transition the RESET to high
 | |
| 		 * Wait for 500us
 | |
| 		 */
 | |
| 
 | |
| 		/*
 | |
| 		 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
 | |
| 		 * If a and b are the number of iteration in 2 nested loops
 | |
| 		 * it takes the following number of cycles to complete the
 | |
| 		 * operation number_of_cycles = ((2 + n) * a + 2) * b
 | |
| 		 * where n is the number of instruction in the inner loop
 | |
| 		 * One possible solution is
 | |
| 		 * n = 2 , a = 131 , b = 256 => a = 83, b = FF
 | |
| 		 */
 | |
| 		rw_mgr_mem_init_load_regs(seq, seq->misccfg->treset_cntr0_val,
 | |
| 					  seq->misccfg->treset_cntr1_val,
 | |
| 					  seq->misccfg->treset_cntr2_val,
 | |
| 					  seq->rwcfg->init_reset_1_cke_0);
 | |
| 		/* Bring up clock enable. */
 | |
| 
 | |
| 		/* tXRP < 250 ck cycles */
 | |
| 		delay_for_n_mem_clocks(seq, 250);
 | |
| 	}
 | |
| 
 | |
| 	rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_dll_reset_mirr,
 | |
| 			     seq->rwcfg->mrs0_dll_reset, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_handoff() - Hand off the memory to user
 | |
|  *
 | |
|  * At the end of calibration we have to program the user settings in
 | |
|  * and hand off the memory to the user.
 | |
|  */
 | |
| static void rw_mgr_mem_handoff(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_user_mirr,
 | |
| 			     seq->rwcfg->mrs0_user, 1);
 | |
| 	/*
 | |
| 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
 | |
| 	 * commands, but we will have plenty of NIOS cycles before actual
 | |
| 	 * handoff so its okay.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
 | |
|  * @group:	Write Group
 | |
|  * @use_dm:	Use DM
 | |
|  *
 | |
|  * Issue write test command. Two variants are provided, one that just tests
 | |
|  * a write pattern and another that tests datamask functionality.
 | |
|  */
 | |
| static void rw_mgr_mem_calibrate_write_test_issue(struct socfpga_sdrseq *seq,
 | |
| 						  u32 group, u32 test_dm)
 | |
| {
 | |
| 	const u32 quick_write_mode =
 | |
| 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
 | |
| 		seq->misccfg->enable_super_quick_calibration;
 | |
| 	u32 mcc_instruction;
 | |
| 	u32 rw_wl_nop_cycles;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set counter and jump addresses for the right
 | |
| 	 * number of NOP cycles.
 | |
| 	 * The number of supported NOP cycles can range from -1 to infinity
 | |
| 	 * Three different cases are handled:
 | |
| 	 *
 | |
| 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
 | |
| 	 *    mechanism will be used to insert the right number of NOPs
 | |
| 	 *
 | |
| 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
 | |
| 	 *    issuing the write command will jump straight to the
 | |
| 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
 | |
| 	 *    data (for RLD), skipping
 | |
| 	 *    the NOP micro-instruction all together
 | |
| 	 *
 | |
| 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
 | |
| 	 *    turned on in the same micro-instruction that issues the write
 | |
| 	 *    command. Then we need
 | |
| 	 *    to directly jump to the micro-instruction that sends out the data
 | |
| 	 *
 | |
| 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
 | |
| 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
 | |
| 	 *       write-read operations.
 | |
| 	 *       one counter left to issue this command in "multiple-group" mode
 | |
| 	 */
 | |
| 
 | |
| 	rw_wl_nop_cycles = seq->gbl.rw_wl_nop_cycles;
 | |
| 
 | |
| 	if (rw_wl_nop_cycles == -1) {
 | |
| 		/*
 | |
| 		 * CNTR 2 - We want to execute the special write operation that
 | |
| 		 * turns on DQS right away and then skip directly to the
 | |
| 		 * instruction that sends out the data. We set the counter to a
 | |
| 		 * large number so that the jump is always taken.
 | |
| 		 */
 | |
| 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
 | |
| 
 | |
| 		/* CNTR 3 - Not used */
 | |
| 		if (test_dm) {
 | |
| 			mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_data,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
 | |
| 		} else {
 | |
| 			mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0_wl_1;
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_bank_0_data,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
 | |
| 		}
 | |
| 	} else if (rw_wl_nop_cycles == 0) {
 | |
| 		/*
 | |
| 		 * CNTR 2 - We want to skip the NOP operation and go straight
 | |
| 		 * to the DQS enable instruction. We set the counter to a large
 | |
| 		 * number so that the jump is always taken.
 | |
| 		 */
 | |
| 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
 | |
| 
 | |
| 		/* CNTR 3 - Not used */
 | |
| 		if (test_dm) {
 | |
| 			mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 		} else {
 | |
| 			mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_bank_0_dqs,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * CNTR 2 - In this case we want to execute the next instruction
 | |
| 		 * and NOT take the jump. So we set the counter to 0. The jump
 | |
| 		 * address doesn't count.
 | |
| 		 */
 | |
| 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
 | |
| 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 
 | |
| 		/*
 | |
| 		 * CNTR 3 - Set the nop counter to the number of cycles we
 | |
| 		 * need to loop for, minus 1.
 | |
| 		 */
 | |
| 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
 | |
| 		if (test_dm) {
 | |
| 			mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
 | |
| 		} else {
 | |
| 			mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
 | |
| 			writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
 | |
| 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
 | |
| 
 | |
| 	if (quick_write_mode)
 | |
| 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 	else
 | |
| 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 
 | |
| 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| 
 | |
| 	/*
 | |
| 	 * CNTR 1 - This is used to ensure enough time elapses
 | |
| 	 * for read data to come back.
 | |
| 	 */
 | |
| 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 
 | |
| 	if (test_dm) {
 | |
| 		writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_wait,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 	} else {
 | |
| 		writel(seq->rwcfg->lfsr_wr_rd_bank_0_wait,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 	}
 | |
| 
 | |
| 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
 | |
| 				(group << 2));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple
 | |
|  * pass
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @write_group:	Write Group
 | |
|  * @use_dm:		Use DM
 | |
|  * @all_correct:	All bits must be correct in the mask
 | |
|  * @bit_chk:		Resulting bit mask after the test
 | |
|  * @all_ranks:		Test all ranks
 | |
|  *
 | |
|  * Test writes, can check for a single bit pass or multiple bit pass.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_write_test(struct socfpga_sdrseq *seq,
 | |
| 				const u32 rank_bgn, const u32 write_group,
 | |
| 				const u32 use_dm, const u32 all_correct,
 | |
| 				u32 *bit_chk, const u32 all_ranks)
 | |
| {
 | |
| 	const u32 rank_end = all_ranks ?
 | |
| 				seq->rwcfg->mem_number_of_ranks :
 | |
| 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
 | |
| 	const u32 shift_ratio = seq->rwcfg->mem_dq_per_write_dqs /
 | |
| 				seq->rwcfg->mem_virtual_groups_per_write_dqs;
 | |
| 	const u32 correct_mask_vg = seq->param.write_correct_mask_vg;
 | |
| 
 | |
| 	u32 tmp_bit_chk, base_rw_mgr, group;
 | |
| 	int vg, r;
 | |
| 
 | |
| 	*bit_chk = seq->param.write_correct_mask;
 | |
| 
 | |
| 	for (r = rank_bgn; r < rank_end; r++) {
 | |
| 		/* Set rank */
 | |
| 		set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
 | |
| 
 | |
| 		tmp_bit_chk = 0;
 | |
| 		for (vg = seq->rwcfg->mem_virtual_groups_per_write_dqs - 1;
 | |
| 		     vg >= 0; vg--) {
 | |
| 			/* Reset the FIFOs to get pointers to known state. */
 | |
| 			writel(0, &phy_mgr_cmd->fifo_reset);
 | |
| 
 | |
| 			group = write_group *
 | |
| 				seq->rwcfg->mem_virtual_groups_per_write_dqs
 | |
| 				+ vg;
 | |
| 			rw_mgr_mem_calibrate_write_test_issue(seq, group,
 | |
| 							      use_dm);
 | |
| 
 | |
| 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
 | |
| 			tmp_bit_chk <<= shift_ratio;
 | |
| 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
 | |
| 		}
 | |
| 
 | |
| 		*bit_chk &= tmp_bit_chk;
 | |
| 	}
 | |
| 
 | |
| 	set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
 | |
| 	if (all_correct) {
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
 | |
| 			   write_group, use_dm, *bit_chk,
 | |
| 			   seq->param.write_correct_mask,
 | |
| 			   *bit_chk == seq->param.write_correct_mask);
 | |
| 		return *bit_chk == seq->param.write_correct_mask;
 | |
| 	} else {
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
 | |
| 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
 | |
| 		return *bit_chk != 0x00;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
 | |
|  * @rank_bgn:	Rank number
 | |
|  * @group:	Read/Write Group
 | |
|  * @all_ranks:	Test all ranks
 | |
|  *
 | |
|  * Performs a guaranteed read on the patterns we are going to use during a
 | |
|  * read test to ensure memory works.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_read_test_patterns(struct socfpga_sdrseq *seq,
 | |
| 					const u32 rank_bgn, const u32 group,
 | |
| 					const u32 all_ranks)
 | |
| {
 | |
| 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 | |
| 	const u32 addr_offset =
 | |
| 			 (group * seq->rwcfg->mem_virtual_groups_per_read_dqs)
 | |
| 			 << 2;
 | |
| 	const u32 rank_end = all_ranks ?
 | |
| 				seq->rwcfg->mem_number_of_ranks :
 | |
| 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
 | |
| 	const u32 shift_ratio = seq->rwcfg->mem_dq_per_read_dqs /
 | |
| 				seq->rwcfg->mem_virtual_groups_per_read_dqs;
 | |
| 	const u32 correct_mask_vg = seq->param.read_correct_mask_vg;
 | |
| 
 | |
| 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
 | |
| 	int vg, r;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	bit_chk = seq->param.read_correct_mask;
 | |
| 
 | |
| 	for (r = rank_bgn; r < rank_end; r++) {
 | |
| 		/* Set rank */
 | |
| 		set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
 | |
| 
 | |
| 		/* Load up a constant bursts of read commands */
 | |
| 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 		writel(seq->rwcfg->guaranteed_read,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| 
 | |
| 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 		writel(seq->rwcfg->guaranteed_read_cont,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 
 | |
| 		tmp_bit_chk = 0;
 | |
| 		for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
 | |
| 		     vg >= 0; vg--) {
 | |
| 			/* Reset the FIFOs to get pointers to known state. */
 | |
| 			writel(0, &phy_mgr_cmd->fifo_reset);
 | |
| 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
 | |
| 			writel(seq->rwcfg->guaranteed_read,
 | |
| 			       addr + addr_offset + (vg << 2));
 | |
| 
 | |
| 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
 | |
| 			tmp_bit_chk <<= shift_ratio;
 | |
| 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
 | |
| 		}
 | |
| 
 | |
| 		bit_chk &= tmp_bit_chk;
 | |
| 	}
 | |
| 
 | |
| 	writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
 | |
| 
 | |
| 	set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
 | |
| 
 | |
| 	if (bit_chk != seq->param.read_correct_mask)
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 1,
 | |
| 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
 | |
| 		   __func__, __LINE__, group, bit_chk,
 | |
| 		   seq->param.read_correct_mask, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read
 | |
|  * test
 | |
|  * @rank_bgn:	Rank number
 | |
|  * @all_ranks:	Test all ranks
 | |
|  *
 | |
|  * Load up the patterns we are going to use during a read test.
 | |
|  */
 | |
| static void rw_mgr_mem_calibrate_read_load_patterns(struct socfpga_sdrseq *seq,
 | |
| 						    const u32 rank_bgn,
 | |
| 						    const int all_ranks)
 | |
| {
 | |
| 	const u32 rank_end = all_ranks ?
