mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-30 18:05:48 +01:00 
			
		
		
		
	The prescaler value for MDC is calculated wrong for MX6S. Implement the same logic as linux here which handles ENET_MAC different then original FEC. Tested on a custom board with i.MX6S and 100MBit PHY Signed-off-by: Markus Niebel <Markus.Niebel@tqs.de>
		
			
				
	
	
		
			1103 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1103 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
 | |
|  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
 | |
|  * (C) Copyright 2008 Armadeus Systems nc
 | |
|  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
 | |
|  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <malloc.h>
 | |
| #include <net.h>
 | |
| #include <miiphy.h>
 | |
| #include "fec_mxc.h"
 | |
| 
 | |
| #include <asm/arch/clock.h>
 | |
| #include <asm/arch/imx-regs.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/errno.h>
 | |
| #include <linux/compiler.h>
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| /*
 | |
|  * Timeout the transfer after 5 mS. This is usually a bit more, since
 | |
|  * the code in the tightloops this timeout is used in adds some overhead.
 | |
|  */
 | |
| #define FEC_XFER_TIMEOUT	5000
 | |
| 
 | |
| #ifndef CONFIG_MII
 | |
| #error "CONFIG_MII has to be defined!"
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_FEC_XCV_TYPE
 | |
| #define CONFIG_FEC_XCV_TYPE MII100
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The i.MX28 operates with packets in big endian. We need to swap them before
 | |
|  * sending and after receiving.
 | |
|  */
 | |
| #ifdef CONFIG_MX28
 | |
| #define CONFIG_FEC_MXC_SWAP_PACKET
 | |
| #endif
 | |
| 
 | |
| #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
 | |
| 
 | |
| /* Check various alignment issues at compile time */
 | |
| #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
 | |
| #error "ARCH_DMA_MINALIGN must be multiple of 16!"
 | |
| #endif
 | |
| 
 | |
| #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
 | |
| 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
 | |
| #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
 | |
| #endif
 | |
| 
 | |
| #undef DEBUG
 | |
| 
 | |
| struct nbuf {
 | |
| 	uint8_t data[1500];	/**< actual data */
 | |
| 	int length;		/**< actual length */
 | |
| 	int used;		/**< buffer in use or not */
 | |
| 	uint8_t head[16];	/**< MAC header(6 + 6 + 2) + 2(aligned) */
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET
 | |
| static void swap_packet(uint32_t *packet, int length)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
 | |
| 		packet[i] = __swab32(packet[i]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * MII-interface related functions
 | |
|  */
 | |
| static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
 | |
| 		uint8_t regAddr)
 | |
| {
 | |
| 	uint32_t reg;		/* convenient holder for the PHY register */
 | |
| 	uint32_t phy;		/* convenient holder for the PHY */
 | |
| 	uint32_t start;
 | |
| 	int val;
 | |
| 
 | |
| 	/*
 | |
| 	 * reading from any PHY's register is done by properly
 | |
| 	 * programming the FEC's MII data register.
 | |
| 	 */
 | |
| 	writel(FEC_IEVENT_MII, ð->ievent);
 | |
| 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
 | |
| 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
 | |
| 
 | |
| 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
 | |
| 			phy | reg, ð->mii_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * wait for the related interrupt
 | |
| 	 */
 | |
| 	start = get_timer(0);
 | |
| 	while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
 | |
| 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
 | |
| 			printf("Read MDIO failed...\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * clear mii interrupt bit
 | |
| 	 */
 | |
| 	writel(FEC_IEVENT_MII, ð->ievent);
 | |
| 
 | |
| 	/*
 | |
| 	 * it's now safe to read the PHY's register
 | |
| 	 */
 | |
| 	val = (unsigned short)readl(ð->mii_data);
 | |
| 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
 | |
| 			regAddr, val);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void fec_mii_setspeed(struct ethernet_regs *eth)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
 | |
| 	 * and do not drop the Preamble.
