mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-31 18:35:42 +01:00 
			
		
		
		
	Move common definitions to udc.h This allows musb_udc.h to be removed as well. Signed-off-by: Troy Kisky <troy.kisky@boundarydevices.com>
		
			
				
	
	
		
			1556 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1556 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (C) Copyright 2003
 | |
|  * Gerry Hamel, geh@ti.com, Texas Instruments
 | |
|  *
 | |
|  * Based on
 | |
|  * linux/drivers/usb/device/bi/omap.c
 | |
|  * TI OMAP1510 USB bus interface driver
 | |
|  *
 | |
|  * Author: MontaVista Software, Inc.
 | |
|  *	   source@mvista.com
 | |
|  *	   (C) Copyright 2002
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <asm/io.h>
 | |
| #ifdef CONFIG_OMAP_SX1
 | |
| #include <i2c.h>
 | |
| #endif
 | |
| #include <usbdevice.h>
 | |
| #include <usb/omap1510_udc.h>
 | |
| #include <usb/udc.h>
 | |
| 
 | |
| #include "ep0.h"
 | |
| 
 | |
| 
 | |
| #define UDC_INIT_MDELAY		     80 /* Device settle delay */
 | |
| #define UDC_MAX_ENDPOINTS	     31 /* Number of endpoints on this UDC */
 | |
| 
 | |
| /* Some kind of debugging output... */
 | |
| #if 1
 | |
| #define UDCDBG(str)
 | |
| #define UDCDBGA(fmt,args...)
 | |
| #else  /* The bugs still exists... */
 | |
| #define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__)
 | |
| #define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args)
 | |
| #endif
 | |
| 
 | |
| #if 1
 | |
| #define UDCREG(name)
 | |
| #define UDCREGL(name)
 | |
| #else  /* The bugs still exists... */
 | |
| #define UDCREG(name)	 serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name))	/* For 16-bit regs */
 | |
| #define UDCREGL(name)	 serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name))	/* For 32-bit regs */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static struct urb *ep0_urb = NULL;
 | |
| 
 | |
| static struct usb_device_instance *udc_device;	/* Used in interrupt handler */
 | |
| static u16 udc_devstat = 0;	/* UDC status (DEVSTAT) */
 | |
| static u32 udc_interrupts = 0;
 | |
| 
 | |
| static void udc_stall_ep (unsigned int ep_addr);
 | |
| 
 | |
| 
 | |
| static struct usb_endpoint_instance *omap1510_find_ep (int ep)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < udc_device->bus->max_endpoints; i++) {
 | |
| 		if (udc_device->bus->endpoint_array[i].endpoint_address == ep)
 | |
| 			return &udc_device->bus->endpoint_array[i];
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************** */
 | |
| /* IO
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * omap1510_prepare_endpoint_for_rx
 | |
|  *
 | |
|  * This function implements TRM Figure 14-11.
 | |
|  *
 | |
|  * The endpoint to prepare for transfer is specified as a physical endpoint
 | |
|  * number.  For OUT (rx) endpoints 1 through 15, the corresponding endpoint
 | |
|  * configuration register is checked to see if the endpoint is ISO or not.
 | |
|  * If the OUT endpoint is valid and is non-ISO then its FIFO is enabled.
 | |
|  * No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30.
 | |
|  */
 | |
| static void omap1510_prepare_endpoint_for_rx (int ep_addr)
 | |
| {
 | |
| 	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
 | |
| 
 | |
| 	UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr);
 | |
| 	if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) {
 | |
| 		if ((inw (UDC_EP_RX (ep_num)) &
 | |
| 		     (UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) ==
 | |
| 		    UDC_EPn_RX_Valid) {
 | |
| 			/* rx endpoint is valid, non-ISO, so enable its FIFO */
 | |
| 			outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
 | |
| 			outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 			outw (0, UDC_EP_NUM);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* omap1510_configure_endpoints
 | |
|  *
 | |
|  * This function implements TRM Figure 14-10.
 | |
|  */
 | |
| static void omap1510_configure_endpoints (struct usb_device_instance *device)
 | |
| {
 | |
| 	int ep;
 | |
| 	struct usb_bus_instance *bus;
 | |
| 	struct usb_endpoint_instance *endpoint;
 | |
| 	unsigned short ep_ptr;
 | |
| 	unsigned short ep_size;
 | |
| 	unsigned short ep_isoc;
 | |
| 	unsigned short ep_doublebuffer;
 | |
| 	int ep_addr;
 | |
| 	int packet_size;
 | |
| 	int buffer_size;
 | |
| 	int attributes;
 | |
| 
 | |
| 	bus = device->bus;
 | |
| 
 | |
| 	/* There is a dedicated 2048 byte buffer for USB packets that may be
 | |
| 	 * arbitrarily partitioned among the endpoints on 8-byte boundaries.
 | |
| 	 * The first 8 bytes are reserved for receiving setup packets on
 | |
| 	 * endpoint 0.
 | |
| 	 */
 | |
| 	ep_ptr = 8;		/* reserve the first 8 bytes for the setup fifo */
 | |
| 
 | |
| 	for (ep = 0; ep < bus->max_endpoints; ep++) {
 | |
| 		endpoint = bus->endpoint_array + ep;
 | |
| 		ep_addr = endpoint->endpoint_address;
 | |
| 		if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
 | |
| 			/* IN endpoint */
 | |
| 			packet_size = endpoint->tx_packetSize;
 | |
| 			attributes = endpoint->tx_attributes;
 | |
| 		} else {
 | |
| 			/* OUT endpoint */
 | |
| 			packet_size = endpoint->rcv_packetSize;
 | |
| 			attributes = endpoint->rcv_attributes;
 | |
| 		}
 | |
| 
 | |
| 		switch (packet_size) {
 | |
| 		case 0:
 | |
| 			ep_size = 0;
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			ep_size = 0;
 | |
| 			break;
 | |
| 		case 16:
 | |
| 			ep_size = 1;
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			ep_size = 2;
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			ep_size = 3;
 | |
| 			break;
 | |
| 		case 128:
 | |
| 			ep_size = 4;
 | |
| 			break;
 | |
| 		case 256:
 | |
| 			ep_size = 5;
 | |
| 			break;
 | |
| 		case 512:
 | |
| 			ep_size = 6;
 | |
| 			break;
 | |
| 		default:
 | |
| 			UDCDBGA ("ep 0x%02x has bad packet size %d",
 | |
| 				 ep_addr, packet_size);
 | |
| 			packet_size = 0;
 | |
| 			ep_size = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
 | |
| 		case USB_ENDPOINT_XFER_CONTROL:
 | |
| 		case USB_ENDPOINT_XFER_BULK:
 | |
| 		case USB_ENDPOINT_XFER_INT:
 | |
| 		default:
 | |
| 			/* A non-isochronous endpoint may optionally be
 | |
| 			 * double-buffered. For now we disable
 | |
| 			 * double-buffering.
 | |
| 			 */
 | |
| 			ep_doublebuffer = 0;
 | |
| 			ep_isoc = 0;
 | |
| 			if (packet_size > 64)
 | |
| 				packet_size = 0;
 | |
| 			if (!ep || !ep_doublebuffer)
 | |
| 				buffer_size = packet_size;
 | |
| 			else
 | |
| 				buffer_size = packet_size * 2;
 | |
| 			break;
 | |
| 		case USB_ENDPOINT_XFER_ISOC:
 | |
| 			/* Isochronous endpoints are always double-
 | |
| 			 * buffered, but the double-buffering bit
 | |
| 			 * in the endpoint configuration register
 | |
| 			 * becomes the msb of the endpoint size so we
 | |
| 			 * set the double-buffering flag to zero.