 | |
| 			seq->rwcfg->mem_number_of_ranks :
 | |
| 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
 | |
| 	u32 r;
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 
 | |
| 	for (r = rank_bgn; r < rank_end; r++) {
 | |
| 		/* set rank */
 | |
| 		set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
 | |
| 
 | |
| 		/* Load up a constant bursts */
 | |
| 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 
 | |
| 		writel(seq->rwcfg->guaranteed_write_wait0,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| 
 | |
| 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 
 | |
| 		writel(seq->rwcfg->guaranteed_write_wait1,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 
 | |
| 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
 | |
| 
 | |
| 		writel(seq->rwcfg->guaranteed_write_wait2,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 
 | |
| 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
 | |
| 
 | |
| 		writel(seq->rwcfg->guaranteed_write_wait3,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
 | |
| 
 | |
| 		writel(seq->rwcfg->guaranteed_write,
 | |
| 		       SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 		       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 | |
| 	}
 | |
| 
 | |
| 	set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @group:		Read/Write group
 | |
|  * @num_tries:		Number of retries of the test
 | |
|  * @all_correct:	All bits must be correct in the mask
 | |
|  * @bit_chk:		Resulting bit mask after the test
 | |
|  * @all_groups:		Test all R/W groups
 | |
|  * @all_ranks:		Test all ranks
 | |
|  *
 | |
|  * Try a read and see if it returns correct data back. Test has dummy reads
 | |
|  * inserted into the mix used to align DQS enable. Test has more thorough
 | |
|  * checks than the regular read test.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_read_test(struct socfpga_sdrseq *seq,
 | |
| 			       const u32 rank_bgn, const u32 group,
 | |
| 			       const u32 num_tries, const u32 all_correct,
 | |
| 			       u32 *bit_chk,
 | |
| 			       const u32 all_groups, const u32 all_ranks)
 | |
| {
 | |
| 	const u32 rank_end = all_ranks ? seq->rwcfg->mem_number_of_ranks :
 | |
| 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
 | |
| 	const u32 quick_read_mode =
 | |
| 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
 | |
| 		 seq->misccfg->enable_super_quick_calibration);
 | |
| 	u32 correct_mask_vg = seq->param.read_correct_mask_vg;
 | |
| 	u32 tmp_bit_chk;
 | |
| 	u32 base_rw_mgr;
 | |
| 	u32 addr;
 | |
| 
 | |
| 	int r, vg, ret;
 | |
| 
 | |
| 	*bit_chk = seq->param.read_correct_mask;
 | |
| 
 | |
| 	for (r = rank_bgn; r < rank_end; r++) {
 | |
| 		/* set rank */
 | |
| 		set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
 | |
| 
 | |
| 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 
 | |
| 		writel(seq->rwcfg->read_b2b_wait1,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 
 | |
| 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
 | |
| 		writel(seq->rwcfg->read_b2b_wait2,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 | |
| 
 | |
| 		if (quick_read_mode)
 | |
| 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 			/* need at least two (1+1) reads to capture failures */
 | |
| 		else if (all_groups)
 | |
| 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 		else
 | |
| 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 
 | |
| 		writel(seq->rwcfg->read_b2b,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| 		if (all_groups)
 | |
| 			writel(seq->rwcfg->mem_if_read_dqs_width *
 | |
| 			       seq->rwcfg->mem_virtual_groups_per_read_dqs - 1,
 | |
| 			       &sdr_rw_load_mgr_regs->load_cntr3);
 | |
| 		else
 | |
| 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
 | |
| 
 | |
| 		writel(seq->rwcfg->read_b2b,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
 | |
| 
 | |
| 		tmp_bit_chk = 0;
 | |
| 		for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
 | |
| 		     vg >= 0; vg--) {
 | |
| 			/* Reset the FIFOs to get pointers to known state. */
 | |
| 			writel(0, &phy_mgr_cmd->fifo_reset);
 | |
| 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
 | |
| 
 | |
| 			if (all_groups) {
 | |
| 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
 | |
| 			} else {
 | |
| 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 | |
| 			}
 | |
| 
 | |
| 			writel(seq->rwcfg->read_b2b, addr +
 | |
| 			       ((group *
 | |
| 				 seq->rwcfg->mem_virtual_groups_per_read_dqs +
 | |
| 				 vg) << 2));
 | |
| 
 | |
| 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
 | |
| 			tmp_bit_chk <<=
 | |
| 				seq->rwcfg->mem_dq_per_read_dqs /
 | |
| 				seq->rwcfg->mem_virtual_groups_per_read_dqs;
 | |
| 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
 | |
| 		}
 | |
| 
 | |
| 		*bit_chk &= tmp_bit_chk;
 | |
| 	}
 | |
| 
 | |
| 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 | |
| 	writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
 | |
| 
 | |
| 	set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
 | |
| 
 | |
| 	if (all_correct) {
 | |
| 		ret = (*bit_chk == seq->param.read_correct_mask);
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
 | |
| 			   __func__, __LINE__, group, all_groups, *bit_chk,
 | |
| 			   seq->param.read_correct_mask, ret);
 | |
| 	} else	{
 | |
| 		ret = (*bit_chk != 0x00);
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
 | |
| 			   __func__, __LINE__, group, all_groups, *bit_chk,
 | |
| 			   0, ret);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
 | |
|  * @grp:		Read/Write group
 | |
|  * @num_tries:		Number of retries of the test
 | |
|  * @all_correct:	All bits must be correct in the mask
 | |
|  * @all_groups:		Test all R/W groups
 | |
|  *
 | |
|  * Perform a READ test across all memory ranks.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_read_test_all_ranks(struct socfpga_sdrseq *seq,
 | |
| 					 const u32 grp, const u32 num_tries,
 | |
| 					 const u32 all_correct,
 | |
| 					 const u32 all_groups)
 | |
| {
 | |
| 	u32 bit_chk;
 | |
| 	return rw_mgr_mem_calibrate_read_test(seq, 0, grp, num_tries,
 | |
| 					      all_correct, &bit_chk, all_groups,
 | |
| 					      1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_incr_vfifo() - Increase VFIFO value
 | |
|  * @grp:	Read/Write group
 | |
|  *
 | |
|  * Increase VFIFO value.
 | |
|  */
 | |
| static void rw_mgr_incr_vfifo(const u32 grp)
 | |
| {
 | |
| 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_decr_vfifo() - Decrease VFIFO value
 | |
|  * @grp:	Read/Write group
 | |
|  *
 | |
|  * Decrease VFIFO value.
 | |
|  */
 | |
| static void rw_mgr_decr_vfifo(struct socfpga_sdrseq *seq, const u32 grp)
 | |
| {
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < seq->misccfg->read_valid_fifo_size - 1; i++)
 | |
| 		rw_mgr_incr_vfifo(grp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_vfifo_failing_read() - Push VFIFO to get a failing read
 | |
|  * @grp:	Read/Write group
 | |
|  *
 | |
|  * Push VFIFO until a failing read happens.
 | |
|  */
 | |
| static int find_vfifo_failing_read(struct socfpga_sdrseq *seq,
 | |
| 				   const u32 grp)
 | |
| {
 | |
| 	u32 v, ret, fail_cnt = 0;
 | |
| 
 | |
| 	for (v = 0; v < seq->misccfg->read_valid_fifo_size; v++) {
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
 | |
| 			   __func__, __LINE__, v);
 | |
| 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
 | |
| 							       PASS_ONE_BIT, 0);
 | |
| 		if (!ret) {
 | |
| 			fail_cnt++;
 | |
| 
 | |
| 			if (fail_cnt == 2)
 | |
| 				return v;
 | |
| 		}
 | |
| 
 | |
| 		/* Fiddle with FIFO. */
 | |
| 		rw_mgr_incr_vfifo(grp);
 | |
| 	}
 | |
| 
 | |
| 	/* No failing read found! Something must have gone wrong. */
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdr_find_phase_delay() - Find DQS enable phase or delay
 | |
|  * @working:	If 1, look for working phase/delay, if 0, look for non-working
 | |
|  * @delay:	If 1, look for delay, if 0, look for phase
 | |
|  * @grp:	Read/Write group
 | |
|  * @work:	Working window position
 | |
|  * @work_inc:	Working window increment
 | |
|  * @pd:		DQS Phase/Delay Iterator
 | |
|  *
 | |
|  * Find working or non-working DQS enable phase setting.
 | |
|  */
 | |
| static int sdr_find_phase_delay(struct socfpga_sdrseq *seq, int working,
 | |
| 				int delay, const u32 grp, u32 *work,
 | |
| 				const u32 work_inc, u32 *pd)
 | |
| {
 | |
| 	const u32 max = delay ? seq->iocfg->dqs_en_delay_max :
 | |
| 				seq->iocfg->dqs_en_phase_max;
 | |
| 	u32 ret;
 | |
| 
 | |
| 	for (; *pd <= max; (*pd)++) {
 | |
| 		if (delay)
 | |
| 			scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *pd);
 | |
| 		else
 | |
| 			scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *pd);
 | |
| 
 | |
| 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
 | |
| 							       PASS_ONE_BIT, 0);
 | |
| 		if (!working)
 | |
| 			ret = !ret;
 | |
| 
 | |
| 		if (ret)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (work)
 | |
| 			*work += work_inc;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| /**
 | |
|  * sdr_find_phase() - Find DQS enable phase
 | |
|  * @working:	If 1, look for working phase, if 0, look for non-working phase
 | |
|  * @grp:	Read/Write group
 | |
|  * @work:	Working window position
 | |
|  * @i:		Iterator
 | |
|  * @p:		DQS Phase Iterator
 | |
|  *
 | |
|  * Find working or non-working DQS enable phase setting.
 | |
|  */
 | |
| static int sdr_find_phase(struct socfpga_sdrseq *seq, int working,
 | |
| 			  const u32 grp, u32 *work, u32 *i, u32 *p)
 | |
| {
 | |
| 	const u32 end = seq->misccfg->read_valid_fifo_size + (working ? 0 : 1);
 | |
| 	int ret;
 | |
| 
 | |
| 	for (; *i < end; (*i)++) {
 | |
| 		if (working)
 | |
| 			*p = 0;
 | |
| 
 | |
| 		ret = sdr_find_phase_delay(seq, working, 0, grp, work,
 | |
| 					   seq->iocfg->delay_per_opa_tap, p);
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (*p > seq->iocfg->dqs_en_phase_max) {
 | |
| 			/* Fiddle with FIFO. */
 | |
| 			rw_mgr_incr_vfifo(grp);
 | |
| 			if (!working)
 | |
| 				*p = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdr_working_phase() - Find working DQS enable phase
 | |
|  * @grp:	Read/Write group
 | |
|  * @work_bgn:	Working window start position
 | |
|  * @d:		dtaps output value
 | |
|  * @p:		DQS Phase Iterator
 | |
|  * @i:		Iterator
 | |
|  *
 | |
|  * Find working DQS enable phase setting.
 | |
|  */
 | |
| static int sdr_working_phase(struct socfpga_sdrseq *seq, const u32 grp,
 | |
| 			     u32 *work_bgn, u32 *d, u32 *p, u32 *i)
 | |
| {
 | |
| 	const u32 dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
 | |
| 				   seq->iocfg->delay_per_dqs_en_dchain_tap;
 | |
| 	int ret;
 | |
| 
 | |
| 	*work_bgn = 0;
 | |
| 
 | |
| 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
 | |
| 		*i = 0;
 | |
| 		scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *d);
 | |
| 		ret = sdr_find_phase(seq, 1, grp, work_bgn, i, p);
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 		*work_bgn += seq->iocfg->delay_per_dqs_en_dchain_tap;
 | |
| 	}
 | |
| 
 | |
| 	/* Cannot find working solution */
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
 | |
| 		   __func__, __LINE__);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdr_backup_phase() - Find DQS enable backup phase
 | |
|  * @grp:	Read/Write group
 | |
|  * @work_bgn:	Working window start position
 | |
|  * @p:		DQS Phase Iterator
 | |
|  *
 | |
|  * Find DQS enable backup phase setting.
 | |
|  */
 | |
| static void sdr_backup_phase(struct socfpga_sdrseq *seq, const u32 grp,
 | |
| 			     u32 *work_bgn, u32 *p)
 | |
| {
 | |
| 	u32 tmp_delay, d;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Special case code for backing up a phase */
 | |
| 	if (*p == 0) {
 | |
| 		*p = seq->iocfg->dqs_en_phase_max;
 | |
| 		rw_mgr_decr_vfifo(seq, grp);
 | |
| 	} else {
 | |
| 		(*p)--;
 | |
| 	}
 | |
| 	tmp_delay = *work_bgn - seq->iocfg->delay_per_opa_tap;
 | |
| 	scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *p);
 | |
| 
 | |
| 	for (d = 0; d <= seq->iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
 | |
| 	     d++) {
 | |
| 		scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
 | |
| 
 | |
| 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
 | |
| 							       PASS_ONE_BIT, 0);
 | |
| 		if (ret) {
 | |
| 			*work_bgn = tmp_delay;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		tmp_delay += seq->iocfg->delay_per_dqs_en_dchain_tap;
 | |
| 	}
 | |
| 
 | |
| 	/* Restore VFIFO to old state before we decremented it (if needed). */
 | |
| 	(*p)++;
 | |
| 	if (*p > seq->iocfg->dqs_en_phase_max) {
 | |
| 		*p = 0;
 | |
| 		rw_mgr_incr_vfifo(grp);
 | |
| 	}
 | |
| 
 | |
| 	scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdr_nonworking_phase() - Find non-working DQS enable phase
 | |
|  * @grp:	Read/Write group
 | |
|  * @work_end:	Working window end position
 | |
|  * @p:		DQS Phase Iterator
 | |
|  * @i:		Iterator
 | |
|  *
 | |
|  * Find non-working DQS enable phase setting.
 | |
|  */
 | |
| static int sdr_nonworking_phase(struct socfpga_sdrseq *seq,
 | |
| 				const u32 grp, u32 *work_end, u32 *p, u32 *i)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	(*p)++;
 | |
| 	*work_end += seq->iocfg->delay_per_opa_tap;
 | |
| 	if (*p > seq->iocfg->dqs_en_phase_max) {
 | |
| 		/* Fiddle with FIFO. */
 | |
| 		*p = 0;
 | |
| 		rw_mgr_incr_vfifo(grp);
 | |
| 	}
 | |
| 
 | |
| 	ret = sdr_find_phase(seq, 0, grp, work_end, i, p);
 | |
| 	if (ret) {
 | |
| 		/* Cannot see edge of failing read. */
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
 | |
| 			   __func__, __LINE__);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdr_find_window_center() - Find center of the working DQS window.
 | |
|  * @grp:	Read/Write group
 | |
|  * @work_bgn:	First working settings
 | |
|  * @work_end:	Last working settings
 | |
|  *
 | |
|  * Find center of the working DQS enable window.