 | |
| 	 */
 | |
| 	register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000);
 | |
| #ifdef FEC_QUIRK_ENET_MAC
 | |
| 	speed--;
 | |
| #endif
 | |
| 	speed <<= 1;
 | |
| 	writel(speed, ð->mii_speed);
 | |
| 	debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
 | |
| }
 | |
| 
 | |
| static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
 | |
| 		uint8_t regAddr, uint16_t data)
 | |
| {
 | |
| 	uint32_t reg;		/* convenient holder for the PHY register */
 | |
| 	uint32_t phy;		/* convenient holder for the PHY */
 | |
| 	uint32_t start;
 | |
| 
 | |
| 	reg = regAddr << FEC_MII_DATA_RA_SHIFT;
 | |
| 	phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
 | |
| 
 | |
| 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
 | |
| 		FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * wait for the MII interrupt
 | |
| 	 */
 | |
| 	start = get_timer(0);
 | |
| 	while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
 | |
| 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
 | |
| 			printf("Write MDIO failed...\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * clear MII interrupt bit
 | |
| 	 */
 | |
| 	writel(FEC_IEVENT_MII, ð->ievent);
 | |
| 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
 | |
| 			regAddr, data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
 | |
| {
 | |
| 	return fec_mdio_read(bus->priv, phyAddr, regAddr);
 | |
| }
 | |
| 
 | |
| int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
 | |
| 		u16 data)
 | |
| {
 | |
| 	return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_PHYLIB
 | |
| static int miiphy_restart_aneg(struct eth_device *dev)
 | |
| {
 | |
| 	int ret = 0;
 | |
| #if !defined(CONFIG_FEC_MXC_NO_ANEG)
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 	struct ethernet_regs *eth = fec->bus->priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wake up from sleep if necessary
 | |
| 	 * Reset PHY, then delay 300ns
 | |
| 	 */
 | |
| #ifdef CONFIG_MX27
 | |
| 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
 | |
| #endif
 | |
| 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
 | |
| 	udelay(1000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the auto-negotiation advertisement register bits
 | |
| 	 */
 | |
| 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
 | |
| 			LPA_100FULL | LPA_100HALF | LPA_10FULL |
 | |
| 			LPA_10HALF | PHY_ANLPAR_PSB_802_3);
 | |
| 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
 | |
| 			BMCR_ANENABLE | BMCR_ANRESTART);
 | |
| 
 | |
| 	if (fec->mii_postcall)
 | |
| 		ret = fec->mii_postcall(fec->phy_id);
 | |
| 
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int miiphy_wait_aneg(struct eth_device *dev)
 | |
| {
 | |
| 	uint32_t start;
 | |
| 	int status;
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 	struct ethernet_regs *eth = fec->bus->priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for AN completion
 | |
| 	 */
 | |
| 	start = get_timer(0);
 | |
| 	do {
 | |
| 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
 | |
| 			printf("%s: Autonegotiation timeout\n", dev->name);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
 | |
| 		if (status < 0) {
 | |
| 			printf("%s: Autonegotiation failed. status: %d\n",
 | |
| 					dev->name, status);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	} while (!(status & BMSR_LSTATUS));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int fec_rx_task_enable(struct fec_priv *fec)
 | |
| {
 | |
| 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_rx_task_disable(struct fec_priv *fec)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_tx_task_enable(struct fec_priv *fec)
 | |
| {
 | |
| 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_tx_task_disable(struct fec_priv *fec)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Initialize receive task's buffer descriptors
 | |
|  * @param[in] fec all we know about the device yet
 | |
|  * @param[in] count receive buffer count to be allocated
 | |
|  * @param[in] dsize desired size of each receive buffer
 | |
|  * @return 0 on success
 | |
|  *
 | |
|  * Init all RX descriptors to default values.
 | |
|  */
 | |
| static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
 | |
| {
 | |
| 	uint32_t size;
 | |
| 	uint8_t *data;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reload the RX descriptors with default values and wipe
 | |
| 	 * the RX buffers.
 | |
| 	 */
 | |
| 	size = roundup(dsize, ARCH_DMA_MINALIGN);
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		data = (uint8_t *)fec->rbd_base[i].data_pointer;
 | |
| 		memset(data, 0, dsize);
 | |
| 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
 | |
| 
 | |
| 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
 | |
| 		fec->rbd_base[i].data_length = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark the last RBD to close the ring. */
 | |
| 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
 | |
| 	fec->rbd_index = 0;
 | |
| 
 | |
| 	flush_dcache_range((unsigned)fec->rbd_base,
 | |
| 			   (unsigned)fec->rbd_base + size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Initialize transmit task's buffer descriptors
 | |
|  * @param[in] fec all we know about the device yet
 | |
|  *
 | |
|  * Transmit buffers are created externally. We only have to init the BDs here.\n
 | |
|  * Note: There is a race condition in the hardware. When only one BD is in
 | |
|  * use it must be marked with the WRAP bit to use it for every transmitt.
 | |
|  * This bit in combination with the READY bit results into double transmit
 | |
|  * of each data buffer. It seems the state machine checks READY earlier then
 | |
|  * resetting it after the first transfer.
