mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-30 18:05:48 +01:00 
			
		
		
		
	Before the patch, it looks like: |U-Boot 2012.07-00441-gd578d6f-dirty (Sep 10 2012 - 16:11:06) | |CPU: AT91SAM9G35 |Crystal frequency: 12 MHz |CPU clock : 400 MHz |Master clock : 133.333 MHz |DRAM: 128 MiB |WARNING: Caches not enabled > |NAND: Initialize PMECC params, cap: 2, sector: 512 > |256 MiB |MMC: mci: 0 |In: serial |Out: serial |Err: serial |Net: macb0 |Hit any key to stop autoboot: 0 After the patch: |U-Boot 2012.07-00441-gd578d6f-dirty (Sep 10 2012 - 16:18:11) | |CPU: AT91SAM9G35 |Crystal frequency: 12 MHz |CPU clock : 400 MHz |Master clock : 133.333 MHz |DRAM: 128 MiB |WARNING: Caches not enabled > |NAND: 256 MiB | ... ... |Hit any key to stop autoboot: 0 Signed-off-by: Josh Wu <josh.wu@atmel.com> Signed-off-by: Andreas Bießmann <andreas.devel@googlemail.com>
		
			
				
	
	
		
			1052 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1052 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (C) Copyright 2007-2008
 | |
|  * Stelian Pop <stelian@popies.net>
 | |
|  * Lead Tech Design <www.leadtechdesign.com>
 | |
|  *
 | |
|  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
 | |
|  *
 | |
|  * Add Programmable Multibit ECC support for various AT91 SoC
 | |
|  *     (C) Copyright 2012 ATMEL, Hong Xu
 | |
|  *
 | |
|  * See file CREDITS for list of people who contributed to this
 | |
|  * project.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 of
 | |
|  * the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 | |
|  * MA 02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <asm/arch/hardware.h>
 | |
| #include <asm/arch/gpio.h>
 | |
| #include <asm/arch/at91_pio.h>
 | |
| 
 | |
| #include <nand.h>
 | |
| #include <watchdog.h>
 | |
| 
 | |
| #ifdef CONFIG_ATMEL_NAND_HWECC
 | |
| 
 | |
| /* Register access macros */
 | |
| #define ecc_readl(add, reg)				\
 | |
| 	readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
 | |
| #define ecc_writel(add, reg, value)			\
 | |
| 	writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
 | |
| 
 | |
| #include "atmel_nand_ecc.h"	/* Hardware ECC registers */
 | |
| 
 | |
| #ifdef CONFIG_ATMEL_NAND_HW_PMECC
 | |
| 
 | |
| struct atmel_nand_host {
 | |
| 	struct pmecc_regs __iomem *pmecc;
 | |
| 	struct pmecc_errloc_regs __iomem *pmerrloc;
 | |
| 	void __iomem		*pmecc_rom_base;
 | |
| 
 | |
| 	u8		pmecc_corr_cap;
 | |
| 	u16		pmecc_sector_size;
 | |
| 	u32		pmecc_index_table_offset;
 | |
| 
 | |
| 	int		pmecc_bytes_per_sector;
 | |
| 	int		pmecc_sector_number;
 | |
| 	int		pmecc_degree;	/* Degree of remainders */
 | |
| 	int		pmecc_cw_len;	/* Length of codeword */
 | |
| 
 | |
| 	/* lookup table for alpha_to and index_of */
 | |
| 	void __iomem	*pmecc_alpha_to;
 | |
| 	void __iomem	*pmecc_index_of;
 | |
| 
 | |
| 	/* data for pmecc computation */
 | |
| 	int16_t	pmecc_smu[(CONFIG_PMECC_CAP + 2) * (2 * CONFIG_PMECC_CAP + 1)];
 | |
| 	int16_t	pmecc_partial_syn[2 * CONFIG_PMECC_CAP + 1];
 | |
| 	int16_t	pmecc_si[2 * CONFIG_PMECC_CAP + 1];
 | |
| 	int16_t	pmecc_lmu[CONFIG_PMECC_CAP + 1]; /* polynomal order */
 | |
| 	int	pmecc_mu[CONFIG_PMECC_CAP + 1];
 | |
| 	int	pmecc_dmu[CONFIG_PMECC_CAP + 1];
 | |
| 	int	pmecc_delta[CONFIG_PMECC_CAP + 1];
 | |
| };
 | |
| 
 | |
| static struct atmel_nand_host pmecc_host;
 | |
| static struct nand_ecclayout atmel_pmecc_oobinfo;
 | |
| 
 | |
| /*
 | |
|  * Return number of ecc bytes per sector according to sector size and
 | |
|  * correction capability
 | |
|  *
 | |