 | |
| 			 */
 | |
| 			ep_doublebuffer = 0;
 | |
| 			ep_isoc = 1;
 | |
| 			buffer_size = packet_size * 2;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* check to see if our packet buffer RAM is exhausted */
 | |
| 		if ((ep_ptr + buffer_size) > 2048) {
 | |
| 			UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size);
 | |
| 			buffer_size = packet_size = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* force a default configuration for endpoint 0 since it is
 | |
| 		 * always enabled
 | |
| 		 */
 | |
| 		if (!ep && ((packet_size < 8) || (packet_size > 64))) {
 | |
| 			buffer_size = packet_size = 64;
 | |
| 			ep_size = 3;
 | |
| 		}
 | |
| 
 | |
| 		if (!ep) {
 | |
| 			/* configure endpoint 0 */
 | |
| 			outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0);
 | |
| 			/*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */
 | |
| 			/*	ep_ptr, packet_size); */
 | |
| 		} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
 | |
| 			/* IN endpoint */
 | |
| 			if (packet_size) {
 | |
| 				outw ((1 << 15) | (ep_doublebuffer << 14) |
 | |
| 				      (ep_size << 12) | (ep_isoc << 11) |
 | |
| 				      (ep_ptr >> 3),
 | |
| 				      UDC_EP_TX (ep_addr &
 | |
| 						 USB_ENDPOINT_NUMBER_MASK));
 | |
| 				UDCDBGA ("IN ep %d buffer offset 0x%03x"
 | |
| 					 " packet size 0x%03x",
 | |
| 					 ep_addr & USB_ENDPOINT_NUMBER_MASK,
 | |
| 					 ep_ptr, packet_size);
 | |
| 			} else {
 | |
| 				outw (0,
 | |
| 				      UDC_EP_TX (ep_addr &
 | |
| 						 USB_ENDPOINT_NUMBER_MASK));
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* OUT endpoint */
 | |
| 			if (packet_size) {
 | |
| 				outw ((1 << 15) | (ep_doublebuffer << 14) |
 | |
| 				      (ep_size << 12) | (ep_isoc << 11) |
 | |
| 				      (ep_ptr >> 3),
 | |
| 				      UDC_EP_RX (ep_addr &
 | |
| 						 USB_ENDPOINT_NUMBER_MASK));
 | |
| 				UDCDBGA ("OUT ep %d buffer offset 0x%03x"
 | |
| 					 " packet size 0x%03x",
 | |
| 					 ep_addr & USB_ENDPOINT_NUMBER_MASK,
 | |
| 					 ep_ptr, packet_size);
 | |
| 			} else {
 | |
| 				outw (0,
 | |
| 				      UDC_EP_RX (ep_addr &
 | |
| 						 USB_ENDPOINT_NUMBER_MASK));
 | |
| 			}
 | |
| 		}
 | |
| 		ep_ptr += buffer_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* omap1510_deconfigure_device
 | |
|  *
 | |
|  * This function balances omap1510_configure_device.
 | |
|  */
 | |
| static void omap1510_deconfigure_device (void)
 | |
| {
 | |
| 	int epnum;
 | |
| 
 | |
| 	UDCDBG ("clear Cfg_Lock");
 | |
| 	outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1);
 | |
| 	UDCREG (UDC_SYSCON1);
 | |
| 
 | |
| 	/* deconfigure all endpoints */
 | |
| 	for (epnum = 1; epnum <= 15; epnum++) {
 | |
| 		outw (0, UDC_EP_RX (epnum));
 | |
| 		outw (0, UDC_EP_TX (epnum));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* omap1510_configure_device
 | |
|  *
 | |
|  * This function implements TRM Figure 14-9.
 | |
|  */
 | |
| static void omap1510_configure_device (struct usb_device_instance *device)
 | |
| {
 | |
| 	omap1510_configure_endpoints (device);
 | |
| 
 | |
| 
 | |
| 	/* Figure 14-9 indicates we should enable interrupts here, but we have
 | |
| 	 * other routines (udc_all_interrupts, udc_suspended_interrupts) to
 | |
| 	 * do that.
 | |
| 	 */
 | |
| 
 | |
| 	UDCDBG ("set Cfg_Lock");
 | |
| 	outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1);
 | |
| 	UDCREG (UDC_SYSCON1);
 | |
| }
 | |
| 
 | |
| /* omap1510_write_noniso_tx_fifo
 | |
|  *
 | |
|  * This function implements TRM Figure 14-30.
 | |
|  *
 | |
|  * If the endpoint has an active tx_urb, then the next packet of data from the
 | |
|  * URB is written to the tx FIFO.  The total amount of data in the urb is given
 | |
|  * by urb->actual_length.  The maximum amount of data that can be sent in any
 | |
|  * one packet is given by endpoint->tx_packetSize.  The number of data bytes
 | |
|  * from this URB that have already been transmitted is given by endpoint->sent.
 | |
|  * endpoint->last is updated by this routine with the number of data bytes
 | |
|  * transmitted in this packet.
 | |
|  *
 | |
|  * In accordance with Figure 14-30, the EP_NUM register must already have been
 | |
|  * written with the value to select the appropriate tx FIFO before this routine
 | |
|  * is called.
 | |
|  */
 | |
| static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance
 | |
| 					   *endpoint)
 | |
| {
 | |
| 	struct urb *urb = endpoint->tx_urb;
 | |
| 
 | |
| 	if (urb) {
 | |
| 		unsigned int last, i;
 | |
| 
 | |
| 		UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d",
 | |
| 			 urb->buffer, urb->buffer_length, urb->actual_length);
 | |
| 		if ((last =
 | |
| 		     MIN (urb->actual_length - endpoint->sent,
 | |
| 			  endpoint->tx_packetSize))) {
 | |
| 			u8 *cp = urb->buffer + endpoint->sent;
 | |
| 
 | |
| 			UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last);
 | |
| 
 | |
| 			if (((u32) cp & 1) == 0) {	/* word aligned? */
 | |
| 				outsw (UDC_DATA, cp, last >> 1);
 | |
| 			} else {	/* byte aligned. */
 | |
| 				for (i = 0; i < (last >> 1); i++) {
 | |
| 					u16 w = ((u16) cp[2 * i + 1] << 8) |
 | |
| 						(u16) cp[2 * i];
 | |
| 					outw (w, UDC_DATA);
 | |
| 				}
 | |
| 			}
 | |
| 			if (last & 1) {
 | |
| 				outb (*(cp + last - 1), UDC_DATA);
 | |
| 			}
 | |
| 		}
 | |
| 		endpoint->last = last;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* omap1510_read_noniso_rx_fifo
 | |
|  *
 | |
|  * This function implements TRM Figure 14-28.
 | |
|  *
 | |
|  * If the endpoint has an active rcv_urb, then the next packet of data is read
 | |
|  * from the rcv FIFO and written to rcv_urb->buffer at offset
 | |
|  * rcv_urb->actual_length to append the packet data to the data from any
 | |
|  * previous packets for this transfer.	We assume that there is sufficient room
 | |
|  * left in the buffer to hold an entire packet of data.
 | |
|  *
 | |
|  * The return value is the number of bytes read from the FIFO for this packet.
 | |
|  *
 | |
|  * In accordance with Figure 14-28, the EP_NUM register must already have been
 | |
|  * written with the value to select the appropriate rcv FIFO before this routine
 | |
|  * is called.
 | |
|  */
 | |
| static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance
 | |
| 					 *endpoint)
 | |
| {
 | |
| 	struct urb *urb = endpoint->rcv_urb;
 | |
| 	int len = 0;
 | |
| 
 | |
| 	if (urb) {
 | |
| 		len = inw (UDC_RXFSTAT);
 | |
| 
 | |
| 		if (len) {
 | |
| 			unsigned char *cp = urb->buffer + urb->actual_length;
 | |
| 
 | |
| 			insw (UDC_DATA, cp, len >> 1);
 | |
| 			if (len & 1)
 | |
| 				*(cp + len - 1) = inb (UDC_DATA);
 | |
| 		}
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /* omap1510_prepare_for_control_write_status
 | |
|  *
 | |
|  * This function implements TRM Figure 14-17.