 | |
|  * Using two BDs solves this issue.
 | |
|  */
 | |
| static void fec_tbd_init(struct fec_priv *fec)
 | |
| {
 | |
| 	unsigned addr = (unsigned)fec->tbd_base;
 | |
| 	unsigned size = roundup(2 * sizeof(struct fec_bd),
 | |
| 				ARCH_DMA_MINALIGN);
 | |
| 
 | |
| 	memset(fec->tbd_base, 0, size);
 | |
| 	fec->tbd_base[0].status = 0;
 | |
| 	fec->tbd_base[1].status = FEC_TBD_WRAP;
 | |
| 	fec->tbd_index = 0;
 | |
| 	flush_dcache_range(addr, addr + size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Mark the given read buffer descriptor as free
 | |
|  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
 | |
|  * @param[in] pRbd buffer descriptor to mark free again
 | |
|  */
 | |
| static void fec_rbd_clean(int last, struct fec_bd *pRbd)
 | |
| {
 | |
| 	unsigned short flags = FEC_RBD_EMPTY;
 | |
| 	if (last)
 | |
| 		flags |= FEC_RBD_WRAP;
 | |
| 	writew(flags, &pRbd->status);
 | |
| 	writew(0, &pRbd->data_length);
 | |
| }
 | |
| 
 | |
| static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
 | |
| 						unsigned char *mac)
 | |
| {
 | |
| 	imx_get_mac_from_fuse(dev_id, mac);
 | |
| 	return !is_valid_ether_addr(mac);
 | |
| }
 | |
| 
 | |
| static int fec_set_hwaddr(struct eth_device *dev)
 | |
| {
 | |
| 	uchar *mac = dev->enetaddr;
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 
 | |
| 	writel(0, &fec->eth->iaddr1);
 | |
| 	writel(0, &fec->eth->iaddr2);
 | |
| 	writel(0, &fec->eth->gaddr1);
 | |
| 	writel(0, &fec->eth->gaddr2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set physical address
 | |
| 	 */
 | |
| 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
 | |
| 			&fec->eth->paddr1);
 | |
| 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do initial configuration of the FEC registers
 | |
|  */
 | |
| static void fec_reg_setup(struct fec_priv *fec)
 | |
| {
 | |
| 	uint32_t rcntrl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set interrupt mask register
 | |
| 	 */
 | |
| 	writel(0x00000000, &fec->eth->imask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear FEC-Lite interrupt event register(IEVENT)
 | |
| 	 */
 | |
| 	writel(0xffffffff, &fec->eth->ievent);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Set FEC-Lite receive control register(R_CNTRL):
 | |
| 	 */
 | |
| 
 | |
| 	/* Start with frame length = 1518, common for all modes. */
 | |
| 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
 | |
| 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
 | |
| 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
 | |
| 	if (fec->xcv_type == RGMII)
 | |
| 		rcntrl |= FEC_RCNTRL_RGMII;
 | |
| 	else if (fec->xcv_type == RMII)
 | |
| 		rcntrl |= FEC_RCNTRL_RMII;
 | |
| 
 | |
| 	writel(rcntrl, &fec->eth->r_cntrl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Start the FEC engine
 | |
|  * @param[in] dev Our device to handle
 | |
|  */
 | |
| static int fec_open(struct eth_device *edev)
 | |
| {
 | |
| 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
 | |
| 	int speed;
 | |
| 	uint32_t addr, size;
 | |
| 	int i;
 | |
| 
 | |
| 	debug("fec_open: fec_open(dev)\n");
 | |
| 	/* full-duplex, heartbeat disabled */
 | |
| 	writel(1 << 2, &fec->eth->x_cntrl);
 | |
| 	fec->rbd_index = 0;
 | |
| 
 | |
| 	/* Invalidate all descriptors */
 | |
| 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
 | |
| 		fec_rbd_clean(0, &fec->rbd_base[i]);
 | |
| 	fec_rbd_clean(1, &fec->rbd_base[i]);
 | |
| 
 | |
| 	/* Flush the descriptors into RAM */
 | |
| 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
 | |
| 			ARCH_DMA_MINALIGN);
 | |
| 	addr = (uint32_t)fec->rbd_base;
 | |
| 	flush_dcache_range(addr, addr + size);
 | |
| 
 | |
| #ifdef FEC_QUIRK_ENET_MAC
 | |
| 	/* Enable ENET HW endian SWAP */
 | |
| 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
 | |
| 		&fec->eth->ecntrl);
 | |
| 	/* Enable ENET store and forward mode */
 | |
| 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
 | |
| 		&fec->eth->x_wmrk);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Enable FEC-Lite controller
 | |
| 	 */
 | |
| 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
 | |
| 		&fec->eth->ecntrl);
 | |
| #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
 | |
| 	udelay(100);
 | |
| 	/*
 | |
| 	 * setup the MII gasket for RMII mode
 | |
| 	 */
 | |
| 
 | |
| 	/* disable the gasket */
 | |
| 	writew(0, &fec->eth->miigsk_enr);