 | |
|  */
 | |
| static int sdr_find_window_center(struct socfpga_sdrseq *seq,
 | |
| 				  const u32 grp, const u32 work_bgn,
 | |
| 				  const u32 work_end)
 | |
| {
 | |
| 	u32 work_mid;
 | |
| 	int tmp_delay = 0;
 | |
| 	int i, p, d;
 | |
| 
 | |
| 	work_mid = (work_bgn + work_end) / 2;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
 | |
| 		   work_bgn, work_end, work_mid);
 | |
| 	/* Get the middle delay to be less than a VFIFO delay */
 | |
| 	tmp_delay = (seq->iocfg->dqs_en_phase_max + 1)
 | |
| 		* seq->iocfg->delay_per_opa_tap;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
 | |
| 	work_mid %= tmp_delay;
 | |
| 	debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
 | |
| 
 | |
| 	tmp_delay = rounddown(work_mid, seq->iocfg->delay_per_opa_tap);
 | |
| 	if (tmp_delay > seq->iocfg->dqs_en_phase_max
 | |
| 		* seq->iocfg->delay_per_opa_tap) {
 | |
| 		tmp_delay = seq->iocfg->dqs_en_phase_max
 | |
| 			* seq->iocfg->delay_per_opa_tap;
 | |
| 	}
 | |
| 	p = tmp_delay / seq->iocfg->delay_per_opa_tap;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
 | |
| 
 | |
| 	d = DIV_ROUND_UP(work_mid - tmp_delay,
 | |
| 			 seq->iocfg->delay_per_dqs_en_dchain_tap);
 | |
| 	if (d > seq->iocfg->dqs_en_delay_max)
 | |
| 		d = seq->iocfg->dqs_en_delay_max;
 | |
| 	tmp_delay += d * seq->iocfg->delay_per_dqs_en_dchain_tap;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
 | |
| 
 | |
| 	scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
 | |
| 	scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
 | |
| 
 | |
| 	/*
 | |
| 	 * push vfifo until we can successfully calibrate. We can do this
 | |
| 	 * because the largest possible margin in 1 VFIFO cycle.
 | |
| 	 */
 | |
| 	for (i = 0; i < seq->misccfg->read_valid_fifo_size; i++) {
 | |
| 		debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
 | |
| 		if (rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
 | |
| 							     PASS_ONE_BIT,
 | |
| 							     0)) {
 | |
| 			debug_cond(DLEVEL >= 2,
 | |
| 				   "%s:%d center: found: ptap=%u dtap=%u\n",
 | |
| 				   __func__, __LINE__, p, d);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Fiddle with FIFO. */
 | |
| 		rw_mgr_incr_vfifo(grp);
 | |
| 	}
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
 | |
| 		   __func__, __LINE__);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to
 | |
|  * use
 | |
|  * @grp:	Read/Write Group
 | |
|  *
 | |
|  * Find a good DQS enable to use.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(struct socfpga_sdrseq *seq,
 | |
| 					     const u32 grp)
 | |
| {
 | |
| 	u32 d, p, i;
 | |
| 	u32 dtaps_per_ptap;
 | |
| 	u32 work_bgn, work_end;
 | |
| 	u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
 | |
| 	int ret;
 | |
| 
 | |
| 	debug("%s:%d %u\n", __func__, __LINE__, grp);
 | |
| 
 | |
| 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
 | |
| 
 | |
| 	scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
 | |
| 	scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, 0);
 | |
| 
 | |
| 	/* Step 0: Determine number of delay taps for each phase tap. */
 | |
| 	dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
 | |
| 			 seq->iocfg->delay_per_dqs_en_dchain_tap;
 | |
| 
 | |
| 	/* Step 1: First push vfifo until we get a failing read. */
 | |
| 	find_vfifo_failing_read(seq, grp);
 | |
| 
 | |
| 	/* Step 2: Find first working phase, increment in ptaps. */
 | |
| 	work_bgn = 0;
 | |
| 	ret = sdr_working_phase(seq, grp, &work_bgn, &d, &p, &i);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	work_end = work_bgn;
 | |
| 
 | |
| 	/*
 | |
| 	 * If d is 0 then the working window covers a phase tap and we can
 | |
| 	 * follow the old procedure. Otherwise, we've found the beginning
 | |
| 	 * and we need to increment the dtaps until we find the end.
 | |
| 	 */
 | |
| 	if (d == 0) {
 | |
| 		/*
 | |
| 		 * Step 3a: If we have room, back off by one and
 | |
| 		 *          increment in dtaps.
 | |
| 		 */
 | |
| 		sdr_backup_phase(seq, grp, &work_bgn, &p);
 | |
| 
 | |
| 		/*
 | |
| 		 * Step 4a: go forward from working phase to non working
 | |
| 		 * phase, increment in ptaps.
 | |
| 		 */
 | |
| 		ret = sdr_nonworking_phase(seq, grp, &work_end, &p, &i);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/* Step 5a: Back off one from last, increment in dtaps. */
 | |
| 
 | |
| 		/* Special case code for backing up a phase */
 | |
| 		if (p == 0) {
 | |
| 			p = seq->iocfg->dqs_en_phase_max;
 | |
| 			rw_mgr_decr_vfifo(seq, grp);
 | |
| 		} else {
 | |
| 			p = p - 1;
 | |
| 		}
 | |
| 
 | |
| 		work_end -= seq->iocfg->delay_per_opa_tap;
 | |
| 		scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
 | |
| 
 | |
| 		d = 0;
 | |
| 
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
 | |
| 			   __func__, __LINE__, p);
 | |
| 	}
 | |
| 
 | |
| 	/* The dtap increment to find the failing edge is done here. */
 | |
| 	sdr_find_phase_delay(seq, 0, 1, grp, &work_end,
 | |
| 			     seq->iocfg->delay_per_dqs_en_dchain_tap, &d);
 | |
| 
 | |
| 	/* Go back to working dtap */
 | |
| 	if (d != 0)
 | |
| 		work_end -= seq->iocfg->delay_per_dqs_en_dchain_tap;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2,
 | |
| 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
 | |
| 		   __func__, __LINE__, p, d - 1, work_end);
 | |
| 
 | |
| 	if (work_end < work_bgn) {
 | |
| 		/* nil range */
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
 | |
| 			   __func__, __LINE__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
 | |
| 		   __func__, __LINE__, work_bgn, work_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to calculate the number of dtaps that equal a ptap.
 | |
| 	 * To do that we'll back up a ptap and re-find the edge of the
 | |
| 	 * window using dtaps
 | |
| 	 */
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
 | |
| 		   __func__, __LINE__);
 | |
| 
 | |
| 	/* Special case code for backing up a phase */
 | |
| 	if (p == 0) {
 | |
| 		p = seq->iocfg->dqs_en_phase_max;
 | |
| 		rw_mgr_decr_vfifo(seq, grp);
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
 | |
| 			   __func__, __LINE__, p);
 | |
| 	} else {
 | |
| 		p = p - 1;
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
 | |
| 			   __func__, __LINE__, p);
 | |
| 	}
 | |
| 
 | |
| 	scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase dtap until we first see a passing read (in case the
 | |
| 	 * window is smaller than a ptap), and then a failing read to
 | |
| 	 * mark the edge of the window again.
 | |
| 	 */
 | |
| 
 | |
| 	/* Find a passing read. */
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
 | |
| 		   __func__, __LINE__);
 | |
| 
 | |
| 	initial_failing_dtap = d;
 | |
| 
 | |
| 	found_passing_read = !sdr_find_phase_delay(seq, 1, 1, grp, NULL, 0, &d);
 | |
| 	if (found_passing_read) {
 | |
| 		/* Find a failing read. */
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
 | |
| 			   __func__, __LINE__);
 | |
| 		d++;
 | |
| 		found_failing_read = !sdr_find_phase_delay(seq, 0, 1, grp, NULL,
 | |
| 							   0, &d);
 | |
| 	} else {
 | |
| 		debug_cond(DLEVEL >= 1,
 | |
| 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
 | |
| 			   __func__, __LINE__);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The dynamically calculated dtaps_per_ptap is only valid if we
 | |
| 	 * found a passing/failing read. If we didn't, it means d hit the max
 | |
| 	 * (seq->iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
 | |
| 	 * statically calculated value.
 | |
| 	 */
 | |
| 	if (found_passing_read && found_failing_read)
 | |
| 		dtaps_per_ptap = d - initial_failing_dtap;
 | |
| 
 | |
| 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
 | |
| 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
 | |
| 
 | |
| 	/* Step 6: Find the centre of the window. */
 | |
| 	ret = sdr_find_window_center(seq, grp, work_bgn, work_end);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * search_stop_check() - Check if the detected edge is valid
 | |
|  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 | |
|  * @d:			DQS delay
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @write_group:	Write Group
 | |
|  * @read_group:		Read Group
 | |
|  * @bit_chk:		Resulting bit mask after the test
 | |
|  * @sticky_bit_chk:	Resulting sticky bit mask after the test
 | |
|  * @use_read_test:	Perform read test
 | |
|  *
 | |
|  * Test if the found edge is valid.
 | |
|  */
 | |
| static u32 search_stop_check(struct socfpga_sdrseq *seq, const int write,
 | |
| 			     const int d, const int rank_bgn,
 | |
| 			     const u32 write_group, const u32 read_group,
 | |
| 			     u32 *bit_chk, u32 *sticky_bit_chk,
 | |
| 			     const u32 use_read_test)
 | |
| {
 | |
| 	const u32 ratio = seq->rwcfg->mem_if_read_dqs_width /
 | |
| 			  seq->rwcfg->mem_if_write_dqs_width;
 | |
| 	const u32 correct_mask = write ? seq->param.write_correct_mask :
 | |
| 					 seq->param.read_correct_mask;
 | |
| 	const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
 | |
| 				    seq->rwcfg->mem_dq_per_read_dqs;
 | |
| 	u32 ret;
 | |
| 	/*
 | |
| 	 * Stop searching when the read test doesn't pass AND when
 | |
| 	 * we've seen a passing read on every bit.
 | |
| 	 */
 | |
| 	if (write) {			/* WRITE-ONLY */
 | |
| 		ret = !rw_mgr_mem_calibrate_write_test(seq, rank_bgn,
 | |
| 							 write_group, 0,
 | |
| 							 PASS_ONE_BIT, bit_chk,
 | |
| 							 0);
 | |
| 	} else if (use_read_test) {	/* READ-ONLY */
 | |
| 		ret = !rw_mgr_mem_calibrate_read_test(seq, rank_bgn, read_group,
 | |
| 							NUM_READ_PB_TESTS,
 | |
| 							PASS_ONE_BIT, bit_chk,
 | |
| 							0, 0);
 | |
| 	} else {			/* READ-ONLY */
 | |
| 		rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group, 0,
 | |
| 						PASS_ONE_BIT, bit_chk, 0);
 | |
| 		*bit_chk = *bit_chk >> (per_dqs *
 | |
| 			(read_group - (write_group * ratio)));
 | |
| 		ret = (*bit_chk == 0);
 | |
| 	}
 | |
| 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
 | |
| 	ret = ret && (*sticky_bit_chk == correct_mask);
 | |
| 	debug_cond(DLEVEL >= 2,
 | |
| 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
 | |
| 		   __func__, __LINE__, d,
 | |
| 		   *sticky_bit_chk, correct_mask, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * search_left_edge() - Find left edge of DQ/DQS working phase
 | |
|  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @write_group:	Write Group
 | |
|  * @read_group:		Read Group
 | |
|  * @test_bgn:		Rank number to begin the test
 | |
|  * @sticky_bit_chk:	Resulting sticky bit mask after the test
 | |
|  * @left_edge:		Left edge of the DQ/DQS phase
 | |
|  * @right_edge:		Right edge of the DQ/DQS phase
 | |
|  * @use_read_test:	Perform read test
 | |
|  *
 | |
|  * Find left edge of DQ/DQS working phase.
 | |
|  */
 | |
| static void search_left_edge(struct socfpga_sdrseq *seq, const int write,
 | |
| 			     const int rank_bgn, const u32 write_group,
 | |
| 			     const u32 read_group, const u32 test_bgn,
 | |
| 			     u32 *sticky_bit_chk, int *left_edge,
 | |
| 			     int *right_edge, const u32 use_read_test)
 | |
| {
 | |
| 	const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
 | |
| 				      seq->iocfg->io_in_delay_max;
 | |
| 	const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
 | |
| 				    seq->iocfg->dqs_in_delay_max;
 | |
| 	const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
 | |
| 				    seq->rwcfg->mem_dq_per_read_dqs;
 | |
| 	u32 stop, bit_chk;
 | |
| 	int i, d;
 | |
| 
 | |
| 	for (d = 0; d <= dqs_max; d++) {
 | |
| 		if (write)
 | |
| 			scc_mgr_apply_group_dq_out1_delay(seq, d);
 | |
| 		else
 | |
| 			scc_mgr_apply_group_dq_in_delay(seq, test_bgn, d);
 | |
| 
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 		stop = search_stop_check(seq, write, d, rank_bgn, write_group,
 | |
| 					 read_group, &bit_chk, sticky_bit_chk,
 | |
| 					 use_read_test);
 | |
| 		if (stop == 1)
 | |
| 			break;
 | |
| 
 | |
| 		/* stop != 1 */
 | |
| 		for (i = 0; i < per_dqs; i++) {
 | |
| 			if (bit_chk & 1) {
 | |
| 				/*
 | |
| 				 * Remember a passing test as
 | |
| 				 * the left_edge.
 | |
| 				 */
 | |
| 				left_edge[i] = d;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * If a left edge has not been seen
 | |
| 				 * yet, then a future passing test
 | |
| 				 * will mark this edge as the right
 | |
| 				 * edge.