|  * Following table shows what at91 PMECC supported:
 | |
|  * Correction Capability	Sector_512_bytes	Sector_1024_bytes
 | |
|  * =====================	================	=================
 | |
|  *                2-bits                 4-bytes                  4-bytes
 | |
|  *                4-bits                 7-bytes                  7-bytes
 | |
|  *                8-bits                13-bytes                 14-bytes
 | |
|  *               12-bits                20-bytes                 21-bytes
 | |
|  *               24-bits                39-bytes                 42-bytes
 | |
|  */
 | |
| static int pmecc_get_ecc_bytes(int cap, int sector_size)
 | |
| {
 | |
| 	int m = 12 + sector_size / 512;
 | |
| 	return (m * cap + 7) / 8;
 | |
| }
 | |
| 
 | |
| static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
 | |
| 	int oobsize, int ecc_len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	layout->eccbytes = ecc_len;
 | |
| 
 | |
| 	/* ECC will occupy the last ecc_len bytes continuously */
 | |
| 	for (i = 0; i < ecc_len; i++)
 | |
| 		layout->eccpos[i] = oobsize - ecc_len + i;
 | |
| 
 | |
| 	layout->oobfree[0].offset = 2;
 | |
| 	layout->oobfree[0].length =
 | |
| 		oobsize - ecc_len - layout->oobfree[0].offset;
 | |
| }
 | |
| 
 | |
| static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 | |
| {
 | |
| 	int table_size;
 | |
| 
 | |
| 	table_size = host->pmecc_sector_size == 512 ?
 | |
| 		PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
 | |
| 
 | |
| 	/* the ALPHA lookup table is right behind the INDEX lookup table. */
 | |
| 	return host->pmecc_rom_base + host->pmecc_index_table_offset +
 | |
| 			table_size * sizeof(int16_t);
 | |
| }
 | |
| 
 | |
| static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct atmel_nand_host *host = nand_chip->priv;
 | |
| 	int i;
 | |
| 	uint32_t value;
 | |
| 
 | |
| 	/* Fill odd syndromes */
 | |
| 	for (i = 0; i < host->pmecc_corr_cap; i++) {
 | |
| 		value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
 | |
| 		if (i & 1)
 | |
| 			value >>= 16;
 | |
| 		value &= 0xffff;
 | |
| 		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pmecc_substitute(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct atmel_nand_host *host = nand_chip->priv;
 | |
| 	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 | |
| 	int16_t __iomem *index_of = host->pmecc_index_of;
 | |
| 	int16_t *partial_syn = host->pmecc_partial_syn;
 | |
| 	const int cap = host->pmecc_corr_cap;
 | |
| 	int16_t *si;
 | |
| 	int i, j;
 | |
| 
 | |
| 	/* si[] is a table that holds the current syndrome value,
 | |
| 	 * an element of that table belongs to the field
 | |
| 	 */
 | |
| 	si = host->pmecc_si;
 | |
| 
 | |
| 	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 | |
| 
 | |
| 	/* Computation 2t syndromes based on S(x) */
 | |
| 	/* Odd syndromes */
 | |
| 	for (i = 1; i < 2 * cap; i += 2) {
 | |
| 		for (j = 0; j < host->pmecc_degree; j++) {
 | |
| 			if (partial_syn[i] & (0x1 << j))
 | |
| 				si[i] = readw(alpha_to + i * j) ^ si[i];
 | |
| 		}
 | |
| 	}
 | |
| 	/* Even syndrome = (Odd syndrome) ** 2 */
 | |
| 	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 | |
| 		if (si[j] == 0) {
 | |
| 			si[i] = 0;
 | |
| 		} else {
 | |
| 			int16_t tmp;
 | |
| 
 | |
| 			tmp = readw(index_of + si[j]);
 | |
| 			tmp = (tmp * 2) % host->pmecc_cw_len;
 | |
| 			si[i] = readw(alpha_to + tmp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function defines a Berlekamp iterative procedure for
 | |
|  * finding the value of the error location polynomial.