 | |
| 
 | |
| 	/* wait for the gasket to be disabled */
 | |
| 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
 | |
| 		udelay(2);
 | |
| 
 | |
| 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
 | |
| 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
 | |
| 
 | |
| 	/* re-enable the gasket */
 | |
| 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
 | |
| 
 | |
| 	/* wait until MII gasket is ready */
 | |
| 	int max_loops = 10;
 | |
| 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
 | |
| 		if (--max_loops <= 0) {
 | |
| 			printf("WAIT for MII Gasket ready timed out\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PHYLIB
 | |
| 	{
 | |
| 		/* Start up the PHY */
 | |
| 		int ret = phy_startup(fec->phydev);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			printf("Could not initialize PHY %s\n",
 | |
| 			       fec->phydev->dev->name);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		speed = fec->phydev->speed;
 | |
| 	}
 | |
| #else
 | |
| 	miiphy_wait_aneg(edev);
 | |
| 	speed = miiphy_speed(edev->name, fec->phy_id);
 | |
| 	miiphy_duplex(edev->name, fec->phy_id);
 | |
| #endif
 | |
| 
 | |
| #ifdef FEC_QUIRK_ENET_MAC
 | |
| 	{
 | |
| 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
 | |
| 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
 | |
| 		if (speed == _1000BASET)
 | |
| 			ecr |= FEC_ECNTRL_SPEED;
 | |
| 		else if (speed != _100BASET)
 | |
| 			rcr |= FEC_RCNTRL_RMII_10T;
 | |
| 		writel(ecr, &fec->eth->ecntrl);
 | |
| 		writel(rcr, &fec->eth->r_cntrl);
 | |
| 	}
 | |
| #endif
 | |
| 	debug("%s:Speed=%i\n", __func__, speed);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable SmartDMA receive task
 | |
| 	 */
 | |
| 	fec_rx_task_enable(fec);
 | |
| 
 | |
| 	udelay(100000);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_init(struct eth_device *dev, bd_t* bd)
 | |
| {
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 	uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Initialize MAC address */
 | |
| 	fec_set_hwaddr(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup transmit descriptors, there are two in total.
 | |
| 	 */
 | |
| 	fec_tbd_init(fec);
 | |
| 
 | |
| 	/* Setup receive descriptors. */
 | |
| 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
 | |
| 
 | |
| 	fec_reg_setup(fec);
 | |
| 
 | |
| 	if (fec->xcv_type != SEVENWIRE)
 | |
| 		fec_mii_setspeed(fec->bus->priv);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set Opcode/Pause Duration Register
 | |
| 	 */
 | |
| 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
 | |
| 	writel(0x2, &fec->eth->x_wmrk);
 | |
| 	/*
 | |
| 	 * Set multicast address filter
 | |
| 	 */
 | |
| 	writel(0x00000000, &fec->eth->gaddr1);
 | |
| 	writel(0x00000000, &fec->eth->gaddr2);
 | |
| 
 | |
| 
 | |
| 	/* clear MIB RAM */
 | |
| 	for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
 | |
| 		writel(0, i);
 | |
| 
 | |
| 	/* FIFO receive start register */
 | |
| 	writel(0x520, &fec->eth->r_fstart);
 | |
| 
 | |
| 	/* size and address of each buffer */
 | |
| 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
 | |
| 	writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
 | |
| 	writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
 | |
| 
 | |
| #ifndef CONFIG_PHYLIB
 | |
| 	if (fec->xcv_type != SEVENWIRE)
 | |
| 		miiphy_restart_aneg(dev);
 | |
| #endif
 | |
| 	fec_open(dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Halt the FEC engine
 | |
|  * @param[in] dev Our device to handle
 | |
|  */
 | |
| static void fec_halt(struct eth_device *dev)
 | |
| {
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 	int counter = 0xffff;
 | |
| 
 | |
| 	/*
 | |
| 	 * issue graceful stop command to the FEC transmitter if necessary
 | |
| 	 */
 | |
| 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
 | |
| 			&fec->eth->x_cntrl);
 | |
| 
 | |
| 	debug("eth_halt: wait for stop regs\n");
 | |
| 	/*
 | |
| 	 * wait for graceful stop to register
 | |
| 	 */
 | |
| 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
 | |
| 		udelay(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable SmartDMA tasks
 | |
| 	 */
 | |
| 	fec_tx_task_disable(fec);
 | |
| 	fec_rx_task_disable(fec);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable the Ethernet Controller
 | |
| 	 * Note: this will also reset the BD index counter!