 | |
| 				 */
 | |
| 				if (left_edge[i] == delay_max + 1)
 | |
| 					right_edge[i] = -(d + 1);
 | |
| 			}
 | |
| 			bit_chk >>= 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Reset DQ delay chains to 0 */
 | |
| 	if (write)
 | |
| 		scc_mgr_apply_group_dq_out1_delay(seq, 0);
 | |
| 	else
 | |
| 		scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
 | |
| 
 | |
| 	*sticky_bit_chk = 0;
 | |
| 	for (i = per_dqs - 1; i >= 0; i--) {
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
 | |
| 			   __func__, __LINE__, i, left_edge[i],
 | |
| 			   i, right_edge[i]);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for cases where we haven't found the left edge,
 | |
| 		 * which makes our assignment of the the right edge invalid.
 | |
| 		 * Reset it to the illegal value.
 | |
| 		 */
 | |
| 		if ((left_edge[i] == delay_max + 1) &&
 | |
| 		    (right_edge[i] != delay_max + 1)) {
 | |
| 			right_edge[i] = delay_max + 1;
 | |
| 			debug_cond(DLEVEL >= 2,
 | |
| 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
 | |
| 				   __func__, __LINE__, i, right_edge[i]);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Reset sticky bit
 | |
| 		 * READ: except for bits where we have seen both
 | |
| 		 *       the left and right edge.
 | |
| 		 * WRITE: except for bits where we have seen the
 | |
| 		 *        left edge.
 | |
| 		 */
 | |
| 		*sticky_bit_chk <<= 1;
 | |
| 		if (write) {
 | |
| 			if (left_edge[i] != delay_max + 1)
 | |
| 				*sticky_bit_chk |= 1;
 | |
| 		} else {
 | |
| 			if ((left_edge[i] != delay_max + 1) &&
 | |
| 			    (right_edge[i] != delay_max + 1))
 | |
| 				*sticky_bit_chk |= 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * search_right_edge() - Find right edge of DQ/DQS working phase
 | |
|  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @write_group:	Write Group
 | |
|  * @read_group:		Read Group
 | |
|  * @start_dqs:		DQS start phase
 | |
|  * @start_dqs_en:	DQS enable start phase
 | |
|  * @sticky_bit_chk:	Resulting sticky bit mask after the test
 | |
|  * @left_edge:		Left edge of the DQ/DQS phase
 | |
|  * @right_edge:		Right edge of the DQ/DQS phase
 | |
|  * @use_read_test:	Perform read test
 | |
|  *
 | |
|  * Find right edge of DQ/DQS working phase.
 | |
|  */
 | |
| static int search_right_edge(struct socfpga_sdrseq *seq, const int write,
 | |
| 			     const int rank_bgn, const u32 write_group,
 | |
| 			     const u32 read_group, const int start_dqs,
 | |
| 			     const int start_dqs_en, u32 *sticky_bit_chk,
 | |
| 			     int *left_edge, int *right_edge,
 | |
| 			     const u32 use_read_test)
 | |
| {
 | |
| 	const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
 | |
| 				      seq->iocfg->io_in_delay_max;
 | |
| 	const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
 | |
| 				    seq->iocfg->dqs_in_delay_max;
 | |
| 	const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
 | |
| 				    seq->rwcfg->mem_dq_per_read_dqs;
 | |
| 	u32 stop, bit_chk;
 | |
| 	int i, d;
 | |
| 
 | |
| 	for (d = 0; d <= dqs_max - start_dqs; d++) {
 | |
| 		if (write) {	/* WRITE-ONLY */
 | |
| 			scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
 | |
| 								write_group,
 | |
| 								d + start_dqs);
 | |
| 		} else {	/* READ-ONLY */
 | |
| 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
 | |
| 			if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
 | |
| 				u32 delay = d + start_dqs_en;
 | |
| 				if (delay > seq->iocfg->dqs_en_delay_max)
 | |
| 					delay = seq->iocfg->dqs_en_delay_max;
 | |
| 				scc_mgr_set_dqs_en_delay(read_group, delay);
 | |
| 			}
 | |
| 			scc_mgr_load_dqs(read_group);
 | |
| 		}
 | |
| 
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 		stop = search_stop_check(seq, write, d, rank_bgn, write_group,
 | |
| 					 read_group, &bit_chk, sticky_bit_chk,
 | |
| 					 use_read_test);
 | |
| 		if (stop == 1) {
 | |
| 			if (write && (d == 0)) {	/* WRITE-ONLY */
 | |
| 				for (i = 0;
 | |
| 				     i < seq->rwcfg->mem_dq_per_write_dqs;
 | |
| 				     i++) {
 | |
| 					/*
 | |
| 					 * d = 0 failed, but it passed when
 | |
| 					 * testing the left edge, so it must be
 | |
| 					 * marginal, set it to -1
 | |
| 					 */
 | |
| 					if (right_edge[i] == delay_max + 1 &&
 | |
| 					    left_edge[i] != delay_max + 1)
 | |
| 						right_edge[i] = -1;
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* stop != 1 */
 | |
| 		for (i = 0; i < per_dqs; i++) {
 | |
| 			if (bit_chk & 1) {
 | |
| 				/*
 | |
| 				 * Remember a passing test as
 | |
| 				 * the right_edge.
 | |
| 				 */
 | |
| 				right_edge[i] = d;
 | |
| 			} else {
 | |
| 				if (d != 0) {
 | |
| 					/*
 | |
| 					 * If a right edge has not
 | |
| 					 * been seen yet, then a future
 | |
| 					 * passing test will mark this
 | |
| 					 * edge as the left edge.
 | |
| 					 */
 | |
| 					if (right_edge[i] == delay_max + 1)
 | |
| 						left_edge[i] = -(d + 1);
 | |
| 				} else {
 | |
| 					/*
 | |
| 					 * d = 0 failed, but it passed
 | |
| 					 * when testing the left edge,
 | |
| 					 * so it must be marginal, set
 | |
| 					 * it to -1
 | |
| 					 */
 | |
| 					if (right_edge[i] == delay_max + 1 &&
 | |
| 					    left_edge[i] != delay_max + 1)
 | |
| 						right_edge[i] = -1;
 | |
| 					/*
 | |
| 					 * If a right edge has not been
 | |
| 					 * seen yet, then a future
 | |
| 					 * passing test will mark this
 | |
| 					 * edge as the left edge.
 | |
| 					 */
 | |
| 					else if (right_edge[i] == delay_max + 1)
 | |
| 						left_edge[i] = -(d + 1);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
 | |
| 				   __func__, __LINE__, d);
 | |
| 			debug_cond(DLEVEL >= 2,
 | |
| 				   "bit_chk_test=%i left_edge[%u]: %d ",
 | |
| 				   bit_chk & 1, i, left_edge[i]);
 | |
| 			debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
 | |
| 				   right_edge[i]);
 | |
| 			bit_chk >>= 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check that all bits have a window */
 | |
| 	for (i = 0; i < per_dqs; i++) {
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
 | |
| 			   __func__, __LINE__, i, left_edge[i],
 | |
| 			   i, right_edge[i]);
 | |
| 		if ((left_edge[i] == dqs_max + 1) ||
 | |
| 		    (right_edge[i] == dqs_max + 1))
 | |
| 			return i + 1;	/* FIXME: If we fail, retval > 0 */
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
 | |
|  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 | |
|  * @left_edge:		Left edge of the DQ/DQS phase
 | |
|  * @right_edge:		Right edge of the DQ/DQS phase
 | |
|  * @mid_min:		Best DQ/DQS phase middle setting
 | |
|  *
 | |
|  * Find index and value of the middle of the DQ/DQS working phase.
 | |
|  */
 | |
| static int get_window_mid_index(struct socfpga_sdrseq *seq,
 | |
| 				const int write, int *left_edge,
 | |
| 				int *right_edge, int *mid_min)
 | |
| {
 | |
| 	const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
 | |
| 				    seq->rwcfg->mem_dq_per_read_dqs;
 | |
| 	int i, mid, min_index;
 | |
| 
 | |
| 	/* Find middle of window for each DQ bit */
 | |
| 	*mid_min = left_edge[0] - right_edge[0];
 | |
| 	min_index = 0;
 | |
| 	for (i = 1; i < per_dqs; i++) {
 | |
| 		mid = left_edge[i] - right_edge[i];
 | |
| 		if (mid < *mid_min) {
 | |
| 			*mid_min = mid;
 | |
| 			min_index = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * -mid_min/2 represents the amount that we need to move DQS.
 | |
| 	 * If mid_min is odd and positive we'll need to add one to make
 | |
| 	 * sure the rounding in further calculations is correct (always
 | |
| 	 * bias to the right), so just add 1 for all positive values.
 | |
| 	 */
 | |
| 	if (*mid_min > 0)
 | |
| 		(*mid_min)++;
 | |
| 	*mid_min = *mid_min / 2;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
 | |
| 		   __func__, __LINE__, *mid_min, min_index);
 | |
| 	return min_index;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * center_dq_windows() - Center the DQ/DQS windows
 | |
|  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 | |
|  * @left_edge:		Left edge of the DQ/DQS phase
 | |
|  * @right_edge:		Right edge of the DQ/DQS phase
 | |
|  * @mid_min:		Adjusted DQ/DQS phase middle setting
 | |
|  * @orig_mid_min:	Original DQ/DQS phase middle setting
 | |
|  * @min_index:		DQ/DQS phase middle setting index
 | |
|  * @test_bgn:		Rank number to begin the test
 | |
|  * @dq_margin:		Amount of shift for the DQ
 | |
|  * @dqs_margin:		Amount of shift for the DQS
 | |
|  *
 | |
|  * Align the DQ/DQS windows in each group.
 | |
|  */
 | |
| static void center_dq_windows(struct socfpga_sdrseq *seq,
 | |
| 			      const int write, int *left_edge, int *right_edge,
 | |
| 			      const int mid_min, const int orig_mid_min,
 | |
| 			      const int min_index, const int test_bgn,
 | |
| 			      int *dq_margin, int *dqs_margin)
 | |
| {
 | |
| 	const s32 delay_max = write ? seq->iocfg->io_out1_delay_max :
 | |
| 				      seq->iocfg->io_in_delay_max;
 | |
| 	const s32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
 | |
| 				    seq->rwcfg->mem_dq_per_read_dqs;
 | |
| 	const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
 | |
| 				      SCC_MGR_IO_IN_DELAY_OFFSET;
 | |
| 	const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
 | |
| 
 | |
| 	s32 temp_dq_io_delay1;
 | |
| 	int shift_dq, i, p;
 | |
| 
 | |
| 	/* Initialize data for export structures */
 | |
| 	*dqs_margin = delay_max + 1;
 | |
| 	*dq_margin  = delay_max + 1;
 | |
| 
 | |
| 	/* add delay to bring centre of all DQ windows to the same "level" */
 | |
| 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
 | |
| 		/* Use values before divide by 2 to reduce round off error */
 | |
| 		shift_dq = (left_edge[i] - right_edge[i] -
 | |
| 			(left_edge[min_index] - right_edge[min_index]))/2  +
 | |
| 			(orig_mid_min - mid_min);
 | |
| 
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "vfifo_center: before: shift_dq[%u]=%d\n",
 | |
| 			   i, shift_dq);
 | |
| 
 | |
| 		temp_dq_io_delay1 = readl(addr + (i << 2));
 | |
| 
 | |
| 		if (shift_dq + temp_dq_io_delay1 > delay_max)
 | |
| 			shift_dq = delay_max - temp_dq_io_delay1;
 | |
| 		else if (shift_dq + temp_dq_io_delay1 < 0)
 | |
| 			shift_dq = -temp_dq_io_delay1;
 | |
| 
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "vfifo_center: after: shift_dq[%u]=%d\n",
 | |
| 			   i, shift_dq);
 | |
| 
 | |
| 		if (write)
 | |
| 			scc_mgr_set_dq_out1_delay(i,
 | |
| 						  temp_dq_io_delay1 + shift_dq);
 | |
| 		else
 | |
| 			scc_mgr_set_dq_in_delay(p,
 | |
| 						temp_dq_io_delay1 + shift_dq);
 | |
| 
 | |
| 		scc_mgr_load_dq(p);
 | |
| 
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
 | |
| 			   left_edge[i] - shift_dq + (-mid_min),
 | |
| 			   right_edge[i] + shift_dq - (-mid_min));
 | |
| 
 | |
| 		/* To determine values for export structures */
 | |
| 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
 | |
| 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
 | |
| 
 | |
| 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
 | |
| 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @rw_group:		Read/Write Group
 | |
|  * @test_bgn:		Rank at which the test begins
 | |
|  * @use_read_test:	Perform a read test
 | |
|  * @update_fom:		Update FOM
 | |
|  *
 | |
|  * Per-bit deskew DQ and centering.
 | |
|  */
 | |
| static int rw_mgr_mem_calibrate_vfifo_center(struct socfpga_sdrseq *seq,
 | |
| 					     const u32 rank_bgn,
 | |
| 					     const u32 rw_group,
 | |
| 					     const u32 test_bgn,
 | |
| 					     const int use_read_test,
 | |
| 					     const int update_fom)
 | |
| {
 | |
| 	const u32 addr =
 | |
| 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
 | |
| 		(rw_group << 2);
 | |
| 	/*
 | |
| 	 * Store these as signed since there are comparisons with
 | |
| 	 * signed numbers.