 | |
|  * The input is si[], initialize by pmecc_substitute().
 | |
|  * The output is smu[][].
 | |
|  *
 | |
|  * This function is written according to chip datasheet Chapter:
 | |
|  * Find the Error Location Polynomial Sigma(x) of Section:
 | |
|  * Programmable Multibit ECC Control (PMECC).
 | |
|  */
 | |
| static void pmecc_get_sigma(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct atmel_nand_host *host = nand_chip->priv;
 | |
| 
 | |
| 	int16_t *lmu = host->pmecc_lmu;
 | |
| 	int16_t *si = host->pmecc_si;
 | |
| 	int *mu = host->pmecc_mu;
 | |
| 	int *dmu = host->pmecc_dmu;	/* Discrepancy */
 | |
| 	int *delta = host->pmecc_delta; /* Delta order */
 | |
| 	int cw_len = host->pmecc_cw_len;
 | |
| 	const int16_t cap = host->pmecc_corr_cap;
 | |
| 	const int num = 2 * cap + 1;
 | |
| 	int16_t __iomem	*index_of = host->pmecc_index_of;
 | |
| 	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
 | |
| 	int i, j, k;
 | |
| 	uint32_t dmu_0_count, tmp;
 | |
| 	int16_t *smu = host->pmecc_smu;
 | |
| 
 | |
| 	/* index of largest delta */
 | |
| 	int ro;
 | |
| 	int largest;
 | |
| 	int diff;
 | |
| 
 | |
| 	/* Init the Sigma(x) */
 | |
| 	memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
 | |
| 
 | |
| 	dmu_0_count = 0;
 | |
| 
 | |
| 	/* First Row */
 | |
| 
 | |
| 	/* Mu */
 | |
| 	mu[0] = -1;
 | |
| 
 | |
| 	smu[0] = 1;
 | |
| 
 | |
| 	/* discrepancy set to 1 */
 | |
| 	dmu[0] = 1;
 | |
| 	/* polynom order set to 0 */
 | |
| 	lmu[0] = 0;
 | |
| 	/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
 | |
| 	delta[0] = -1;
 | |
| 
 | |
| 	/* Second Row */
 | |
| 
 | |
| 	/* Mu */
 | |
| 	mu[1] = 0;
 | |
| 	/* Sigma(x) set to 1 */
 | |
| 	smu[num] = 1;
 | |
| 
 | |
| 	/* discrepancy set to S1 */
 | |
| 	dmu[1] = si[1];
 | |
| 
 | |
| 	/* polynom order set to 0 */
 | |
| 	lmu[1] = 0;
 | |
| 
 | |
| 	/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
 | |
| 	delta[1] = 0;
 | |
| 
 | |
| 	for (i = 1; i <= cap; i++) {
 | |
| 		mu[i + 1] = i << 1;
 | |
| 		/* Begin Computing Sigma (Mu+1) and L(mu) */
 | |
| 		/* check if discrepancy is set to 0 */
 | |
| 		if (dmu[i] == 0) {
 | |
| 			dmu_0_count++;
 | |
| 
 | |
| 			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 | |
| 			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 | |
| 				tmp += 2;
 | |
| 			else
 | |
| 				tmp += 1;
 | |
| 
 | |
| 			if (dmu_0_count == tmp) {
 | |
| 				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 | |
| 					smu[(cap + 1) * num + j] =
 | |
| 							smu[i * num + j];
 | |
| 
 | |
| 				lmu[cap + 1] = lmu[i];
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			/* copy polynom */
 | |
| 			for (j = 0; j <= lmu[i] >> 1; j++)
 | |
| 				smu[(i + 1) * num + j] = smu[i * num + j];
 | |
| 
 | |
| 			/* copy previous polynom order to the next */
 | |
| 			lmu[i + 1] = lmu[i];
 | |