 | |
|  *
 | |
|  * We have to deal here with non-autodecoded control writes that haven't already
 | |
|  * been dealt with by ep0_recv_setup.  The non-autodecoded standard control
 | |
|  * write requests are:	set/clear endpoint feature, set configuration, set
 | |
|  * interface, and set descriptor.  ep0_recv_setup handles set/clear requests for
 | |
|  * ENDPOINT_HALT by halting the endpoint for a set request and resetting the
 | |
|  * endpoint for a clear request.  ep0_recv_setup returns an error for
 | |
|  * SET_DESCRIPTOR requests which causes them to be terminated with a stall by
 | |
|  * the setup handler.  A SET_INTERFACE request is handled by ep0_recv_setup by
 | |
|  * generating a DEVICE_SET_INTERFACE event.  This leaves only the
 | |
|  * SET_CONFIGURATION event for us to deal with here.
 | |
|  *
 | |
|  */
 | |
| static void omap1510_prepare_for_control_write_status (struct urb *urb)
 | |
| {
 | |
| 	struct usb_device_request *request = &urb->device_request;;
 | |
| 
 | |
| 	/* check for a SET_CONFIGURATION request */
 | |
| 	if (request->bRequest == USB_REQ_SET_CONFIGURATION) {
 | |
| 		int configuration = le16_to_cpu (request->wValue) & 0xff;
 | |
| 		unsigned short devstat = inw (UDC_DEVSTAT);
 | |
| 
 | |
| 		if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) {
 | |
| 			/* device is currently in ADDRESSED state */
 | |
| 			if (configuration) {
 | |
| 				/* Assume the specified non-zero configuration
 | |
| 				 * value is valid and switch to the CONFIGURED
 | |
| 				 * state.
 | |
| 				 */
 | |
| 				outw (UDC_Dev_Cfg, UDC_SYSCON2);
 | |
| 			}
 | |
| 		} else if ((devstat & UDC_CFG) == UDC_CFG) {
 | |
| 			/* device is currently in CONFIGURED state */
 | |
| 			if (!configuration) {
 | |
| 				/* Switch to ADDRESSED state. */
 | |
| 				outw (UDC_Clr_Cfg, UDC_SYSCON2);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* select EP0 tx FIFO */
 | |
| 	outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
 | |
| 	/* clear endpoint (no data bytes in status stage) */
 | |
| 	outw (UDC_Clr_EP, UDC_CTRL);
 | |
| 	/* enable the EP0 tx FIFO */
 | |
| 	outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 	/* deselect the endpoint */
 | |
| 	outw (UDC_EP_Dir, UDC_EP_NUM);
 | |
| }
 | |
| 
 | |
| /* udc_state_transition_up
 | |
|  * udc_state_transition_down
 | |
|  *
 | |
|  * Helper functions to implement device state changes.	The device states and
 | |
|  * the events that transition between them are:
 | |
|  *
 | |
|  *				STATE_ATTACHED
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *	DEVICE_HUB_CONFIGURED			DEVICE_HUB_RESET
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *				STATE_POWERED
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *	DEVICE_RESET				DEVICE_POWER_INTERRUPTION
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *				STATE_DEFAULT
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *	DEVICE_ADDRESS_ASSIGNED			DEVICE_RESET
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *				STATE_ADDRESSED
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *	DEVICE_CONFIGURED			DEVICE_DE_CONFIGURED
 | |
|  *				||	/\
 | |
|  *				\/	||
 | |
|  *				STATE_CONFIGURED
 | |
|  *
 | |
|  * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED
 | |
|  * to STATE_CONFIGURED) from the specified initial state to the specified final
 | |
|  * state, passing through each intermediate state on the way.  If the initial
 | |
|  * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
 | |
|  * no state transitions will take place.
 | |
|  *
 | |
|  * udc_state_transition_down transitions down (in the direction from
 | |
|  * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
 | |
|  * specified final state, passing through each intermediate state on the way.
 | |
|  * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
 | |
|  * state, then no state transitions will take place.
 | |
|  *
 | |
|  * These functions must only be called with interrupts disabled.
 | |
|  */
 | |
| static void udc_state_transition_up (usb_device_state_t initial,
 | |
| 				     usb_device_state_t final)
 | |
| {
 | |
| 	if (initial < final) {
 | |
| 		switch (initial) {
 | |
| 		case STATE_ATTACHED:
 | |
| 			usbd_device_event_irq (udc_device,
 | |
| 					       DEVICE_HUB_CONFIGURED, 0);
 | |
| 			if (final == STATE_POWERED)
 | |
| 				break;
 | |
| 		case STATE_POWERED:
 | |
| 			usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
 | |
| 			if (final == STATE_DEFAULT)
 | |
| 				break;
 | |
| 		case STATE_DEFAULT:
 | |
| 			usbd_device_event_irq (udc_device,
 | |
| 					       DEVICE_ADDRESS_ASSIGNED, 0);
 | |
| 			if (final == STATE_ADDRESSED)
 | |
| 				break;
 | |
| 		case STATE_ADDRESSED:
 | |
| 			usbd_device_event_irq (udc_device, DEVICE_CONFIGURED,
 | |
| 					       0);
 | |
| 		case STATE_CONFIGURED:
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void udc_state_transition_down (usb_device_state_t initial,
 | |
| 				       usb_device_state_t final)
 | |
| {
 | |
| 	if (initial > final) {
 | |
| 		switch (initial) {
 | |
| 		case STATE_CONFIGURED:
 | |
| 			usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0);
 | |
| 			if (final == STATE_ADDRESSED)
 | |
| 				break;
 | |
| 		case STATE_ADDRESSED:
 | |
| 			usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
 | |
| 			if (final == STATE_DEFAULT)
 | |
| 				break;
 | |
| 		case STATE_DEFAULT:
 | |
| 			usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0);
 | |
| 			if (final == STATE_POWERED)
 | |
| 				break;
 | |
| 		case STATE_POWERED:
 | |
| 			usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0);
 | |
| 		case STATE_ATTACHED:
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle all device state changes.
 | |
|  * This function implements TRM Figure 14-21.
 | |
|  */
 | |
| static void omap1510_udc_state_changed (void)
 | |
| {
 | |
| 	u16 bits;
 | |
| 	u16 devstat = inw (UDC_DEVSTAT);
 | |
| 
 | |
| 	UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat);
 | |
| 
 | |
| 	bits = devstat ^ udc_devstat;
 | |
| 	if (bits) {
 | |
| 		if (bits & UDC_ATT) {
 | |
| 			if (devstat & UDC_ATT) {
 | |
| 				UDCDBG ("device attached and powered");
 | |
| 				udc_state_transition_up (udc_device->device_state, STATE_POWERED);
 | |
| 			} else {
 | |
| 				UDCDBG ("device detached or unpowered");
 | |
| 				udc_state_transition_down (udc_device->device_state, STATE_ATTACHED);
 | |
| 			}
 | |
| 		}
 | |
| 		if (bits & UDC_USB_Reset) {
 | |
| 			if (devstat & UDC_USB_Reset) {
 | |
| 				UDCDBG ("device reset in progess");
 | |
| 				udc_state_transition_down (udc_device->device_state, STATE_POWERED);
 | |
| 			} else {
 | |
| 				UDCDBG ("device reset completed");
 | |
| 			}
 | |
| 		}
 | |
| 		if (bits & UDC_DEF) {
 | |
| 			if (devstat & UDC_DEF) {
 | |
| 				UDCDBG ("device entering default state");
 | |
| 				udc_state_transition_up (udc_device->device_state, STATE_DEFAULT);
 | |
| 			} else {
 | |
| 				UDCDBG ("device leaving default state");
 | |
| 				udc_state_transition_down (udc_device->device_state, STATE_POWERED);
 | |
| 			}
 | |
| 		}
 | |
| 		if (bits & UDC_SUS) {
 | |
| 			if (devstat & UDC_SUS) {
 | |
| 				UDCDBG ("entering suspended state");
 | |
| 				usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0);
 | |
| 			} else {
 | |
| 				UDCDBG ("leaving suspended state");
 | |
| 				usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		if (bits & UDC_R_WK_OK) {
 | |
| 			UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK)
 | |
| 				 ? "enabled" : "disabled");
 | |
| 		}
 | |
| 		if (bits & UDC_ADD) {
 | |
| 			if (devstat & UDC_ADD) {
 | |
| 				UDCDBG ("default -> addressed");
 | |
| 				udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED);
 | |
| 			} else {
 | |
| 				UDCDBG ("addressed -> default");
 | |
| 				udc_state_transition_down (udc_device->device_state, STATE_DEFAULT);
 | |
| 			}
 | |
| 		}
 | |
| 		if (bits & UDC_CFG) {
 | |
| 			if (devstat & UDC_CFG) {
 | |
| 				UDCDBG ("device configured");
 | |
| 				/* The ep0_recv_setup function generates the
 | |
| 				 * DEVICE_CONFIGURED event when a
 | |
| 				 * USB_REQ_SET_CONFIGURATION setup packet is
 | |
| 				 * received, so we should already be in the
 | |
| 				 * state STATE_CONFIGURED.