 | |
| 	 */
 | |
| 	u32 sticky_bit_chk;
 | |
| 	s32 left_edge[seq->rwcfg->mem_dq_per_read_dqs];
 | |
| 	s32 right_edge[seq->rwcfg->mem_dq_per_read_dqs];
 | |
| 	s32 orig_mid_min, mid_min;
 | |
| 	s32 new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
 | |
| 	s32 dq_margin, dqs_margin;
 | |
| 	int i, min_index;
 | |
| 	int ret;
 | |
| 
 | |
| 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
 | |
| 
 | |
| 	start_dqs = readl(addr);
 | |
| 	if (seq->iocfg->shift_dqs_en_when_shift_dqs)
 | |
| 		start_dqs_en = readl(addr - seq->iocfg->dqs_en_delay_offset);
 | |
| 
 | |
| 	/* set the left and right edge of each bit to an illegal value */
 | |
| 	/* use (seq->iocfg->io_in_delay_max + 1) as an illegal value */
 | |
| 	sticky_bit_chk = 0;
 | |
| 	for (i = 0; i < seq->rwcfg->mem_dq_per_read_dqs; i++) {
 | |
| 		left_edge[i]  = seq->iocfg->io_in_delay_max + 1;
 | |
| 		right_edge[i] = seq->iocfg->io_in_delay_max + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Search for the left edge of the window for each bit */
 | |
| 	search_left_edge(seq, 0, rank_bgn, rw_group, rw_group, test_bgn,
 | |
| 			 &sticky_bit_chk,
 | |
| 			 left_edge, right_edge, use_read_test);
 | |
| 
 | |
| 
 | |
| 	/* Search for the right edge of the window for each bit */
 | |
| 	ret = search_right_edge(seq, 0, rank_bgn, rw_group, rw_group,
 | |
| 				start_dqs, start_dqs_en,
 | |
| 				&sticky_bit_chk,
 | |
| 				left_edge, right_edge, use_read_test);
 | |
| 	if (ret) {
 | |
| 		/*
 | |
| 		 * Restore delay chain settings before letting the loop
 | |
| 		 * in rw_mgr_mem_calibrate_vfifo to retry different
 | |
| 		 * dqs/ck relationships.
 | |
| 		 */
 | |
| 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
 | |
| 		if (seq->iocfg->shift_dqs_en_when_shift_dqs)
 | |
| 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
 | |
| 
 | |
| 		scc_mgr_load_dqs(rw_group);
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 		debug_cond(DLEVEL >= 1,
 | |
| 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
 | |
| 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
 | |
| 		if (use_read_test) {
 | |
| 			set_failing_group_stage(seq, rw_group *
 | |
| 				seq->rwcfg->mem_dq_per_read_dqs + i,
 | |
| 				CAL_STAGE_VFIFO,
 | |
| 				CAL_SUBSTAGE_VFIFO_CENTER);
 | |
| 		} else {
 | |
| 			set_failing_group_stage(seq, rw_group *
 | |
| 				seq->rwcfg->mem_dq_per_read_dqs + i,
 | |
| 				CAL_STAGE_VFIFO_AFTER_WRITES,
 | |
| 				CAL_SUBSTAGE_VFIFO_CENTER);
 | |
| 		}
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	min_index = get_window_mid_index(seq, 0, left_edge, right_edge,
 | |
| 					 &mid_min);
 | |
| 
 | |
| 	/* Determine the amount we can change DQS (which is -mid_min) */
 | |
| 	orig_mid_min = mid_min;
 | |
| 	new_dqs = start_dqs - mid_min;
 | |
| 	if (new_dqs > seq->iocfg->dqs_in_delay_max)
 | |
| 		new_dqs = seq->iocfg->dqs_in_delay_max;
 | |
| 	else if (new_dqs < 0)
 | |
| 		new_dqs = 0;
 | |
| 
 | |
| 	mid_min = start_dqs - new_dqs;
 | |
| 	debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
 | |
| 		   mid_min, new_dqs);
 | |
| 
 | |
| 	if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
 | |
| 		if (start_dqs_en - mid_min > seq->iocfg->dqs_en_delay_max)
 | |
| 			mid_min += start_dqs_en - mid_min -
 | |
| 				   seq->iocfg->dqs_en_delay_max;
 | |
| 		else if (start_dqs_en - mid_min < 0)
 | |
| 			mid_min += start_dqs_en - mid_min;
 | |
| 	}
 | |
| 	new_dqs = start_dqs - mid_min;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 1,
 | |
| 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
 | |
| 		   start_dqs,
 | |
| 		   seq->iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
 | |
| 		   new_dqs, mid_min);
 | |
| 
 | |
| 	/* Add delay to bring centre of all DQ windows to the same "level". */
 | |
| 	center_dq_windows(seq, 0, left_edge, right_edge, mid_min, orig_mid_min,
 | |
| 			  min_index, test_bgn, &dq_margin, &dqs_margin);
 | |
| 
 | |
| 	/* Move DQS-en */
 | |
| 	if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
 | |
| 		final_dqs_en = start_dqs_en - mid_min;
 | |
| 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
 | |
| 		scc_mgr_load_dqs(rw_group);
 | |
| 	}
 | |
| 
 | |
| 	/* Move DQS */
 | |
| 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
 | |
| 	scc_mgr_load_dqs(rw_group);
 | |
| 	debug_cond(DLEVEL >= 2,
 | |
| 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
 | |
| 		   __func__, __LINE__, dq_margin, dqs_margin);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not remove this line as it makes sure all of our decisions
 | |
| 	 * have been applied. Apply the update bit.
 | |
| 	 */
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 	if ((dq_margin < 0) || (dqs_margin < 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the
 | |
|  * device
 | |
|  * @rw_group:	Read/Write Group
 | |
|  * @phase:	DQ/DQS phase
 | |
|  *
 | |
|  * Because initially no communication ca be reliably performed with the memory
 | |
|  * device, the sequencer uses a guaranteed write mechanism to write data into
 | |
|  * the memory device.
 | |
|  */
 | |
| static int rw_mgr_mem_calibrate_guaranteed_write(struct socfpga_sdrseq *seq,
 | |
| 						 const u32 rw_group,
 | |
| 						 const u32 phase)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Set a particular DQ/DQS phase. */
 | |
| 	scc_mgr_set_dqdqs_output_phase_all_ranks(seq, rw_group, phase);
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
 | |
| 		   __func__, __LINE__, rw_group, phase);
 | |
| 
 | |
| 	/*
 | |
| 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
 | |
| 	 * Load up the patterns used by read calibration using the
 | |
| 	 * current DQDQS phase.
 | |
| 	 */
 | |
| 	rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
 | |
| 
 | |
| 	if (seq->gbl.phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
 | |
| 	 * Back-to-Back reads of the patterns used for calibration.
 | |
| 	 */
 | |
| 	ret = rw_mgr_mem_calibrate_read_test_patterns(seq, 0, rw_group, 1);
 | |
| 	if (ret)
 | |
| 		debug_cond(DLEVEL >= 1,
 | |
| 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
 | |
| 			   __func__, __LINE__, rw_group, phase);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
 | |
|  * @rw_group:	Read/Write Group
 | |
|  * @test_bgn:	Rank at which the test begins
 | |
|  *
 | |
|  * DQS enable calibration ensures reliable capture of the DQ signal without
 | |
|  * glitches on the DQS line.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_dqs_enable_calibration(struct socfpga_sdrseq *seq,
 | |
| 					    const u32 rw_group,
 | |
| 					    const u32 test_bgn)
 | |
| {
 | |
| 	/*
 | |
| 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
 | |
| 	 * DQS and DQS Eanble Signal Relationships.
 | |
| 	 */
 | |
| 
 | |
| 	/* We start at zero, so have one less dq to devide among */
 | |
| 	const u32 delay_step = seq->iocfg->io_in_delay_max /
 | |
| 			       (seq->rwcfg->mem_dq_per_read_dqs - 1);
 | |
| 	int ret;
 | |
| 	u32 i, p, d, r;
 | |
| 
 | |
| 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
 | |
| 
 | |
| 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     r += NUM_RANKS_PER_SHADOW_REG) {
 | |
| 		for (i = 0, p = test_bgn, d = 0;
 | |
| 		     i < seq->rwcfg->mem_dq_per_read_dqs;
 | |
| 		     i++, p++, d += delay_step) {
 | |
| 			debug_cond(DLEVEL >= 1,
 | |
| 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
 | |
| 				   __func__, __LINE__, rw_group, r, i, p, d);
 | |
| 
 | |
| 			scc_mgr_set_dq_in_delay(p, d);
 | |
| 			scc_mgr_load_dq(p);
 | |
| 		}
 | |
| 
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
 | |
| 	 * dq_in_delay values
 | |
| 	 */
 | |
| 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(seq, rw_group);
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 1,
 | |
| 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
 | |
| 		   __func__, __LINE__, rw_group, !ret);
 | |
| 
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     r += NUM_RANKS_PER_SHADOW_REG) {
 | |
| 		scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
 | |
|  * @rw_group:		Read/Write Group
 | |
|  * @test_bgn:		Rank at which the test begins
 | |
|  * @use_read_test:	Perform a read test
 | |
|  * @update_fom:		Update FOM
 | |
|  *
 | |
|  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
 | |
|  * within a group.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_dq_dqs_centering(struct socfpga_sdrseq *seq,
 | |
| 				      const u32 rw_group, const u32 test_bgn,
 | |
| 				      const int use_read_test,
 | |
| 				      const int update_fom)
 | |
| 
 | |
| {
 | |
| 	int ret, grp_calibrated;
 | |
| 	u32 rank_bgn, sr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
 | |
| 	 * Read per-bit deskew can be done on a per shadow register basis.
 | |
| 	 */
 | |
| 	grp_calibrated = 1;
 | |
| 	for (rank_bgn = 0, sr = 0;
 | |
| 	     rank_bgn < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
 | |
| 		ret = rw_mgr_mem_calibrate_vfifo_center(seq, rank_bgn, rw_group,
 | |
| 							test_bgn,
 | |
| 							use_read_test,
 | |
| 							update_fom);
 | |
| 		if (!ret)
 | |
| 			continue;
 | |
| 
 | |
| 		grp_calibrated = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!grp_calibrated)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
 | |
|  * @rw_group:		Read/Write Group
 | |
|  * @test_bgn:		Rank at which the test begins
 | |
|  *
 | |
|  * Stage 1: Calibrate the read valid prediction FIFO.
 | |
|  *
 | |
|  * This function implements UniPHY calibration Stage 1, as explained in
 | |
|  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 | |
|  *
 | |
|  * - read valid prediction will consist of finding:
 | |
|  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
 | |
|  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
 | |
|  *  - we also do a per-bit deskew on the DQ lines.
 | |
|  */
 | |
| static int rw_mgr_mem_calibrate_vfifo(struct socfpga_sdrseq *seq,
 | |
| 				      const u32 rw_group, const u32 test_bgn)
 | |
| {
 | |
| 	u32 p, d;
 | |
| 	u32 dtaps_per_ptap;
 | |
| 	u32 failed_substage;
 | |
| 
 | |
| 	int ret;
 | |
| 
 | |
| 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
 | |
| 
 | |
| 	/* Update info for sims */
 | |
| 	reg_file_set_group(rw_group);
 | |
| 	reg_file_set_stage(CAL_STAGE_VFIFO);
 | |
| 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
 | |
| 
 | |
| 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
 | |
| 
 | |
| 	/* USER Determine number of delay taps for each phase tap. */
 | |
| 	dtaps_per_ptap = DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
 | |
| 				      seq->iocfg->delay_per_dqs_en_dchain_tap)
 | |
| 				      - 1;
 | |
| 
 | |
| 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
 | |
| 		/*
 | |
| 		 * In RLDRAMX we may be messing the delay of pins in
 | |
| 		 * the same write rw_group but outside of the current read
 | |
| 		 * the rw_group, but that's ok because we haven't calibrated
 | |
| 		 * output side yet.
 | |
| 		 */
 | |
| 		if (d > 0) {
 | |
| 			scc_mgr_apply_group_all_out_delay_add_all_ranks(seq,
 | |
| 									rw_group,
 | |
| 									d);
 | |
| 		}
 | |
| 
 | |
| 		for (p = 0; p <= seq->iocfg->dqdqs_out_phase_max; p++) {
 | |
| 			/* 1) Guaranteed Write */
 | |
| 			ret = rw_mgr_mem_calibrate_guaranteed_write(seq,
 | |
| 								    rw_group,
 | |
| 								    p);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 
 | |
| 			/* 2) DQS Enable Calibration */
 | |
| 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(seq,
 | |
| 									  rw_group,
 | |
| 									  test_bgn);
 | |
| 			if (ret) {
 | |
| 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* 3) Centering DQ/DQS */
 | |
| 			/*
 | |
| 			 * If doing read after write calibration, do not update
 | |
| 			 * FOM now. Do it then.
 | |
| 			 */
 | |
| 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq,
 | |
| 								    rw_group,
 | |
| 								    test_bgn,
 | |
| 								    1, 0);
 | |
| 			if (ret) {
 | |
| 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* All done. */
 | |
| 			goto cal_done_ok;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calibration Stage 1 failed. */
 | |
| 	set_failing_group_stage(seq, rw_group, CAL_STAGE_VFIFO,
 | |
| 				failed_substage);
 | |
| 	return 0;
 | |
| 
 | |
| 	/* Calibration Stage 1 completed OK. */
 | |
| cal_done_ok:
 | |
| 	/*
 | |
| 	 * Reset the delay chains back to zero if they have moved > 1
 | |
| 	 * (check for > 1 because loop will increase d even when pass in
 | |
| 	 * first case).
 | |
| 	 */
 | |
| 	if (d > 2)
 | |
| 		scc_mgr_zero_group(seq, rw_group, 1);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
 | |
|  * @rw_group:		Read/Write Group
 | |
|  * @test_bgn:		Rank at which the test begins
 | |
|  *
 | |
|  * Stage 3: DQ/DQS Centering.