 | |
| 	 */
 | |
| 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
 | |
| 			&fec->eth->ecntrl);
 | |
| 	fec->rbd_index = 0;
 | |
| 	fec->tbd_index = 0;
 | |
| 	debug("eth_halt: done\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Transmit one frame
 | |
|  * @param[in] dev Our ethernet device to handle
 | |
|  * @param[in] packet Pointer to the data to be transmitted
 | |
|  * @param[in] length Data count in bytes
 | |
|  * @return 0 on success
 | |
|  */
 | |
| static int fec_send(struct eth_device *dev, void *packet, int length)
 | |
| {
 | |
| 	unsigned int status;
 | |
| 	uint32_t size, end;
 | |
| 	uint32_t addr;
 | |
| 	int timeout = FEC_XFER_TIMEOUT;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This routine transmits one frame.  This routine only accepts
 | |
| 	 * 6-byte Ethernet addresses.
 | |
| 	 */
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for valid length of data.
 | |
| 	 */
 | |
| 	if ((length > 1500) || (length <= 0)) {
 | |
| 		printf("Payload (%d) too large\n", length);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup the transmit buffer. We are always using the first buffer for
 | |
| 	 * transmission, the second will be empty and only used to stop the DMA
 | |
| 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
 | |
| 	 */
 | |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET
 | |
| 	swap_packet((uint32_t *)packet, length);
 | |
| #endif
 | |
| 
 | |
| 	addr = (uint32_t)packet;
 | |
| 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
 | |
| 	addr &= ~(ARCH_DMA_MINALIGN - 1);
 | |
| 	flush_dcache_range(addr, end);
 | |
| 
 | |
| 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
 | |
| 	writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
 | |
| 
 | |
| 	/*
 | |
| 	 * update BD's status now
 | |
| 	 * This block:
 | |
| 	 * - is always the last in a chain (means no chain)
 | |
| 	 * - should transmitt the CRC
 | |
| 	 * - might be the last BD in the list, so the address counter should
 | |
| 	 *   wrap (-> keep the WRAP flag)
 | |
| 	 */
 | |
| 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
 | |
| 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
 | |
| 	writew(status, &fec->tbd_base[fec->tbd_index].status);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush data cache. This code flushes both TX descriptors to RAM.
 | |
| 	 * After this code, the descriptors will be safely in RAM and we
 | |
| 	 * can start DMA.
 | |
| 	 */
 | |
| 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
 | |
| 	addr = (uint32_t)fec->tbd_base;
 | |
| 	flush_dcache_range(addr, addr + size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Below we read the DMA descriptor's last four bytes back from the
 | |
| 	 * DRAM. This is important in order to make sure that all WRITE
 | |
| 	 * operations on the bus that were triggered by previous cache FLUSH
 | |
| 	 * have completed.
 | |
| 	 *
 | |
| 	 * Otherwise, on MX28, it is possible to observe a corruption of the
 | |
| 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
 | |
| 	 * for the bus structure of MX28. The scenario is as follows:
 | |
| 	 *
 | |
| 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
 | |
| 	 *    to DRAM due to flush_dcache_range()
 | |
| 	 * 2) ARM core writes the FEC registers via AHB_ARB2
 | |
| 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
 | |
| 	 *
 | |
| 	 * Note that 2) does sometimes finish before 1) due to reordering of
 | |
| 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
 | |
| 	 * DMA descriptor is fully written into DRAM. This results in occasional
 | |
| 	 * corruption of the DMA descriptor.
 | |
| 	 */
 | |
| 	readl(addr + size - 4);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable SmartDMA transmit task
 | |
| 	 */
 | |
| 	fec_tx_task_enable(fec);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until frame is sent. On each turn of the wait cycle, we must
 | |
| 	 * invalidate data cache to see what's really in RAM. Also, we need
 | |
| 	 * barrier here.