 | |
| 				 */
 | |
| 				udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED);
 | |
| 			} else {
 | |
| 				UDCDBG ("device deconfigured");
 | |
| 				udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Clear interrupt source */
 | |
| 	outw (UDC_DS_Chg, UDC_IRQ_SRC);
 | |
| 
 | |
| 	/* Save current DEVSTAT */
 | |
| 	udc_devstat = devstat;
 | |
| }
 | |
| 
 | |
| /* Handle SETUP USB interrupt.
 | |
|  * This function implements TRM Figure 14-14.
 | |
|  */
 | |
| static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint)
 | |
| {
 | |
| 	UDCDBG ("-> Entering device setup");
 | |
| 
 | |
| 	do {
 | |
| 		const int setup_pktsize = 8;
 | |
| 		unsigned char *datap =
 | |
| 			(unsigned char *) &ep0_urb->device_request;
 | |
| 
 | |
| 		/* Gain access to EP 0 setup FIFO */
 | |
| 		outw (UDC_Setup_Sel, UDC_EP_NUM);
 | |
| 
 | |
| 		/* Read control request data */
 | |
| 		insb (UDC_DATA, datap, setup_pktsize);
 | |
| 
 | |
| 		UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]",
 | |
| 			 *(datap + 0), *(datap + 1), *(datap + 2),
 | |
| 			 *(datap + 3), *(datap + 4), *(datap + 5),
 | |
| 			 *(datap + 6), *(datap + 7));
 | |
| 
 | |
| 		/* Reset EP0 setup FIFO */
 | |
| 		outw (0, UDC_EP_NUM);
 | |
| 	} while (inw (UDC_IRQ_SRC) & UDC_Setup);
 | |
| 
 | |
| 	/* Try to process setup packet */
 | |
| 	if (ep0_recv_setup (ep0_urb)) {
 | |
| 		/* Not a setup packet, stall next EP0 transaction */
 | |
| 		udc_stall_ep (0);
 | |
| 		UDCDBG ("can't parse setup packet, still waiting for setup");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check direction */
 | |
| 	if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
 | |
| 	    == USB_REQ_HOST2DEVICE) {
 | |
| 		UDCDBG ("control write on EP0");
 | |
| 		if (le16_to_cpu (ep0_urb->device_request.wLength)) {
 | |
| 			/* We don't support control write data stages.
 | |
| 			 * The only standard control write request with a data
 | |
| 			 * stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't
 | |
| 			 * support that so we just stall those requests.  A
 | |
| 			 * function driver might support a non-standard
 | |
| 			 * write request with a data stage, but it isn't
 | |
| 			 * obvious what we would do with the data if we read it
 | |
| 			 * so we'll just stall it.  It seems like the API isn't
 | |
| 			 * quite right here.
 | |
| 			 */
 | |
| #if 0
 | |
| 			/* Here is what we would do if we did support control
 | |
| 			 * write data stages.
 | |
| 			 */
 | |
| 			ep0_urb->actual_length = 0;
 | |
| 			outw (0, UDC_EP_NUM);
 | |
| 			/* enable the EP0 rx FIFO */
 | |
| 			outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| #else
 | |
| 			/* Stall this request */
 | |
| 			UDCDBG ("Stalling unsupported EP0 control write data "
 | |
| 				"stage.");
 | |
| 			udc_stall_ep (0);
 | |
| #endif
 | |
| 		} else {
 | |
| 			omap1510_prepare_for_control_write_status (ep0_urb);
 | |
| 		}
 | |
| 	} else {
 | |
| 		UDCDBG ("control read on EP0");
 | |
| 		/* The ep0_recv_setup function has already placed our response
 | |
| 		 * packet data in ep0_urb->buffer and the packet length in
 | |
| 		 * ep0_urb->actual_length.
 | |
| 		 */
 | |
| 		endpoint->tx_urb = ep0_urb;
 | |
| 		endpoint->sent = 0;
 | |
| 		/* select the EP0 tx FIFO */
 | |
| 		outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
 | |
| 		/* Write packet data to the FIFO.  omap1510_write_noniso_tx_fifo
 | |
| 		 * will update endpoint->last with the number of bytes written
 | |
| 		 * to the FIFO.
 | |
| 		 */
 | |
| 		omap1510_write_noniso_tx_fifo (endpoint);
 | |
| 		/* enable the FIFO to start the packet transmission */
 | |
| 		outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 		/* deselect the EP0 tx FIFO */
 | |
| 		outw (UDC_EP_Dir, UDC_EP_NUM);
 | |
| 	}
 | |
| 
 | |
| 	UDCDBG ("<- Leaving device setup");
 | |
| }
 | |
| 
 | |
| /* Handle endpoint 0 RX interrupt
 | |
|  * This routine implements TRM Figure 14-16.
 | |
|  */
 | |
| static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint)
 | |
| {
 | |
| 	unsigned short status;
 | |
| 
 | |
| 	UDCDBG ("RX on EP0");
 | |
| 	/* select EP0 rx FIFO */
 | |
| 	outw (UDC_EP_Sel, UDC_EP_NUM);
 | |
| 
 | |
| 	status = inw (UDC_STAT_FLG);
 | |
| 
 | |
| 	if (status & UDC_ACK) {
 | |
| 		/* Check direction */
 | |
| 		if ((ep0_urb->device_request.bmRequestType
 | |
| 		     & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
 | |
| 			/* This rx interrupt must be for a control write data
 | |
| 			 * stage packet.
 | |
| 			 *
 | |
| 			 * We don't support control write data stages.
 | |
| 			 * We should never end up here.
 | |
| 			 */
 | |
| 
 | |
| 			/* clear the EP0 rx FIFO */
 | |
| 			outw (UDC_Clr_EP, UDC_CTRL);
 | |
| 
 | |
| 			/* deselect the EP0 rx FIFO */
 | |
| 			outw (0, UDC_EP_NUM);
 | |
| 
 | |
| 			UDCDBG ("Stalling unexpected EP0 control write "
 | |
| 				"data stage packet");
 | |
| 			udc_stall_ep (0);
 | |
| 		} else {
 | |
| 			/* This rx interrupt must be for a control read status
 | |
| 			 * stage packet.
 | |
| 			 */
 | |
| 			UDCDBG ("ACK on EP0 control read status stage packet");
 | |
| 			/* deselect EP0 rx FIFO */
 | |
| 			outw (0, UDC_EP_NUM);
 | |
| 		}
 | |
| 	} else if (status & UDC_STALL) {
 | |
| 		UDCDBG ("EP0 stall during RX");
 | |
| 		/* deselect EP0 rx FIFO */
 | |
| 		outw (0, UDC_EP_NUM);
 | |
| 	} else {
 | |
| 		/* deselect EP0 rx FIFO */
 | |
| 		outw (0, UDC_EP_NUM);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle endpoint 0 TX interrupt
 | |
|  * This routine implements TRM Figure 14-18.