 | |
|  *
 | |
|  * This function implements UniPHY calibration Stage 3, as explained in
 | |
|  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 | |
|  */
 | |
| static int rw_mgr_mem_calibrate_vfifo_end(struct socfpga_sdrseq *seq,
 | |
| 					  const u32 rw_group,
 | |
| 					  const u32 test_bgn)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
 | |
| 
 | |
| 	/* Update info for sims. */
 | |
| 	reg_file_set_group(rw_group);
 | |
| 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
 | |
| 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
 | |
| 
 | |
| 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq, rw_group, test_bgn, 0,
 | |
| 						    1);
 | |
| 	if (ret)
 | |
| 		set_failing_group_stage(seq, rw_group,
 | |
| 					CAL_STAGE_VFIFO_AFTER_WRITES,
 | |
| 					CAL_SUBSTAGE_VFIFO_CENTER);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
 | |
|  *
 | |
|  * Stage 4: Minimize latency.
 | |
|  *
 | |
|  * This function implements UniPHY calibration Stage 4, as explained in
 | |
|  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 | |
|  * Calibrate LFIFO to find smallest read latency.
 | |
|  */
 | |
| static u32 rw_mgr_mem_calibrate_lfifo(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	int found_one = 0;
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 
 | |
| 	/* Update info for sims. */
 | |
| 	reg_file_set_stage(CAL_STAGE_LFIFO);
 | |
| 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
 | |
| 
 | |
| 	/* Load up the patterns used by read calibration for all ranks */
 | |
| 	rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
 | |
| 
 | |
| 	do {
 | |
| 		writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
 | |
| 		debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
 | |
| 			   __func__, __LINE__, seq->gbl.curr_read_lat);
 | |
| 
 | |
| 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(seq, 0,
 | |
| 							      NUM_READ_TESTS,
 | |
| 							      PASS_ALL_BITS, 1))
 | |
| 			break;
 | |
| 
 | |
| 		found_one = 1;
 | |
| 		/*
 | |
| 		 * Reduce read latency and see if things are
 | |
| 		 * working correctly.
 | |
| 		 */
 | |
| 		seq->gbl.curr_read_lat--;
 | |
| 	} while (seq->gbl.curr_read_lat > 0);
 | |
| 
 | |
| 	/* Reset the fifos to get pointers to known state. */
 | |
| 	writel(0, &phy_mgr_cmd->fifo_reset);
 | |
| 
 | |
| 	if (found_one) {
 | |
| 		/* Add a fudge factor to the read latency that was determined */
 | |
| 		seq->gbl.curr_read_lat += 2;
 | |
| 		writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "%s:%d lfifo: success: using read_lat=%u\n",
 | |
| 			   __func__, __LINE__, seq->gbl.curr_read_lat);
 | |
| 	} else {
 | |
| 		set_failing_group_stage(seq, 0xff, CAL_STAGE_LFIFO,
 | |
| 					CAL_SUBSTAGE_READ_LATENCY);
 | |
| 
 | |
| 		debug_cond(DLEVEL >= 2,
 | |
| 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
 | |
| 			   __func__, __LINE__, seq->gbl.curr_read_lat);
 | |
| 	}
 | |
| 
 | |
| 	return found_one;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * search_window() - Search for the/part of the window with DM/DQS shift
 | |
|  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS
 | |
|  *			shift
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @write_group:	Write Group
 | |
|  * @bgn_curr:		Current window begin
 | |
|  * @end_curr:		Current window end
 | |
|  * @bgn_best:		Current best window begin
 | |
|  * @end_best:		Current best window end
 | |
|  * @win_best:		Size of the best window
 | |
|  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
 | |
|  *
 | |
|  * Search for the/part of the window with DM/DQS shift.
 | |
|  */
 | |
| static void search_window(struct socfpga_sdrseq *seq,
 | |
| 			  const int search_dm, const u32 rank_bgn,
 | |
| 			  const u32 write_group, int *bgn_curr, int *end_curr,
 | |
| 			  int *bgn_best, int *end_best, int *win_best,
 | |
| 			  int new_dqs)
 | |
| {
 | |
| 	u32 bit_chk;
 | |
| 	const int max = seq->iocfg->io_out1_delay_max - new_dqs;
 | |
| 	int d, di;
 | |
| 
 | |
| 	/* Search for the/part of the window with DM/DQS shift. */
 | |
| 	for (di = max; di >= 0; di -= DELTA_D) {
 | |
| 		if (search_dm) {
 | |
| 			d = di;
 | |
| 			scc_mgr_apply_group_dm_out1_delay(seq, d);
 | |
| 		} else {
 | |
| 			/* For DQS, we go from 0...max */
 | |
| 			d = max - di;
 | |
| 			/*
 | |
| 			 * Note: This only shifts DQS, so are we limiting
 | |
| 			 *       ourselves to width of DQ unnecessarily.
 | |
| 			 */
 | |
| 			scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
 | |
| 								write_group,
 | |
| 								d + new_dqs);
 | |
| 		}
 | |
| 
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 		if (rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group,
 | |
| 						    1, PASS_ALL_BITS, &bit_chk,
 | |
| 						    0)) {
 | |
| 			/* Set current end of the window. */
 | |
| 			*end_curr = search_dm ? -d : d;
 | |
| 
 | |
| 			/*
 | |
| 			 * If a starting edge of our window has not been seen
 | |
| 			 * this is our current start of the DM window.
 | |
| 			 */
 | |
| 			if (*bgn_curr == seq->iocfg->io_out1_delay_max + 1)
 | |
| 				*bgn_curr = search_dm ? -d : d;
 | |
| 
 | |
| 			/*
 | |
| 			 * If current window is bigger than best seen.
 | |
| 			 * Set best seen to be current window.
 | |
| 			 */
 | |
| 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
 | |
| 				*win_best = *end_curr - *bgn_curr + 1;
 | |
| 				*bgn_best = *bgn_curr;
 | |
| 				*end_best = *end_curr;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* We just saw a failing test. Reset temp edge. */
 | |
| 			*bgn_curr = seq->iocfg->io_out1_delay_max + 1;
 | |
| 			*end_curr = seq->iocfg->io_out1_delay_max + 1;
 | |
| 
 | |
| 			/* Early exit is only applicable to DQS. */
 | |
| 			if (search_dm)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * Early exit optimization: if the remaining delay
 | |
| 			 * chain space is less than already seen largest
 | |
| 			 * window we can exit.
 | |
| 			 */
 | |
| 			if (*win_best - 1 > seq->iocfg->io_out1_delay_max
 | |
| 				- new_dqs - d)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rw_mgr_mem_calibrate_writes_center() - Center all windows
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @write_group:	Write group
 | |
|  * @test_bgn:		Rank at which the test begins
 | |
|  *
 | |
|  * Center all windows. Do per-bit-deskew to possibly increase size of
 | |
|  * certain windows.
 | |
|  */
 | |
| static int
 | |
| rw_mgr_mem_calibrate_writes_center(struct socfpga_sdrseq *seq,
 | |
| 				   const u32 rank_bgn, const u32 write_group,
 | |
| 				   const u32 test_bgn)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 sticky_bit_chk;
 | |
| 	u32 min_index;
 | |
| 	int left_edge[seq->rwcfg->mem_dq_per_write_dqs];
 | |
| 	int right_edge[seq->rwcfg->mem_dq_per_write_dqs];
 | |
| 	int mid;
 | |
| 	int mid_min, orig_mid_min;
 | |
| 	int new_dqs, start_dqs;
 | |
| 	int dq_margin, dqs_margin, dm_margin;
 | |
| 	int bgn_curr = seq->iocfg->io_out1_delay_max + 1;
 | |
| 	int end_curr = seq->iocfg->io_out1_delay_max + 1;
 | |
| 	int bgn_best = seq->iocfg->io_out1_delay_max + 1;
 | |
| 	int end_best = seq->iocfg->io_out1_delay_max + 1;
 | |
| 	int win_best = 0;
 | |
| 
 | |
| 	int ret;
 | |
| 
 | |
| 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
 | |
| 
 | |
| 	dm_margin = 0;
 | |
| 
 | |
| 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
 | |
| 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
 | |
| 			  (seq->rwcfg->mem_dq_per_write_dqs << 2));
 | |
| 
 | |
| 	/* Per-bit deskew. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the left and right edge of each bit to an illegal value.
 | |
| 	 * Use (seq->iocfg->io_out1_delay_max + 1) as an illegal value.
 | |
| 	 */
 | |
| 	sticky_bit_chk = 0;
 | |
| 	for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
 | |
| 		left_edge[i]  = seq->iocfg->io_out1_delay_max + 1;
 | |
| 		right_edge[i] = seq->iocfg->io_out1_delay_max + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Search for the left edge of the window for each bit. */
 | |
| 	search_left_edge(seq, 1, rank_bgn, write_group, 0, test_bgn,
 | |
| 			 &sticky_bit_chk,
 | |
| 			 left_edge, right_edge, 0);
 | |
| 
 | |
| 	/* Search for the right edge of the window for each bit. */
 | |
| 	ret = search_right_edge(seq, 1, rank_bgn, write_group, 0,
 | |
| 				start_dqs, 0,
 | |
| 				&sticky_bit_chk,
 | |
| 				left_edge, right_edge, 0);
 | |
| 	if (ret) {
 | |
| 		set_failing_group_stage(seq, test_bgn + ret - 1,
 | |
| 					CAL_STAGE_WRITES,
 | |
| 					CAL_SUBSTAGE_WRITES_CENTER);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	min_index = get_window_mid_index(seq, 1, left_edge, right_edge,
 | |
| 					 &mid_min);
 | |
| 
 | |
| 	/* Determine the amount we can change DQS (which is -mid_min). */
 | |
| 	orig_mid_min = mid_min;
 | |
| 	new_dqs = start_dqs;
 | |
| 	mid_min = 0;
 | |
| 	debug_cond(DLEVEL >= 1,
 | |
| 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
 | |
| 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
 | |
| 
 | |
| 	/* Add delay to bring centre of all DQ windows to the same "level". */
 | |
| 	center_dq_windows(seq, 1, left_edge, right_edge, mid_min, orig_mid_min,
 | |
| 			  min_index, 0, &dq_margin, &dqs_margin);
 | |
| 
 | |
| 	/* Move DQS */
 | |
| 	scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 	/* Centre DM */
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the left and right edge of each bit to an illegal value.
 | |
| 	 * Use (seq->iocfg->io_out1_delay_max + 1) as an illegal value.
 | |
| 	 */
 | |
| 	left_edge[0]  = seq->iocfg->io_out1_delay_max + 1;
 | |
| 	right_edge[0] = seq->iocfg->io_out1_delay_max + 1;
 | |
| 
 | |
| 	/* Search for the/part of the window with DM shift. */
 | |
| 	search_window(seq, 1, rank_bgn, write_group, &bgn_curr, &end_curr,
 | |
| 		      &bgn_best, &end_best, &win_best, 0);
 | |
| 
 | |
| 	/* Reset DM delay chains to 0. */
 | |
| 	scc_mgr_apply_group_dm_out1_delay(seq, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if the current window nudges up aganist 0 delay.
 | |
| 	 * If so we need to continue the search by shifting DQS otherwise DQS
 | |
| 	 * search begins as a new search.
 | |
| 	 */
 | |
| 	if (end_curr != 0) {
 | |
| 		bgn_curr = seq->iocfg->io_out1_delay_max + 1;
 | |
| 		end_curr = seq->iocfg->io_out1_delay_max + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Search for the/part of the window with DQS shifts. */
 | |
| 	search_window(seq, 0, rank_bgn, write_group, &bgn_curr, &end_curr,
 | |
| 		      &bgn_best, &end_best, &win_best, new_dqs);
 | |
| 
 | |
| 	/* Assign left and right edge for cal and reporting. */
 | |
| 	left_edge[0] = -1 * bgn_best;
 | |
| 	right_edge[0] = end_best;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
 | |
| 		   __func__, __LINE__, left_edge[0], right_edge[0]);
 | |
| 
 | |
| 	/* Move DQS (back to orig). */
 | |
| 	scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
 | |
| 
 | |
| 	/* Move DM */
 | |
| 
 | |
| 	/* Find middle of window for the DM bit. */
 | |
| 	mid = (left_edge[0] - right_edge[0]) / 2;
 | |
| 
 | |
| 	/* Only move right, since we are not moving DQS/DQ. */
 | |
| 	if (mid < 0)
 | |
| 		mid = 0;
 | |
| 
 | |
| 	/* dm_marign should fail if we never find a window. */
 | |
| 	if (win_best == 0)
 | |
| 		dm_margin = -1;
 | |
| 	else
 | |
| 		dm_margin = left_edge[0] - mid;
 | |
| 
 | |
| 	scc_mgr_apply_group_dm_out1_delay(seq, mid);
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2,
 | |
| 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
 | |
| 		   __func__, __LINE__, left_edge[0], right_edge[0],
 | |
| 		   mid, dm_margin);
 | |
| 	/* Export values. */
 | |
| 	seq->gbl.fom_out += dq_margin + dqs_margin;
 | |
| 
 | |
| 	debug_cond(DLEVEL >= 2,
 | |
| 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
 | |
| 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not remove this line as it makes sure all of our
 | |
| 	 * decisions have been applied.
 | |
| 	 */
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
 | |
|  * @rank_bgn:		Rank number
 | |
|  * @group:		Read/Write Group
 | |
|  * @test_bgn:		Rank at which the test begins
 | |
|  *
 | |
|  * Stage 2: Write Calibration Part One.