| 		} else {
 | |
| 			ro = 0;
 | |
| 			largest = -1;
 | |
| 			/* find largest delta with dmu != 0 */
 | |
| 			for (j = 0; j < i; j++) {
 | |
| 				if ((dmu[j]) && (delta[j] > largest)) {
 | |
| 					largest = delta[j];
 | |
| 					ro = j;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* compute difference */
 | |
| 			diff = (mu[i] - mu[ro]);
 | |
| 
 | |
| 			/* Compute degree of the new smu polynomial */
 | |
| 			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 | |
| 				lmu[i + 1] = lmu[i];
 | |
| 			else
 | |
| 				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 | |
| 
 | |
| 			/* Init smu[i+1] with 0 */
 | |
| 			for (k = 0; k < num; k++)
 | |
| 				smu[(i + 1) * num + k] = 0;
 | |
| 
 | |
| 			/* Compute smu[i+1] */
 | |
| 			for (k = 0; k <= lmu[ro] >> 1; k++) {
 | |
| 				int16_t a, b, c;
 | |
| 
 | |
| 				if (!(smu[ro * num + k] && dmu[i]))
 | |
| 					continue;
 | |
| 				a = readw(index_of + dmu[i]);
 | |
| 				b = readw(index_of + dmu[ro]);
 | |
| 				c = readw(index_of + smu[ro * num + k]);
 | |
| 				tmp = a + (cw_len - b) + c;
 | |
| 				a = readw(alpha_to + tmp % cw_len);
 | |
| 				smu[(i + 1) * num + (k + diff)] = a;
 | |
| 			}
 | |
| 
 | |
| 			for (k = 0; k <= lmu[i] >> 1; k++)
 | |
| 				smu[(i + 1) * num + k] ^= smu[i * num + k];
 | |
| 		}
 | |
| 
 | |
| 		/* End Computing Sigma (Mu+1) and L(mu) */
 | |
| 		/* In either case compute delta */
 | |
| 		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 | |
| 
 | |
| 		/* Do not compute discrepancy for the last iteration */
 | |
| 		if (i >= cap)
 | |
| 			continue;
 | |
| 
 | |
| 		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 | |
| 			tmp = 2 * (i - 1);
 | |
| 			if (k == 0) {
 | |
| 				dmu[i + 1] = si[tmp + 3];
 | |
| 			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 | |
| 				int16_t a, b, c;
 | |
| 				a = readw(index_of +
 | |
| 						smu[(i + 1) * num + k]);
 | |
| 				b = si[2 * (i - 1) + 3 - k];
 | |
| 				c = readw(index_of + b);
 | |
| 				tmp = a + c;
 | |
| 				tmp %= cw_len;
 | |
| 				dmu[i + 1] = readw(alpha_to + tmp) ^
 | |
| 					dmu[i + 1];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int pmecc_err_location(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct atmel_nand_host *host = nand_chip->priv;
 | |
| 	const int cap = host->pmecc_corr_cap;
 | |
| 	const int num = 2 * cap + 1;
 | |
| 	int sector_size = host->pmecc_sector_size;
 | |
| 	int err_nbr = 0;	/* number of error */
 | |
| 	int roots_nbr;		/* number of roots */
 | |
| 	int i;
 | |
| 	uint32_t val;
 | |
| 	int16_t *smu = host->pmecc_smu;
 | |
| 	int timeout = PMECC_MAX_TIMEOUT_US;
 | |
| 
 | |
| 	writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
 | |
| 
 | |
| 	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 | |
| 		writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