 | |
|  */
 | |
| static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint)
 | |
| {
 | |
| 	unsigned short status;
 | |
| 	struct usb_device_request *request = &ep0_urb->device_request;
 | |
| 
 | |
| 	UDCDBG ("TX on EP0");
 | |
| 	/* select EP0 TX FIFO */
 | |
| 	outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
 | |
| 
 | |
| 	status = inw (UDC_STAT_FLG);
 | |
| 	if (status & UDC_ACK) {
 | |
| 		/* Check direction */
 | |
| 		if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
 | |
| 		    USB_REQ_HOST2DEVICE) {
 | |
| 			/* This tx interrupt must be for a control write status
 | |
| 			 * stage packet.
 | |
| 			 */
 | |
| 			UDCDBG ("ACK on EP0 control write status stage packet");
 | |
| 			/* deselect EP0 TX FIFO */
 | |
| 			outw (UDC_EP_Dir, UDC_EP_NUM);
 | |
| 		} else {
 | |
| 			/* This tx interrupt must be for a control read data
 | |
| 			 * stage packet.
 | |
| 			 */
 | |
| 			int wLength = le16_to_cpu (request->wLength);
 | |
| 
 | |
| 			/* Update our count of bytes sent so far in this
 | |
| 			 * transfer.
 | |
| 			 */
 | |
| 			endpoint->sent += endpoint->last;
 | |
| 
 | |
| 			/* We are finished with this transfer if we have sent
 | |
| 			 * all of the bytes in our tx urb (urb->actual_length)
 | |
| 			 * unless we need a zero-length terminating packet.  We
 | |
| 			 * need a zero-length terminating packet if we returned
 | |
| 			 * fewer bytes than were requested (wLength) by the host,
 | |
| 			 * and the number of bytes we returned is an exact
 | |
| 			 * multiple of the packet size endpoint->tx_packetSize.
 | |
| 			 */
 | |
| 			if ((endpoint->sent == ep0_urb->actual_length)
 | |
| 			    && ((ep0_urb->actual_length == wLength)
 | |
| 				|| (endpoint->last !=
 | |
| 				    endpoint->tx_packetSize))) {
 | |
| 				/* Done with control read data stage. */
 | |
| 				UDCDBG ("control read data stage complete");
 | |
| 				/* deselect EP0 TX FIFO */
 | |
| 				outw (UDC_EP_Dir, UDC_EP_NUM);
 | |
| 				/* select EP0 RX FIFO to prepare for control
 | |
| 				 * read status stage.
 | |
| 				 */
 | |
| 				outw (UDC_EP_Sel, UDC_EP_NUM);
 | |
| 				/* clear the EP0 RX FIFO */
 | |
| 				outw (UDC_Clr_EP, UDC_CTRL);
 | |
| 				/* enable the EP0 RX FIFO */
 | |
| 				outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 				/* deselect the EP0 RX FIFO */
 | |
| 				outw (0, UDC_EP_NUM);
 | |
| 			} else {
 | |
| 				/* We still have another packet of data to send
 | |
| 				 * in this control read data stage or else we
 | |
| 				 * need a zero-length terminating packet.
 | |
| 				 */
 | |
| 				UDCDBG ("ACK control read data stage packet");
 | |
| 				omap1510_write_noniso_tx_fifo (endpoint);
 | |
| 				/* enable the EP0 tx FIFO to start transmission */
 | |
| 				outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 				/* deselect EP0 TX FIFO */
 | |
| 				outw (UDC_EP_Dir, UDC_EP_NUM);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (status & UDC_STALL) {
 | |
| 		UDCDBG ("EP0 stall during TX");
 | |
| 		/* deselect EP0 TX FIFO */
 | |
| 		outw (UDC_EP_Dir, UDC_EP_NUM);
 | |
| 	} else {
 | |
| 		/* deselect EP0 TX FIFO */
 | |
| 		outw (UDC_EP_Dir, UDC_EP_NUM);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle RX transaction on non-ISO endpoint.
 | |
|  * This function implements TRM Figure 14-27.
 | |
|  * The ep argument is a physical endpoint number for a non-ISO OUT endpoint
 | |
|  * in the range 1 to 15.
 | |
|  */
 | |
| static void omap1510_udc_epn_rx (int ep)
 | |
| {
 | |
| 	unsigned short status;
 | |
| 
 | |
| 	/* Check endpoint status */
 | |
| 	status = inw (UDC_STAT_FLG);
 | |
| 
 | |
| 	if (status & UDC_ACK) {
 | |
| 		int nbytes;
 | |
| 		struct usb_endpoint_instance *endpoint =
 | |
| 			omap1510_find_ep (ep);
 | |
| 
 | |
| 		nbytes = omap1510_read_noniso_rx_fifo (endpoint);
 | |
| 		usbd_rcv_complete (endpoint, nbytes, 0);
 | |
| 
 | |
| 		/* enable rx FIFO to prepare for next packet */
 | |
| 		outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 	} else if (status & UDC_STALL) {
 | |
| 		UDCDBGA ("STALL on RX endpoint %d", ep);
 | |
| 	} else if (status & UDC_NAK) {
 | |
| 		UDCDBGA ("NAK on RX ep %d", ep);
 | |
| 	} else {
 | |
| 		serial_printf ("omap-bi: RX on ep %d with status %x", ep,
 | |
| 			       status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle TX transaction on non-ISO endpoint.
 | |
|  * This function implements TRM Figure 14-29.
 | |
|  * The ep argument is a physical endpoint number for a non-ISO IN endpoint
 | |
|  * in the range 16 to 30.
 | |
|  */
 | |
| static void omap1510_udc_epn_tx (int ep)
 | |
| {
 | |
| 	unsigned short status;
 | |
| 
 | |
| 	/*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */
 | |
| 
 | |
| 	/* Check endpoint status */
 | |
| 	status = inw (UDC_STAT_FLG);
 | |
| 
 | |
| 	if (status & UDC_ACK) {
 | |
| 		struct usb_endpoint_instance *endpoint =
 | |
| 			omap1510_find_ep (ep);
 | |
| 
 | |
| 		/* We need to transmit a terminating zero-length packet now if
 | |
| 		 * we have sent all of the data in this URB and the transfer
 | |
| 		 * size was an exact multiple of the packet size.
 | |
| 		 */
 | |
| 		if (endpoint->tx_urb
 | |
| 		    && (endpoint->last == endpoint->tx_packetSize)
 | |
| 		    && (endpoint->tx_urb->actual_length - endpoint->sent -
 | |
| 			endpoint->last == 0)) {
 | |
| 			/* Prepare to transmit a zero-length packet. */
 | |
| 			endpoint->sent += endpoint->last;
 | |
| 			/* write 0 bytes of data to FIFO */
 | |
| 			omap1510_write_noniso_tx_fifo (endpoint);
 | |
| 			/* enable tx FIFO to start transmission */
 | |
| 			outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 		} else if (endpoint->tx_urb
 | |
| 			   && endpoint->tx_urb->actual_length) {
 | |
| 			/* retire the data that was just sent */
 | |
| 			usbd_tx_complete (endpoint);
 | |
| 			/* Check to see if we have more data ready to transmit
 | |
| 			 * now.
 | |
| 			 */
 | |
| 			if (endpoint->tx_urb
 | |
| 			    && endpoint->tx_urb->actual_length) {
 | |
| 				/* write data to FIFO */
 | |
| 				omap1510_write_noniso_tx_fifo (endpoint);
 | |
| 				/* enable tx FIFO to start transmission */
 | |
| 				outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (status & UDC_STALL) {
 | |
| 		UDCDBGA ("STALL on TX endpoint %d", ep);
 | |
| 	} else if (status & UDC_NAK) {
 | |
| 		UDCDBGA ("NAK on TX endpoint %d", ep);
 | |
| 	} else {
 | |
| 		/*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| 
 | |
| /* Handle general USB interrupts and dispatch according to type.
 | |
|  * This function implements TRM Figure 14-13.