 | |
| 	 */
 | |
| 	while (--timeout) {
 | |
| 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout)
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	invalidate_dcache_range(addr, addr + size);
 | |
| 	if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	debug("fec_send: status 0x%x index %d ret %i\n",
 | |
| 			readw(&fec->tbd_base[fec->tbd_index].status),
 | |
| 			fec->tbd_index, ret);
 | |
| 	/* for next transmission use the other buffer */
 | |
| 	if (fec->tbd_index)
 | |
| 		fec->tbd_index = 0;
 | |
| 	else
 | |
| 		fec->tbd_index = 1;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Pull one frame from the card
 | |
|  * @param[in] dev Our ethernet device to handle
 | |
|  * @return Length of packet read
 | |
|  */
 | |
| static int fec_recv(struct eth_device *dev)
 | |
| {
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
 | |
| 	unsigned long ievent;
 | |
| 	int frame_length, len = 0;
 | |
| 	struct nbuf *frame;
 | |
| 	uint16_t bd_status;
 | |
| 	uint32_t addr, size, end;
 | |
| 	int i;
 | |
| 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if any critical events have happened
 | |
| 	 */
 | |
| 	ievent = readl(&fec->eth->ievent);
 | |
| 	writel(ievent, &fec->eth->ievent);
 | |
| 	debug("fec_recv: ievent 0x%lx\n", ievent);
 | |
| 	if (ievent & FEC_IEVENT_BABR) {
 | |
| 		fec_halt(dev);
 | |
| 		fec_init(dev, fec->bd);
 | |
| 		printf("some error: 0x%08lx\n", ievent);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (ievent & FEC_IEVENT_HBERR) {
 | |
| 		/* Heartbeat error */
 | |
| 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
 | |
| 				&fec->eth->x_cntrl);
 | |
| 	}
 | |
| 	if (ievent & FEC_IEVENT_GRA) {
 | |
| 		/* Graceful stop complete */
 | |
| 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
 | |
| 			fec_halt(dev);
 | |
| 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
 | |
| 					&fec->eth->x_cntrl);
 | |
| 			fec_init(dev, fec->bd);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the buffer status. Before the status can be read, the data cache
 | |
| 	 * must be invalidated, because the data in RAM might have been changed
 | |
| 	 * by DMA. The descriptors are properly aligned to cachelines so there's
 | |
| 	 * no need to worry they'd overlap.
 | |
| 	 *
 | |
| 	 * WARNING: By invalidating the descriptor here, we also invalidate
 | |
| 	 * the descriptors surrounding this one. Therefore we can NOT change the
 | |
| 	 * contents of this descriptor nor the surrounding ones. The problem is
 | |
| 	 * that in order to mark the descriptor as processed, we need to change
 | |
| 	 * the descriptor. The solution is to mark the whole cache line when all
 | |
| 	 * descriptors in the cache line are processed.
 | |
| 	 */
 | |
| 	addr = (uint32_t)rbd;
 | |
| 	addr &= ~(ARCH_DMA_MINALIGN - 1);
 | |
| 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
 | |
| 	invalidate_dcache_range(addr, addr + size);
 | |
| 
 | |
| 	bd_status = readw(&rbd->status);
 | |
| 	debug("fec_recv: status 0x%x\n", bd_status);
 | |
| 
 | |
| 	if (!(bd_status & FEC_RBD_EMPTY)) {
 | |
| 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
 | |
| 			((readw(&rbd->data_length) - 4) > 14)) {
 | |
| 			/*
 | |
| 			 * Get buffer address and size
 | |
| 			 */
 | |
| 			frame = (struct nbuf *)readl(&rbd->data_pointer);
 | |
| 			frame_length = readw(&rbd->data_length) - 4;
 | |
| 			/*
 | |
| 			 * Invalidate data cache over the buffer
 | |
| 			 */
 | |
| 			addr = (uint32_t)frame;
 | |
| 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
 | |
| 			addr &= ~(ARCH_DMA_MINALIGN - 1);
 | |
| 			invalidate_dcache_range(addr, end);
 | |
| 
 | |
| 			/*
 | |
| 			 *  Fill the buffer and pass it to upper layers
 | |
| 			 */
 | |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET
 | |
| 			swap_packet((uint32_t *)frame->data, frame_length);
 | |
| #endif
 | |
| 			memcpy(buff, frame->data, frame_length);
 | |
| 			NetReceive(buff, frame_length);
 | |
| 			len = frame_length;
 | |
| 		} else {
 | |
| 			if (bd_status & FEC_RBD_ERR)
 | |
| 				printf("error frame: 0x%08lx 0x%08x\n",
 | |
| 						(ulong)rbd->data_pointer,
 | |
| 						bd_status);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Free the current buffer, restart the engine and move forward
 | |
| 		 * to the next buffer. Here we check if the whole cacheline of
 | |
| 		 * descriptors was already processed and if so, we mark it free
 | |
| 		 * as whole.