 | |
|  *
 | |
|  * This function implements UniPHY calibration Stage 2, as explained in
 | |
|  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 | |
|  */
 | |
| static int rw_mgr_mem_calibrate_writes(struct socfpga_sdrseq *seq,
 | |
| 				       const u32 rank_bgn, const u32 group,
 | |
| 				       const u32 test_bgn)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Update info for sims */
 | |
| 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
 | |
| 
 | |
| 	reg_file_set_group(group);
 | |
| 	reg_file_set_stage(CAL_STAGE_WRITES);
 | |
| 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
 | |
| 
 | |
| 	ret = rw_mgr_mem_calibrate_writes_center(seq, rank_bgn, group,
 | |
| 						 test_bgn);
 | |
| 	if (ret)
 | |
| 		set_failing_group_stage(seq, group, CAL_STAGE_WRITES,
 | |
| 					CAL_SUBSTAGE_WRITES_CENTER);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_precharge_and_activate() - Precharge all banks and activate
 | |
|  *
 | |
|  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
 | |
|  */
 | |
| static void mem_precharge_and_activate(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
 | |
| 		/* Set rank. */
 | |
| 		set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
 | |
| 
 | |
| 		/* Precharge all banks. */
 | |
| 		writel(seq->rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 | |
| 
 | |
| 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
 | |
| 		writel(seq->rwcfg->activate_0_and_1_wait1,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 | |
| 
 | |
| 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
 | |
| 		writel(seq->rwcfg->activate_0_and_1_wait2,
 | |
| 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 | |
| 
 | |
| 		/* Activate rows. */
 | |
| 		writel(seq->rwcfg->activate_0_and_1,
 | |
| 		       SDR_PHYGRP_RWMGRGRP_ADDRESS |
 | |
| 		       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_init_latency() - Configure memory RLAT and WLAT settings
 | |
|  *
 | |
|  * Configure memory RLAT and WLAT parameters.
 | |
|  */
 | |
| static void mem_init_latency(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	/*
 | |
| 	 * For AV/CV, LFIFO is hardened and always runs at full rate
 | |
| 	 * so max latency in AFI clocks, used here, is correspondingly
 | |
| 	 * smaller.
 | |
| 	 */
 | |
| 	const u32 max_latency = (1 << seq->misccfg->max_latency_count_width)
 | |
| 		- 1;
 | |
| 	u32 rlat, wlat;
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read in write latency.
 | |
| 	 * WL for Hard PHY does not include additive latency.
 | |
| 	 */
 | |
| 	wlat = readl(&data_mgr->t_wl_add);
 | |
| 	wlat += readl(&data_mgr->mem_t_add);
 | |
| 
 | |
| 	seq->gbl.rw_wl_nop_cycles = wlat - 1;
 | |
| 
 | |
| 	/* Read in readl latency. */
 | |
| 	rlat = readl(&data_mgr->t_rl_add);
 | |
| 
 | |
| 	/* Set a pretty high read latency initially. */
 | |
| 	seq->gbl.curr_read_lat = rlat + 16;
 | |
| 	if (seq->gbl.curr_read_lat > max_latency)
 | |
| 		seq->gbl.curr_read_lat = max_latency;
 | |
| 
 | |
| 	writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
 | |
| 
 | |
| 	/* Advertise write latency. */
 | |
| 	writel(wlat, &phy_mgr_cfg->afi_wlat);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
 | |
|  *
 | |
|  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
 | |
|  */
 | |
| static void mem_skip_calibrate(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	u32 vfifo_offset;
 | |
| 	u32 i, j, r;
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 	/* Need to update every shadow register set used by the interface */
 | |
| 	for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
 | |
| 	     r += NUM_RANKS_PER_SHADOW_REG) {
 | |
| 		/*
 | |
| 		 * Set output phase alignment settings appropriate for
 | |
| 		 * skip calibration.
 | |
| 		 */
 | |
| 		for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
 | |
| 			scc_mgr_set_dqs_en_phase(i, 0);
 | |
| 			if (seq->iocfg->dll_chain_length == 6)
 | |
| 				scc_mgr_set_dqdqs_output_phase(i, 6);
 | |
| 			else
 | |
| 				scc_mgr_set_dqdqs_output_phase(i, 7);
 | |
| 			/*
 | |
| 			 * Case:33398
 | |
| 			 *
 | |
| 			 * Write data arrives to the I/O two cycles before write
 | |
| 			 * latency is reached (720 deg).
 | |
| 			 *   -> due to bit-slip in a/c bus
 | |
| 			 *   -> to allow board skew where dqs is longer than ck
 | |
| 			 *      -> how often can this happen!?
 | |
| 			 *      -> can claim back some ptaps for high freq
 | |
| 			 *       support if we can relax this, but i digress...
 | |
| 			 *
 | |
| 			 * The write_clk leads mem_ck by 90 deg
 | |
| 			 * The minimum ptap of the OPA is 180 deg
 | |
| 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
 | |
| 			 * The write_clk is always delayed by 2 ptaps
 | |
| 			 *
 | |
| 			 * Hence, to make DQS aligned to CK, we need to delay
 | |
| 			 * DQS by:
 | |
| 			 *    (720 - 90 - 180 - 2) *
 | |
| 			 *      (360 / seq->iocfg->dll_chain_length)
 | |
| 			 *
 | |
| 			 * Dividing the above by
 | |
| 			 (360 / seq->iocfg->dll_chain_length)
 | |
| 			 * gives us the number of ptaps, which simplies to:
 | |
| 			 *
 | |
| 			 *    (1.25 * seq->iocfg->dll_chain_length - 2)
 | |
| 			 */
 | |
| 			scc_mgr_set_dqdqs_output_phase(i,
 | |
| 				       ((125 * seq->iocfg->dll_chain_length)
 | |
| 				       / 100) - 2);
 | |
| 		}
 | |
| 		writel(0xff, &sdr_scc_mgr->dqs_ena);
 | |
| 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
 | |
| 
 | |
| 		for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
 | |
| 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
 | |
| 				  SCC_MGR_GROUP_COUNTER_OFFSET);
 | |
| 		}
 | |
| 		writel(0xff, &sdr_scc_mgr->dq_ena);
 | |
| 		writel(0xff, &sdr_scc_mgr->dm_ena);
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 	}
 | |
| 
 | |
| 	/* Compensate for simulation model behaviour */
 | |
| 	for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
 | |
| 		scc_mgr_set_dqs_bus_in_delay(i, 10);
 | |
| 		scc_mgr_load_dqs(i);
 | |
| 	}
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| 
 | |
| 	/*
 | |
| 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
 | |
| 	 * in sequencer.
 | |
| 	 */
 | |
| 	vfifo_offset = seq->misccfg->calib_vfifo_offset;
 | |
| 	for (j = 0; j < vfifo_offset; j++)
 | |
| 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
 | |
| 	writel(0, &phy_mgr_cmd->fifo_reset);
 | |
| 
 | |
| 	/*
 | |
| 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
 | |
| 	 * setting from generation-time constant.
 | |
| 	 */
 | |
| 	seq->gbl.curr_read_lat = seq->misccfg->calib_lfifo_offset;
 | |
| 	writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_calibrate() - Memory calibration entry point.
 | |
|  *
 | |
|  * Perform memory calibration.
 | |
|  */
 | |
| static u32 mem_calibrate(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 rank_bgn, sr;
 | |
| 	u32 write_group, write_test_bgn;
 | |
| 	u32 read_group, read_test_bgn;
 | |
| 	u32 run_groups, current_run;
 | |
| 	u32 failing_groups = 0;
 | |
| 	u32 group_failed = 0;
 | |
| 
 | |
| 	const u32 rwdqs_ratio = seq->rwcfg->mem_if_read_dqs_width /
 | |
| 				seq->rwcfg->mem_if_write_dqs_width;
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 
 | |
| 	/* Initialize the data settings */
 | |
| 	seq->gbl.error_substage = CAL_SUBSTAGE_NIL;
 | |
| 	seq->gbl.error_stage = CAL_STAGE_NIL;
 | |
| 	seq->gbl.error_group = 0xff;
 | |
| 	seq->gbl.fom_in = 0;
 | |
| 	seq->gbl.fom_out = 0;
 | |
| 
 | |
| 	/* Initialize WLAT and RLAT. */
 | |
| 	mem_init_latency(seq);
 | |
| 
 | |
| 	/* Initialize bit slips. */
 | |
| 	mem_precharge_and_activate(seq);
 | |
| 
 | |
| 	for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
 | |
| 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
 | |
| 			  SCC_MGR_GROUP_COUNTER_OFFSET);
 | |
| 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
 | |
| 		if (i == 0)
 | |
| 			scc_mgr_set_hhp_extras();
 | |
| 
 | |
| 		scc_set_bypass_mode(i);
 | |
| 	}
 | |
| 
 | |
| 	/* Calibration is skipped. */
 | |
| 	if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
 | |
| 		/*
 | |
| 		 * Set VFIFO and LFIFO to instant-on settings in skip
 | |
| 		 * calibration mode.
 | |
| 		 */
 | |
| 		mem_skip_calibrate(seq);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not remove this line as it makes sure all of our
 | |
| 		 * decisions have been applied.
 | |
| 		 */
 | |
| 		writel(0, &sdr_scc_mgr->update);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Calibration is not skipped. */
 | |
| 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
 | |
| 		/*
 | |
| 		 * Zero all delay chain/phase settings for all
 | |
| 		 * groups and all shadow register sets.
 | |
| 		 */
 | |
| 		scc_mgr_zero_all(seq);
 | |
| 
 | |
| 		run_groups = ~0;
 | |
| 
 | |
| 		for (write_group = 0, write_test_bgn = 0; write_group
 | |
| 			< seq->rwcfg->mem_if_write_dqs_width; write_group++,
 | |
| 			write_test_bgn += seq->rwcfg->mem_dq_per_write_dqs) {
 | |
| 			/* Initialize the group failure */
 | |
| 			group_failed = 0;
 | |
| 
 | |
| 			current_run = run_groups & ((1 <<
 | |
| 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
 | |
| 			run_groups = run_groups >>
 | |
| 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
 | |
| 
 | |
| 			if (current_run == 0)
 | |
| 				continue;
 | |
| 
 | |
| 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
 | |
| 					    SCC_MGR_GROUP_COUNTER_OFFSET);
 | |
| 			scc_mgr_zero_group(seq, write_group, 0);
 | |
| 
 | |
| 			for (read_group = write_group * rwdqs_ratio,
 | |
| 			     read_test_bgn = 0;
 | |
| 			     read_group < (write_group + 1) * rwdqs_ratio;
 | |
| 			     read_group++,
 | |
| 			     read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
 | |
| 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
 | |
| 					continue;
 | |
| 
 | |
| 				/* Calibrate the VFIFO */
 | |
| 				if (rw_mgr_mem_calibrate_vfifo(seq, read_group,
 | |
| 							       read_test_bgn))
 | |
| 					continue;
 | |
| 
 | |
| 				if (!(seq->gbl.phy_debug_mode_flags &
 | |
| 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
 | |
| 					return 0;
 | |
| 
 | |
| 				/* The group failed, we're done. */
 | |
| 				goto grp_failed;
 | |
| 			}
 | |
| 
 | |
| 			/* Calibrate the output side */
 | |
| 			for (rank_bgn = 0, sr = 0;
 | |
| 			     rank_bgn < seq->rwcfg->mem_number_of_ranks;
 | |
| 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
 | |
| 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
 | |
| 					continue;
 | |
| 
 | |
| 				/* Not needed in quick mode! */
 | |
| 				if (STATIC_CALIB_STEPS &
 | |
| 				    CALIB_SKIP_DELAY_SWEEPS)
 | |
| 					continue;
 | |
| 
 | |
| 				/* Calibrate WRITEs */
 | |
| 				if (!rw_mgr_mem_calibrate_writes(seq, rank_bgn,
 | |
| 								 write_group,
 | |
| 								 write_test_bgn))
 | |
| 					continue;
 | |
| 
 | |
| 				group_failed = 1;
 | |
| 				if (!(seq->gbl.phy_debug_mode_flags &
 | |
| 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
 | |
| 					return 0;
 | |
| 			}
 | |
| 
 | |
| 			/* Some group failed, we're done. */
 | |
| 			if (group_failed)
 | |
| 				goto grp_failed;
 | |
| 
 | |
| 			for (read_group = write_group * rwdqs_ratio,
 | |
| 			     read_test_bgn = 0;
 | |
| 			     read_group < (write_group + 1) * rwdqs_ratio;
 | |
| 			     read_group++,
 | |
| 			     read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
 | |
| 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
 | |
| 					continue;
 | |
| 
 | |
| 				if (!rw_mgr_mem_calibrate_vfifo_end(seq,
 | |
| 								    read_group,
 | |
| 								    read_test_bgn))
 | |
| 					continue;
 | |
| 
 | |
| 				if (!(seq->gbl.phy_debug_mode_flags &
 | |
| 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
 | |
| 					return 0;
 | |
| 
 | |
| 				/* The group failed, we're done. */
 | |
| 				goto grp_failed;
 | |
| 			}
 | |
| 
 | |
| 			/* No group failed, continue as usual. */
 | |
| 			continue;
 | |
| 
 | |
| grp_failed:		/* A group failed, increment the counter. */
 | |
| 			failing_groups++;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * USER If there are any failing groups then report
 | |
| 		 * the failure.
 | |
| 		 */
 | |
| 		if (failing_groups != 0)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Calibrate the LFIFO */
 | |
| 		if (!rw_mgr_mem_calibrate_lfifo(seq))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not remove this line as it makes sure all of our decisions
 | |
| 	 * have been applied.
 | |
| 	 */
 | |
| 	writel(0, &sdr_scc_mgr->update);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * run_mem_calibrate() - Perform memory calibration
 | |
|  *
 | |
|  * This function triggers the entire memory calibration procedure.