 | |
|  */
 | |
| void omap1510_udc_irq (void)
 | |
| {
 | |
| 	u16 irq_src = inw (UDC_IRQ_SRC);
 | |
| 	int valid_irq = 0;
 | |
| 
 | |
| 	if (!(irq_src & ~UDC_SOF_Flg))	/* ignore SOF interrupts ) */
 | |
| 		return;
 | |
| 
 | |
| 	UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src);
 | |
| 	/*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */
 | |
| 
 | |
| 	if (irq_src & UDC_DS_Chg) {
 | |
| 		/* Device status changed */
 | |
| 		omap1510_udc_state_changed ();
 | |
| 		valid_irq++;
 | |
| 	}
 | |
| 	if (irq_src & UDC_EP0_RX) {
 | |
| 		/* Endpoint 0 receive */
 | |
| 		outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */
 | |
| 		omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0);
 | |
| 		valid_irq++;
 | |
| 	}
 | |
| 	if (irq_src & UDC_EP0_TX) {
 | |
| 		/* Endpoint 0 transmit */
 | |
| 		outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */
 | |
| 		omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0);
 | |
| 		valid_irq++;
 | |
| 	}
 | |
| 	if (irq_src & UDC_Setup) {
 | |
| 		/* Device setup */
 | |
| 		omap1510_udc_setup (udc_device->bus->endpoint_array + 0);
 | |
| 		valid_irq++;
 | |
| 	}
 | |
| 	/*if (!valid_irq) */
 | |
| 	/*	serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */
 | |
| 	UDCDBGA ("< IRQ #%d end >", udc_interrupts);
 | |
| 	udc_interrupts++;
 | |
| }
 | |
| 
 | |
| /* This function implements TRM Figure 14-26. */
 | |
| void omap1510_udc_noniso_irq (void)
 | |
| {
 | |
| 	unsigned short epnum;
 | |
| 	unsigned short irq_src = inw (UDC_IRQ_SRC);
 | |
| 	int valid_irq = 0;
 | |
| 
 | |
| 	if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX)))
 | |
| 		return;
 | |
| 
 | |
| 	UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC));
 | |
| 
 | |
| 	if (irq_src & UDC_EPn_RX) {	/* Endpoint N OUT transaction */
 | |
| 		/* Determine the endpoint number for this interrupt */
 | |
| 		epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8;
 | |
| 		UDCDBGA ("RX on ep %x", epnum);
 | |
| 
 | |
| 		/* acknowledge interrupt */
 | |
| 		outw (UDC_EPn_RX, UDC_IRQ_SRC);
 | |
| 
 | |
| 		if (epnum) {
 | |
| 			/* select the endpoint FIFO */
 | |
| 			outw (UDC_EP_Sel | epnum, UDC_EP_NUM);
 | |
| 
 | |
| 			omap1510_udc_epn_rx (epnum);
 | |
| 
 | |
| 			/* deselect the endpoint FIFO */
 | |
| 			outw (epnum, UDC_EP_NUM);
 | |
| 		}
 | |
| 		valid_irq++;
 | |
| 	}
 | |
| 	if (irq_src & UDC_EPn_TX) {	/* Endpoint N IN transaction */
 | |
| 		/* Determine the endpoint number for this interrupt */
 | |
| 		epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN;
 | |
| 		UDCDBGA ("TX on ep %x", epnum);
 | |
| 
 | |
| 		/* acknowledge interrupt */
 | |
| 		outw (UDC_EPn_TX, UDC_IRQ_SRC);
 | |
| 
 | |
| 		if (epnum) {
 | |
| 			/* select the endpoint FIFO */
 | |
| 			outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
 | |
| 
 | |
| 			omap1510_udc_epn_tx (epnum);
 | |
| 
 | |
| 			/* deselect the endpoint FIFO */
 | |
| 			outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
 | |
| 		}
 | |
| 		valid_irq++;
 | |
| 	}
 | |
| 	if (!valid_irq)
 | |
| 		serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n",
 | |
| 			       irq_src);
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Start of public functions.
 | |
|  */
 | |
| 
 | |
| /* Called to start packet transmission. */
 | |
| int udc_endpoint_write (struct usb_endpoint_instance *endpoint)
 | |
| {
 | |
| 	unsigned short epnum =
 | |
| 		endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK;
 | |
| 
 | |
| 	UDCDBGA ("Starting transmit on ep %x", epnum);
 | |
| 
 | |
| 	if (endpoint->tx_urb) {
 | |
| 		/* select the endpoint FIFO */
 | |
| 		outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
 | |
| 		/* write data to FIFO */
 | |
| 		omap1510_write_noniso_tx_fifo (endpoint);
 | |
| 		/* enable tx FIFO to start transmission */
 | |
| 		outw (UDC_Set_FIFO_En, UDC_CTRL);
 | |
| 		/* deselect the endpoint FIFO */
 | |
| 		outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Start to initialize h/w stuff */
 | |
| int udc_init (void)
 | |
| {
 | |
| 	u16 udc_rev;
 | |
| 	uchar value;
 | |
| 	ulong gpio;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Let the device settle down before we start */
 | |
| 	for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000);
 | |
| 
 | |
| 	udc_device = NULL;
 | |
| 
 | |
| 	UDCDBG ("starting");
 | |
| 
 | |
| 	/* Check peripheral reset. Must be 1 to make sure
 | |
| 	   MPU TIPB peripheral reset is inactive */
 | |
| 	UDCREG (ARM_RSTCT2);
 | |
| 
 | |
| 	/* Set and check clock control.
 | |
| 	 * We might ought to be using the clock control API to do
 | |
| 	 * this instead of fiddling with the clock registers directly
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	outw ((1 << 4) | (1 << 5), CLOCK_CTRL);
 | |
| 	UDCREG (CLOCK_CTRL);
 | |
| 
 | |
| #ifdef CONFIG_OMAP1510
 | |
| 	/* This code was originally implemented for OMAP1510 and
 | |
| 	 * therefore is only applicable for OMAP1510 boards. For
 | |
| 	 * OMAP5912 or OMAP16xx the register APLL_CTRL does not
 | |
| 	 * exist and DPLL_CTRL is already configured.
 | |
| 	 */
 | |
| 
 | |
| 	/* Set and check APLL */
 | |
| 	outw (0x0008, APLL_CTRL);
 | |
| 	UDCREG (APLL_CTRL);
 | |
| 	/* Set and check DPLL */
 | |
| 	outw (0x2210, DPLL_CTRL);
 | |
| 	UDCREG (DPLL_CTRL);
 | |
| #endif
 | |
| 	/* Set and check SOFT
 | |
| 	 * The below line of code has been changed to perform a
 | |
| 	 * read-modify-write instead of a simple write for
 | |
| 	 * configuring the SOFT_REQ register. This allows the code
 | |
| 	 * to be compatible with OMAP5912 and OMAP16xx devices
 | |
| 	 */
 | |
| 	outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ);
 | |
| 
 | |
| 	/* Short delay to wait for DPLL */
 | |
| 	udelay (1000);
 | |
| 
 | |
| 	/* Print banner with device revision */
 | |
| 	udc_rev = inw (UDC_REV) & 0xff;
 | |
| #ifdef CONFIG_OMAP1510
 | |
| 	printf ("USB:   TI OMAP1510 USB function module rev %d.%d\n",
 | |
| 		udc_rev >> 4, udc_rev & 0xf);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_OMAP1610
 | |
| 	printf ("USB:   TI OMAP5912 USB function module rev %d.%d\n",
 | |
| 		udc_rev >> 4, udc_rev & 0xf);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_OMAP_SX1
 | |
| 	i2c_read (0x32, 0x04, 1, &value, 1);
 | |
| 	value |= 0x04;
 | |
| 	i2c_write (0x32, 0x04, 1, &value, 1);
 | |
| 
 | |
| 	i2c_read (0x32, 0x03, 1, &value, 1);
 | |
| 	value |= 0x01;
 | |
| 	i2c_write (0x32, 0x03, 1, &value, 1);
 | |
| 
 | |
| 	gpio = inl(GPIO_PIN_CONTROL_REG);
 | |
| 	gpio |=  0x0002; /* A_IRDA_OFF */
 | |
| 	gpio |=  0x0800; /* A_SWITCH   */
 | |
| 	gpio |=  0x8000; /* A_USB_ON   */
 | |
| 	outl (gpio, GPIO_PIN_CONTROL_REG);
 | |
| 
 | |
| 	gpio = inl(GPIO_DIR_CONTROL_REG);
 | |
| 	gpio &= ~0x0002; /* A_IRDA_OFF */
 | |
| 	gpio &= ~0x0800; /* A_SWITCH   */
 | |
| 	gpio &= ~0x8000; /* A_USB_ON   */
 | |
| 	outl (gpio, GPIO_DIR_CONTROL_REG);
 | |
| 
 | |
| 	gpio = inl(GPIO_DATA_OUTPUT_REG);
 | |
| 	gpio |=  0x0002; /* A_IRDA_OFF */
 | |
| 	gpio &= ~0x0800; /* A_SWITCH   */
 | |
| 	gpio &= ~0x8000; /* A_USB_ON   */
 | |
| 	outl (gpio, GPIO_DATA_OUTPUT_REG);
 | |
| #endif
 | |
| 
 | |
| 	/* The VBUS_MODE bit selects whether VBUS detection is done via
 | |
| 	 * software (1) or hardware (0).  When software detection is
 | |
| 	 * selected, VBUS_CTRL selects whether USB is not connected (0)
 | |
| 	 * or connected (1).