 | |
| 		 */
 | |
| 		size = RXDESC_PER_CACHELINE - 1;
 | |
| 		if ((fec->rbd_index & size) == size) {
 | |
| 			i = fec->rbd_index - size;
 | |
| 			addr = (uint32_t)&fec->rbd_base[i];
 | |
| 			for (; i <= fec->rbd_index ; i++) {
 | |
| 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
 | |
| 					      &fec->rbd_base[i]);
 | |
| 			}
 | |
| 			flush_dcache_range(addr,
 | |
| 				addr + ARCH_DMA_MINALIGN);
 | |
| 		}
 | |
| 
 | |
| 		fec_rx_task_enable(fec);
 | |
| 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
 | |
| 	}
 | |
| 	debug("fec_recv: stop\n");
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static void fec_set_dev_name(char *dest, int dev_id)
 | |
| {
 | |
| 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
 | |
| }
 | |
| 
 | |
| static int fec_alloc_descs(struct fec_priv *fec)
 | |
| {
 | |
| 	unsigned int size;
 | |
| 	int i;
 | |
| 	uint8_t *data;
 | |
| 
 | |
| 	/* Allocate TX descriptors. */
 | |
| 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
 | |
| 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
 | |
| 	if (!fec->tbd_base)
 | |
| 		goto err_tx;
 | |
| 
 | |
| 	/* Allocate RX descriptors. */
 | |
| 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
 | |
| 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
 | |
| 	if (!fec->rbd_base)
 | |
| 		goto err_rx;
 | |
| 
 | |
| 	memset(fec->rbd_base, 0, size);
 | |
| 
 | |
| 	/* Allocate RX buffers. */
 | |
| 
 | |
| 	/* Maximum RX buffer size. */
 | |
| 	size = roundup(FEC_MAX_PKT_SIZE, ARCH_DMA_MINALIGN);
 | |
| 	for (i = 0; i < FEC_RBD_NUM; i++) {
 | |
| 		data = memalign(ARCH_DMA_MINALIGN, size);
 | |
| 		if (!data) {
 | |
| 			printf("%s: error allocating rxbuf %d\n", __func__, i);
 | |
| 			goto err_ring;
 | |
| 		}
 | |
| 
 | |
| 		memset(data, 0, size);
 | |
| 
 | |
| 		fec->rbd_base[i].data_pointer = (uint32_t)data;
 | |
| 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
 | |
| 		fec->rbd_base[i].data_length = 0;
 | |
| 		/* Flush the buffer to memory. */
 | |
| 		flush_dcache_range((uint32_t)data, (uint32_t)data + size);
 | |
| 	}
 | |
| 
 | |
| 	/* Mark the last RBD to close the ring. */
 | |
| 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
 | |
| 
 | |
| 	fec->rbd_index = 0;
 | |
| 	fec->tbd_index = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_ring:
 | |
| 	for (; i >= 0; i--)
 | |
| 		free((void *)fec->rbd_base[i].data_pointer);
 | |
| 	free(fec->rbd_base);
 | |
| err_rx:
 | |
| 	free(fec->tbd_base);
 | |
| err_tx:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void fec_free_descs(struct fec_priv *fec)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < FEC_RBD_NUM; i++)
 | |
| 		free((void *)fec->rbd_base[i].data_pointer);
 | |
| 	free(fec->rbd_base);
 | |
| 	free(fec->tbd_base);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PHYLIB
 | |
| int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
 | |
| 		struct mii_dev *bus, struct phy_device *phydev)
 | |
| #else
 | |
| static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
 | |
| 		struct mii_dev *bus, int phy_id)
 | |
| #endif
 | |
| {
 | |
| 	struct eth_device *edev;
 | |
| 	struct fec_priv *fec;
 | |
| 	unsigned char ethaddr[6];
 | |
| 	uint32_t start;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* create and fill edev struct */
 | |
| 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
 | |
| 	if (!edev) {
 | |
| 		puts("fec_mxc: not enough malloc memory for eth_device\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err1;
 | |
| 	}
 | |
| 
 | |
| 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
 | |
| 	if (!fec) {
 | |
| 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err2;
 | |
| 	}
 | |
| 
 | |
| 	memset(edev, 0, sizeof(*edev));
 | |
| 	memset(fec, 0, sizeof(*fec));
 | |
| 
 | |
| 	ret = fec_alloc_descs(fec);