 | |
|  */
 | |
| static int run_mem_calibrate(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	int pass;
 | |
| 	u32 ctrl_cfg;
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 
 | |
| 	/* Reset pass/fail status shown on afi_cal_success/fail */
 | |
| 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
 | |
| 
 | |
| 	/* Stop tracking manager. */
 | |
| 	ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
 | |
| 	writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
 | |
| 	       &sdr_ctrl->ctrl_cfg);
 | |
| 
 | |
| 	phy_mgr_initialize(seq);
 | |
| 	rw_mgr_mem_initialize(seq);
 | |
| 
 | |
| 	/* Perform the actual memory calibration. */
 | |
| 	pass = mem_calibrate(seq);
 | |
| 
 | |
| 	mem_precharge_and_activate(seq);
 | |
| 	writel(0, &phy_mgr_cmd->fifo_reset);
 | |
| 
 | |
| 	/* Handoff. */
 | |
| 	rw_mgr_mem_handoff(seq);
 | |
| 	/*
 | |
| 	 * In Hard PHY this is a 2-bit control:
 | |
| 	 * 0: AFI Mux Select
 | |
| 	 * 1: DDIO Mux Select
 | |
| 	 */
 | |
| 	writel(0x2, &phy_mgr_cfg->mux_sel);
 | |
| 
 | |
| 	/* Start tracking manager. */
 | |
| 	writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
 | |
| 
 | |
| 	return pass;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * debug_mem_calibrate() - Report result of memory calibration
 | |
|  * @pass:	Value indicating whether calibration passed or failed
 | |
|  *
 | |
|  * This function reports the results of the memory calibration
 | |
|  * and writes debug information into the register file.
 | |
|  */
 | |
| static void debug_mem_calibrate(struct socfpga_sdrseq *seq, int pass)
 | |
| {
 | |
| 	u32 debug_info;
 | |
| 
 | |
| 	if (pass) {
 | |
| 		debug("%s: CALIBRATION PASSED\n", __FILE__);
 | |
| 
 | |
| 		seq->gbl.fom_in /= 2;
 | |
| 		seq->gbl.fom_out /= 2;
 | |
| 
 | |
| 		if (seq->gbl.fom_in > 0xff)
 | |
| 			seq->gbl.fom_in = 0xff;
 | |
| 
 | |
| 		if (seq->gbl.fom_out > 0xff)
 | |
| 			seq->gbl.fom_out = 0xff;
 | |
| 
 | |
| 		/* Update the FOM in the register file */
 | |
| 		debug_info = seq->gbl.fom_in;
 | |
| 		debug_info |= seq->gbl.fom_out << 8;
 | |
| 		writel(debug_info, &sdr_reg_file->fom);
 | |
| 
 | |
| 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
 | |
| 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
 | |
| 	} else {
 | |
| 		debug("%s: CALIBRATION FAILED\n", __FILE__);
 | |
| 
 | |
| 		debug_info = seq->gbl.error_stage;
 | |
| 		debug_info |= seq->gbl.error_substage << 8;
 | |
| 		debug_info |= seq->gbl.error_group << 16;
 | |
| 
 | |
| 		writel(debug_info, &sdr_reg_file->failing_stage);
 | |
| 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
 | |
| 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
 | |
| 
 | |
| 		/* Update the failing group/stage in the register file */
 | |
| 		debug_info = seq->gbl.error_stage;
 | |
| 		debug_info |= seq->gbl.error_substage << 8;
 | |
| 		debug_info |= seq->gbl.error_group << 16;
 | |
| 		writel(debug_info, &sdr_reg_file->failing_stage);
 | |
| 	}
 | |
| 
 | |
| 	debug("%s: Calibration complete\n", __FILE__);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hc_initialize_rom_data() - Initialize ROM data
 | |
|  *
 | |
|  * Initialize ROM data.
 | |
|  */
 | |
| static void hc_initialize_rom_data(void)
 | |
| {
 | |
| 	unsigned int nelem = 0;
 | |
| 	const u32 *rom_init;
 | |
| 	u32 i, addr;
 | |
| 
 | |
| 	socfpga_get_seq_inst_init(&rom_init, &nelem);
 | |
| 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
 | |
| 	for (i = 0; i < nelem; i++)
 | |
| 		writel(rom_init[i], addr + (i << 2));
 | |
| 
 | |
| 	socfpga_get_seq_ac_init(&rom_init, &nelem);
 | |
| 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
 | |
| 	for (i = 0; i < nelem; i++)
 | |
| 		writel(rom_init[i], addr + (i << 2));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * initialize_reg_file() - Initialize SDR register file
 | |
|  *
 | |
|  * Initialize SDR register file.
 | |
|  */
 | |
| static void initialize_reg_file(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	/* Initialize the register file with the correct data */
 | |
| 	writel(seq->misccfg->reg_file_init_seq_signature,
 | |
| 	       &sdr_reg_file->signature);
 | |
| 	writel(0, &sdr_reg_file->debug_data_addr);
 | |
| 	writel(0, &sdr_reg_file->cur_stage);
 | |
| 	writel(0, &sdr_reg_file->fom);
 | |
| 	writel(0, &sdr_reg_file->failing_stage);
 | |
| 	writel(0, &sdr_reg_file->debug1);
 | |
| 	writel(0, &sdr_reg_file->debug2);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * initialize_hps_phy() - Initialize HPS PHY
 | |
|  *
 | |
|  * Initialize HPS PHY.
 | |
|  */
 | |
| static void initialize_hps_phy(void)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	/*
 | |
| 	 * Tracking also gets configured here because it's in the
 | |
| 	 * same register.
 | |
| 	 */
 | |
| 	u32 trk_sample_count = 7500;
 | |
| 	u32 trk_long_idle_sample_count = (10 << 16) | 100;
 | |
| 	/*
 | |
| 	 * Format is number of outer loops in the 16 MSB, sample
 | |
| 	 * count in 16 LSB.
 | |
| 	 */
 | |
| 
 | |
| 	reg = 0;
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
 | |
| 	/*
 | |
| 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
 | |
| 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
 | |
| 	 */
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
 | |
| 		trk_sample_count);
 | |
| 	writel(reg, &sdr_ctrl->phy_ctrl0);
 | |
| 
 | |
| 	reg = 0;
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
 | |
| 		trk_sample_count >>
 | |
| 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
 | |
| 		trk_long_idle_sample_count);
 | |
| 	writel(reg, &sdr_ctrl->phy_ctrl1);
 | |
| 
 | |
| 	reg = 0;
 | |
| 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
 | |
| 		trk_long_idle_sample_count >>
 | |
| 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
 | |
| 	writel(reg, &sdr_ctrl->phy_ctrl2);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * initialize_tracking() - Initialize tracking
 | |
|  *
 | |
|  * Initialize the register file with usable initial data.
 | |
|  */
 | |
| static void initialize_tracking(struct socfpga_sdrseq *seq)
 | |
| {
 | |
| 	/*
 | |
| 	 * Initialize the register file with the correct data.
 | |
| 	 * Compute usable version of value in case we skip full
 | |
| 	 * computation later.
 | |
| 	 */
 | |
| 	writel(DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
 | |
| 			    seq->iocfg->delay_per_dchain_tap) - 1,
 | |
| 	       &sdr_reg_file->dtaps_per_ptap);
 | |
| 
 | |
| 	/* trk_sample_count */
 | |
| 	writel(7500, &sdr_reg_file->trk_sample_count);
 | |
| 
 | |
| 	/* longidle outer loop [15:0] */
 | |
| 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
 | |
| 
 | |
| 	/*
 | |
| 	 * longidle sample count [31:24]
 | |
| 	 * trfc, worst case of 933Mhz 4Gb [23:16]
 | |
| 	 * trcd, worst case [15:8]
 | |
| 	 * vfifo wait [7:0]
 | |
| 	 */
 | |
| 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
 | |
| 	       &sdr_reg_file->delays);
 | |
| 
 | |
| 	/* mux delay */
 | |
| 	if (dram_is_ddr(2)) {
 | |
| 		writel(0, &sdr_reg_file->trk_rw_mgr_addr);
 | |
| 	} else if (dram_is_ddr(3)) {
 | |
| 		writel((seq->rwcfg->idle << 24) |
 | |
| 		       (seq->rwcfg->activate_1 << 16) |
 | |
| 		       (seq->rwcfg->sgle_read << 8) |
 | |
| 		       (seq->rwcfg->precharge_all << 0),
 | |
| 		       &sdr_reg_file->trk_rw_mgr_addr);
 | |
| 	}
 | |
| 
 | |
| 	writel(seq->rwcfg->mem_if_read_dqs_width,
 | |
| 	       &sdr_reg_file->trk_read_dqs_width);
 | |
| 
 | |
| 	/* trefi [7:0] */
 | |
| 	if (dram_is_ddr(2)) {
 | |
| 		writel(1000 << 0, &sdr_reg_file->trk_rfsh);
 | |
| 	} else if (dram_is_ddr(3)) {
 | |
| 		writel((seq->rwcfg->refresh_all << 24) | (1000 << 0),
 | |
| 		       &sdr_reg_file->trk_rfsh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int sdram_calibration_full(struct socfpga_sdr *sdr)
 | |
| {
 | |
| 	u32 pass;
 | |
| 	struct socfpga_sdrseq seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * For size reasons, this file uses hard coded addresses.
 | |
| 	 * Check if we are called with the correct address.
 | |
| 	 */
 | |
| 	if (sdr != (struct socfpga_sdr *)SOCFPGA_SDR_ADDRESS)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	memset(&seq, 0, sizeof(seq));
 | |
| 
 | |
| 	seq.rwcfg = socfpga_get_sdram_rwmgr_config();
 | |
| 	seq.iocfg = socfpga_get_sdram_io_config();
 | |
| 	seq.misccfg = socfpga_get_sdram_misc_config();
 | |
| 
 | |
| 	/* Set the calibration enabled by default */
 | |
| 	seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
 | |
| 	/*
 | |
| 	 * Only sweep all groups (regardless of fail state) by default
 | |
| 	 * Set enabled read test by default.
 | |
| 	 */
 | |
| #if DISABLE_GUARANTEED_READ
 | |
| 	seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
 | |
| #endif
 | |
| 	/* Initialize the register file */
 | |
| 	initialize_reg_file(&seq);
 | |
| 
 | |
| 	/* Initialize any PHY CSR */
 | |
| 	initialize_hps_phy();
 | |
| 
 | |
| 	scc_mgr_initialize();
 | |
| 
 | |
| 	initialize_tracking(&seq);
 | |
| 
 | |
| 	debug("%s: Preparing to start memory calibration\n", __FILE__);
 | |
| 
 | |
| 	debug("%s:%d\n", __func__, __LINE__);
 | |
| 	debug_cond(DLEVEL >= 1,
 | |
| 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
 | |
| 		   seq.rwcfg->mem_number_of_ranks,
 | |
| 		   seq.rwcfg->mem_number_of_cs_per_dimm,
 | |
| 		   seq.rwcfg->mem_dq_per_read_dqs,
 | |
| 		   seq.rwcfg->mem_dq_per_write_dqs,
 | |
| 		   seq.rwcfg->mem_virtual_groups_per_read_dqs,
 | |
| 		   seq.rwcfg->mem_virtual_groups_per_write_dqs);
 | |
| 	debug_cond(DLEVEL >= 1,
 | |
| 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
 | |
| 		   seq.rwcfg->mem_if_read_dqs_width,
 | |
| 		   seq.rwcfg->mem_if_write_dqs_width,
 | |
| 		   seq.rwcfg->mem_data_width, seq.rwcfg->mem_data_mask_width,
 | |
| 		   seq.iocfg->delay_per_opa_tap,
 | |
| 		   seq.iocfg->delay_per_dchain_tap);
 | |
| 	debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
 | |
| 		   seq.iocfg->delay_per_dqs_en_dchain_tap,
 | |
| 		   seq.iocfg->dll_chain_length);
 | |
| 	debug_cond(DLEVEL >= 1,
 | |
| 		   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
 | |
| 		   seq.iocfg->dqs_en_phase_max, seq.iocfg->dqdqs_out_phase_max,
 | |
| 		   seq.iocfg->dqs_en_delay_max, seq.iocfg->dqs_in_delay_max);
 | |
| 	debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
 | |
| 		   seq.iocfg->io_in_delay_max, seq.iocfg->io_out1_delay_max,
 | |
| 		   seq.iocfg->io_out2_delay_max);
 | |
| 	debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
 | |
| 		   seq.iocfg->dqs_in_reserve, seq.iocfg->dqs_out_reserve);
 | |
| 
 | |
| 	hc_initialize_rom_data();
 | |
| 
 | |
| 	/* update info for sims */
 | |
| 	reg_file_set_stage(CAL_STAGE_NIL);
 | |
| 	reg_file_set_group(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Load global needed for those actions that require
 | |
| 	 * some dynamic calibration support.
 | |
| 	 */
 | |
| 	seq.dyn_calib_steps = STATIC_CALIB_STEPS;
 | |
| 	/*
 | |
| 	 * Load global to allow dynamic selection of delay loop settings
 | |
| 	 * based on calibration mode.
 | |
| 	 */
 | |
| 	if (!(seq.dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
 | |
| 		seq.skip_delay_mask = 0xff;
 | |
| 	else
 | |
| 		seq.skip_delay_mask = 0x0;
 | |
| 
 | |
| 	pass = run_mem_calibrate(&seq);
 | |
| 	debug_mem_calibrate(&seq, pass);
 | |
| 	return pass;
 | |
| }
 |