 | |
| 	 */
 | |
| 	outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
 | |
| 	outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
 | |
| 	UDCREGL (FUNC_MUX_CTRL_0);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, device is ready for configuration...
 | |
| 	 */
 | |
| 
 | |
| 	UDCDBG ("disable USB interrupts");
 | |
| 	outw (0, UDC_IRQ_EN);
 | |
| 	UDCREG (UDC_IRQ_EN);
 | |
| 
 | |
| 	UDCDBG ("disable USB DMA");
 | |
| 	outw (0, UDC_DMA_IRQ_EN);
 | |
| 	UDCREG (UDC_DMA_IRQ_EN);
 | |
| 
 | |
| 	UDCDBG ("initialize SYSCON1");
 | |
| 	outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1);
 | |
| 	UDCREG (UDC_SYSCON1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Stall endpoint */
 | |
| static void udc_stall_ep (unsigned int ep_addr)
 | |
| {
 | |
| 	/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
 | |
| 	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
 | |
| 
 | |
| 	UDCDBGA ("stall ep_addr %d", ep_addr);
 | |
| 
 | |
| 	/* REVISIT?
 | |
| 	 * The OMAP TRM section 14.2.4.2 says we must check that the FIFO
 | |
| 	 * is empty before halting the endpoint.  The current implementation
 | |
| 	 * doesn't check that the FIFO is empty.
 | |
| 	 */
 | |
| 
 | |
| 	if (!ep_num) {
 | |
| 		outw (UDC_Stall_Cmd, UDC_SYSCON2);
 | |
| 	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
 | |
| 		if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
 | |
| 			/* we have a valid rx endpoint, so halt it */
 | |
| 			outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
 | |
| 			outw (UDC_Set_Halt, UDC_CTRL);
 | |
| 			outw (ep_num, UDC_EP_NUM);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
 | |
| 			/* we have a valid tx endpoint, so halt it */
 | |
| 			outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM);
 | |
| 			outw (UDC_Set_Halt, UDC_CTRL);
 | |
| 			outw (ep_num, UDC_EP_NUM);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Reset endpoint */
 | |
| #if 0
 | |
| static void udc_reset_ep (unsigned int ep_addr)
 | |
| {
 | |
| 	/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
 | |
| 	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
 | |
| 
 | |
| 	UDCDBGA ("reset ep_addr %d", ep_addr);
 | |
| 
 | |
| 	if (!ep_num) {
 | |
| 		/* control endpoint 0 can't be reset */
 | |
| 	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
 | |
| 		UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num,
 | |
| 			 inw (UDC_EP_RX (ep_num)));
 | |
| 		if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
 | |
| 			/* we have a valid rx endpoint, so reset it */
 | |
| 			outw (ep_num | UDC_EP_Sel, UDC_EP_NUM);
 | |
| 			outw (UDC_Reset_EP, UDC_CTRL);
 | |
| 			outw (ep_num, UDC_EP_NUM);
 | |
| 			UDCDBGA ("OUT endpoint %d reset", ep_num);
 | |
| 		}
 | |
| 	} else {
 | |
| 		UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num,
 | |
| 			 inw (UDC_EP_TX (ep_num)));
 | |
| 		/* Resetting of tx endpoints seems to be causing the USB function
 | |
| 		 * module to fail, which causes problems when the driver is
 | |
| 		 * uninstalled.	 We'll skip resetting tx endpoints for now until
 | |
| 		 * we figure out what the problem is.
 | |
| 		 */
 | |
| #if 0
 | |
| 		if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
 | |
| 			/* we have a valid tx endpoint, so reset it */
 | |
| 			outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
 | |
| 			outw (UDC_Reset_EP, UDC_CTRL);
 | |
| 			outw (ep_num | UDC_EP_Dir, UDC_EP_NUM);
 | |
| 			UDCDBGA ("IN endpoint %d reset", ep_num);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ************************************************************************** */
 | |
| 
 | |
| /**
 | |
|  * udc_check_ep - check logical endpoint
 | |
|   *
 | |
|  * Return physical endpoint number to use for this logical endpoint or zero if not valid.
 | |
|  */
 | |
| #if 0
 | |
| int udc_check_ep (int logical_endpoint, int packetsize)
 | |
| {
 | |
| 	if ((logical_endpoint == 0x80) ||
 | |
| 	    ((logical_endpoint & 0x8f) != logical_endpoint)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	switch (packetsize) {
 | |
| 	case 8:
 | |
| 	case 16:
 | |
| 	case 32:
 | |
| 	case 64:
 | |
| 	case 128:
 | |
| 	case 256:
 | |
| 	case 512:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return EP_ADDR_TO_PHYS_EP (logical_endpoint);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * udc_setup_ep - setup endpoint
 | |
|  *
 | |
|  * Associate a physical endpoint with endpoint_instance
 | |
|  */
 | |
| void udc_setup_ep (struct usb_device_instance *device,
 | |
| 		   unsigned int ep, struct usb_endpoint_instance *endpoint)
 | |
| {
 | |
| 	UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address);
 | |
| 
 | |
| 	/* This routine gets called by bi_modinit for endpoint 0 and from
 | |
| 	 * bi_config for all of the other endpoints.  bi_config gets called
 | |
| 	 * during the DEVICE_CREATE, DEVICE_CONFIGURED, and
 | |
| 	 * DEVICE_SET_INTERFACE events.	 We need to reconfigure the OMAP packet
 | |
| 	 * RAM after bi_config scans the selected device configuration and
 | |
| 	 * initializes the endpoint structures, but before this routine enables
 | |
| 	 * the OUT endpoint FIFOs.  Since bi_config calls this routine in a
 | |
| 	 * loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our
 | |
| 	 * packet RAM here when ep==1.
 | |
| 	 * I really hate to do this here, but it seems like the API exported
 | |
| 	 * by the USB bus interface controller driver to the usbd-bi module
 | |
| 	 * isn't quite right so there is no good place to do this.