 | |
| 	if (ret)
 | |
| 		goto err3;
 | |
| 
 | |
| 	edev->priv = fec;
 | |
| 	edev->init = fec_init;
 | |
| 	edev->send = fec_send;
 | |
| 	edev->recv = fec_recv;
 | |
| 	edev->halt = fec_halt;
 | |
| 	edev->write_hwaddr = fec_set_hwaddr;
 | |
| 
 | |
| 	fec->eth = (struct ethernet_regs *)base_addr;
 | |
| 	fec->bd = bd;
 | |
| 
 | |
| 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
 | |
| 
 | |
| 	/* Reset chip. */
 | |
| 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
 | |
| 	start = get_timer(0);
 | |
| 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
 | |
| 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
 | |
| 			printf("FEC MXC: Timeout reseting chip\n");
 | |
| 			goto err4;
 | |
| 		}
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	fec_reg_setup(fec);
 | |
| 	fec_set_dev_name(edev->name, dev_id);
 | |
| 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
 | |
| 	fec->bus = bus;
 | |
| 	fec_mii_setspeed(bus->priv);
 | |
| #ifdef CONFIG_PHYLIB
 | |
| 	fec->phydev = phydev;
 | |
| 	phy_connect_dev(phydev, edev);
 | |
| 	/* Configure phy */
 | |
| 	phy_config(phydev);
 | |
| #else
 | |
| 	fec->phy_id = phy_id;
 | |
| #endif
 | |
| 	eth_register(edev);
 | |
| 
 | |
| 	if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
 | |
| 		debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
 | |
| 		memcpy(edev->enetaddr, ethaddr, 6);
 | |
| 		if (!getenv("ethaddr"))
 | |
| 			eth_setenv_enetaddr("ethaddr", ethaddr);
 | |
| 	}
 | |
| 	return ret;
 | |
| err4:
 | |
| 	fec_free_descs(fec);
 | |
| err3:
 | |
| 	free(fec);
 | |
| err2:
 | |
| 	free(edev);
 | |
| err1:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
 | |
| {
 | |
| 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
 | |
| 	struct mii_dev *bus;
 | |
| 	int ret;
 | |
| 
 | |
| 	bus = mdio_alloc();
 | |
| 	if (!bus) {
 | |
| 		printf("mdio_alloc failed\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	bus->read = fec_phy_read;
 | |
| 	bus->write = fec_phy_write;
 | |
| 	bus->priv = eth;
 | |
| 	fec_set_dev_name(bus->name, dev_id);
 | |
| 
 | |
| 	ret = mdio_register(bus);
 | |
| 	if (ret) {
 | |
| 		printf("mdio_register failed\n");
 | |
| 		free(bus);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	fec_mii_setspeed(eth);
 | |
| 	return bus;
 | |
| }
 | |
| 
 | |
| int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
 | |
| {
 | |
| 	uint32_t base_mii;
 | |
| 	struct mii_dev *bus = NULL;
 | |
| #ifdef CONFIG_PHYLIB
 | |
| 	struct phy_device *phydev = NULL;
 | |
| #endif
 | |
| 	int ret;
 | |
| 
 | |
| #ifdef CONFIG_MX28
 | |
| 	/*
 | |
| 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
 | |
| 	 * Only the first one can access the MDIO bus.
 | |
| 	 */
 | |
| 	base_mii = MXS_ENET0_BASE;
 | |
| #else
 | |
| 	base_mii = addr;
 | |
| #endif
 | |
| 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
 | |
| 	bus = fec_get_miibus(base_mii, dev_id);
 | |
| 	if (!bus)
 | |
| 		return -ENOMEM;
 | |
| #ifdef CONFIG_PHYLIB
 | |
| 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
 | |
| 	if (!phydev) {
 | |
| 		free(bus);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
 | |
| #else
 | |
| 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
 | |
| #endif
 | |
| 	if (ret) {
 | |
| #ifdef CONFIG_PHYLIB
 | |
| 		free(phydev);
 | |
| #endif
 | |
| 		free(bus);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FEC_MXC_PHYADDR
 | |
| int fecmxc_initialize(bd_t *bd)
 | |
| {
 | |
| 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
 | |
| 			IMX_FEC_BASE);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_PHYLIB
 | |
| int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
 | |
| {
 | |
| 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
 | |
| 	fec->mii_postcall = cb;
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 |