 | |
| 	 */
 | |
| 	if (ep == 1) {
 | |
| 		omap1510_deconfigure_device ();
 | |
| 		omap1510_configure_device (device);
 | |
| 	}
 | |
| 
 | |
| 	if (endpoint && (ep < UDC_MAX_ENDPOINTS)) {
 | |
| 		int ep_addr = endpoint->endpoint_address;
 | |
| 
 | |
| 		if (!ep_addr) {
 | |
| 			/* nothing to do for endpoint 0 */
 | |
| 		} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
 | |
| 			/* nothing to do for IN (tx) endpoints */
 | |
| 		} else {	/* OUT (rx) endpoint */
 | |
| 			if (endpoint->rcv_packetSize) {
 | |
| 				/*struct urb* urb = &(urb_out_array[ep&0xFF]); */
 | |
| 				/*urb->endpoint = endpoint; */
 | |
| 				/*urb->device = device; */
 | |
| 				/*urb->buffer_length = sizeof(urb->buffer); */
 | |
| 
 | |
| 				/*endpoint->rcv_urb = urb; */
 | |
| 				omap1510_prepare_endpoint_for_rx (ep_addr);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * udc_disable_ep - disable endpoint
 | |
|  * @ep:
 | |
|  *
 | |
|  * Disable specified endpoint
 | |
|  */
 | |
| #if 0
 | |
| void udc_disable_ep (unsigned int ep_addr)
 | |
| {
 | |
| 	/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
 | |
| 	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
 | |
| 	struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr);	/*udc_device->bus->endpoint_array + ep; */
 | |
| 
 | |
| 	UDCDBGA ("disable ep_addr %d", ep_addr);
 | |
| 
 | |
| 	if (!ep_num) {
 | |
| 		/* nothing to do for endpoint 0 */ ;
 | |
| 	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
 | |
| 		if (endpoint->tx_packetSize) {
 | |
| 			/* we have a valid tx endpoint */
 | |
| 			/*usbd_flush_tx(endpoint); */
 | |
| 			endpoint->tx_urb = NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (endpoint->rcv_packetSize) {
 | |
| 			/* we have a valid rx endpoint */
 | |
| 			/*usbd_flush_rcv(endpoint); */
 | |
| 			endpoint->rcv_urb = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ************************************************************************** */
 | |
| 
 | |
| /**
 | |
|  * udc_connected - is the USB cable connected
 | |
|  *
 | |
|  * Return non-zero if cable is connected.
 | |
|  */
 | |
| #if 0
 | |
| int udc_connected (void)
 | |
| {
 | |
| 	return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Turn on the USB connection by enabling the pullup resistor */
 | |
| void udc_connect (void)
 | |
| {
 | |
| 	UDCDBG ("connect, enable Pullup");
 | |
| 	outl (0x00000018, FUNC_MUX_CTRL_D);
 | |
| }
 | |
| 
 | |
| /* Turn off the USB connection by disabling the pullup resistor */
 | |
| void udc_disconnect (void)
 | |
| {
 | |
| 	UDCDBG ("disconnect, disable Pullup");
 | |
| 	outl (0x00000000, FUNC_MUX_CTRL_D);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************** */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * udc_disable_interrupts - disable interrupts
 | |
|  * switch off interrupts
 | |
|  */
 | |
| #if 0
 | |
| void udc_disable_interrupts (struct usb_device_instance *device)
 | |
| {
 | |
| 	UDCDBG ("disabling all interrupts");
 | |
| 	outw (0, UDC_IRQ_EN);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ************************************************************************** */
 | |
| 
 | |
| /**
 | |
|  * udc_ep0_packetsize - return ep0 packetsize
 | |
|  */
 | |
| #if 0
 | |
| int udc_ep0_packetsize (void)
 | |
| {
 | |
| 	return EP0_PACKETSIZE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Switch on the UDC */
 | |
| void udc_enable (struct usb_device_instance *device)
 | |
| {
 | |
| 	UDCDBGA ("enable device %p, status %d", device, device->status);
 | |
| 
 | |
| 	/* initialize driver state variables */
 | |
| 	udc_devstat = 0;
 | |
| 
 | |
| 	/* Save the device structure pointer */
 | |
| 	udc_device = device;
 | |
| 
 | |
| 	/* Setup ep0 urb */
 | |
| 	if (!ep0_urb) {
 | |
| 		ep0_urb =
 | |
| 			usbd_alloc_urb (udc_device,
 | |
| 					udc_device->bus->endpoint_array);
 | |
| 	} else {
 | |
| 		serial_printf ("udc_enable: ep0_urb already allocated %p\n",
 | |
| 			       ep0_urb);
 | |
| 	}
 | |
| 
 | |
| 	UDCDBG ("Check clock status");
 | |
| 	UDCREG (STATUS_REQ);
 | |
| 
 | |
| 	/* The VBUS_MODE bit selects whether VBUS detection is done via
 | |
| 	 * software (1) or hardware (0).  When software detection is
 | |
| 	 * selected, VBUS_CTRL selects whether USB is not connected (0)
 | |
| 	 * or connected (1).
 | |
| 	 */
 | |
| 	outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE,
 | |
| 	      FUNC_MUX_CTRL_0);
 | |
| 	UDCREGL (FUNC_MUX_CTRL_0);
 | |
| 
 | |
| 	omap1510_configure_device (device);
 | |
| }
 | |
| 
 | |
| /* Switch off the UDC */
 | |
| void udc_disable (void)
 | |
| {
 | |
| 	UDCDBG ("disable UDC");
 | |
| 
 | |
| 	omap1510_deconfigure_device ();
 | |
| 
 | |
| 	/* The VBUS_MODE bit selects whether VBUS detection is done via
 | |
| 	 * software (1) or hardware (0).  When software detection is
 | |
| 	 * selected, VBUS_CTRL selects whether USB is not connected (0)
 | |
| 	 * or connected (1).
 | |
| 	 */
 | |
| 	outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
 | |
| 	outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
 | |
| 	UDCREGL (FUNC_MUX_CTRL_0);
 | |
| 
 | |
| 	/* Free ep0 URB */
 | |
| 	if (ep0_urb) {
 | |
| 		/*usbd_dealloc_urb(ep0_urb); */
 | |
| 		ep0_urb = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset device pointer.
 | |
| 	 * We ought to do this here to balance the initialization of udc_device
 | |
| 	 * in udc_enable, but some of our other exported functions get called
 | |
| 	 * by the bus interface driver after udc_disable, so we have to hang on
 | |
| 	 * to the device pointer to avoid a null pointer dereference. */
 | |
| 	/* udc_device = NULL; */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * udc_startup - allow udc code to do any additional startup
 | |
|  */
 | |
| void udc_startup_events (struct usb_device_instance *device)
 | |
| {
 | |
| 	/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
 | |
| 	usbd_device_event_irq (device, DEVICE_INIT, 0);
 | |
| 
 | |
| 	/* The DEVICE_CREATE event puts the USB device in the state
 | |
| 	 * STATE_ATTACHED.
 | |
| 	 */
 | |
| 	usbd_device_event_irq (device, DEVICE_CREATE, 0);
 | |
| 
 | |
| 	/* Some USB controller driver implementations signal
 | |
| 	 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
 | |
| 	 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
 | |
| 	 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
 | |
| 	 * The OMAP USB client controller has the capability to detect when the
 | |
| 	 * USB cable is connected to a powered USB bus via the ATT bit in the
 | |
| 	 * DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and
 | |
| 	 * DEVICE_RESET events until later.
 | |
| 	 */
 | |
| 
 | |
| 	udc_enable (device);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * udc_irq - do pseudo interrupts
 | |
|  */
 | |
| void udc_irq(void)
 | |
| {
 | |
| 	/* Loop while we have interrupts.
 | |
| 	 * If we don't do this, the input chain
 | |
| 	 * polling delay is likely to miss
 | |
| 	 * host requests.
 | |
| 	 */
 | |
| 	while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) {
 | |
| 		/* Handle any new IRQs */
 | |
| 		omap1510_udc_irq ();
 | |
| 		omap1510_udc_noniso_irq ();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Flow control */
 | |
| void udc_set_nak(int epid)
 | |
| {
 | |
| 	/* TODO: implement this functionality in omap1510 */
 | |
| }
 | |
| 
 | |
| void udc_unset_nak (int epid)
 | |
| {
 | |
| 	/* TODO: implement this functionality in omap1510 */
 | |
| }
 |