 | |
| 		err_nbr++;
 | |
| 	}
 | |
| 
 | |
| 	val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
 | |
| 	if (sector_size == 1024)
 | |
| 		val |= PMERRLOC_ELCFG_SECTOR_1024;
 | |
| 
 | |
| 	writel(val, &host->pmerrloc->elcfg);
 | |
| 	writel(sector_size * 8 + host->pmecc_degree * cap,
 | |
| 			&host->pmerrloc->elen);
 | |
| 
 | |
| 	while (--timeout) {
 | |
| 		if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
 | |
| 			break;
 | |
| 		WATCHDOG_RESET();
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
 | |
| 			>> 8;
 | |
| 	/* Number of roots == degree of smu hence <= cap */
 | |
| 	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 | |
| 		return err_nbr - 1;
 | |
| 
 | |
| 	/* Number of roots does not match the degree of smu
 | |
| 	 * unable to correct error */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 | |
| 		int sector_num, int extra_bytes, int err_nbr)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct atmel_nand_host *host = nand_chip->priv;
 | |
| 	int i = 0;
 | |
| 	int byte_pos, bit_pos, sector_size, pos;
 | |
| 	uint32_t tmp;
 | |
| 	uint8_t err_byte;
 | |
| 
 | |
| 	sector_size = host->pmecc_sector_size;
 | |
| 
 | |
| 	while (err_nbr) {
 | |
| 		tmp = readl(&host->pmerrloc->el[i]) - 1;
 | |
| 		byte_pos = tmp / 8;
 | |
| 		bit_pos  = tmp % 8;
 | |
| 
 | |
| 		if (byte_pos >= (sector_size + extra_bytes))
 | |
| 			BUG();	/* should never happen */
 | |
| 
 | |
| 		if (byte_pos < sector_size) {
 | |
| 			err_byte = *(buf + byte_pos);
 | |
| 			*(buf + byte_pos) ^= (1 << bit_pos);
 | |
| 
 | |
| 			pos = sector_num * host->pmecc_sector_size + byte_pos;
 | |
| 			printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 | |
| 				pos, bit_pos, err_byte, *(buf + byte_pos));
 | |
| 		} else {
 | |
| 			/* Bit flip in OOB area */
 | |
| 			tmp = sector_num * host->pmecc_bytes_per_sector
 | |
| 					+ (byte_pos - sector_size);
 | |
| 			err_byte = ecc[tmp];
 | |
| 			ecc[tmp] ^= (1 << bit_pos);
 | |
| 
 | |
| 			pos = tmp + nand_chip->ecc.layout->eccpos[0];
 | |
| 			printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 | |
| 				pos, bit_pos, err_byte, ecc[tmp]);
 | |
| 		}
 | |
| 
 | |
| 		i++;
 | |
| 		err_nbr--;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 | |
| 	u8 *ecc)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct atmel_nand_host *host = nand_chip->priv;
 | |
| 	int i, err_nbr, eccbytes;
 | |
| 	uint8_t *buf_pos;
 | |
| 
 | |
| 	eccbytes = nand_chip->ecc.bytes;
 | |
| 	for (i = 0; i < eccbytes; i++)
 | |
| 		if (ecc[i] != 0xff)
 | |
| 			goto normal_check;
 | |
| 	/* Erased page, return OK */
 | |
| 	return 0;
 | |
| 
 | |
| normal_check:
 | |
| 	for (i = 0; i < host->pmecc_sector_number; i++) {
 | |
| 		err_nbr = 0;
 | |
| 		if (pmecc_stat & 0x1) {
 | |
| 			buf_pos = buf + i * host->pmecc_sector_size;
 | |
| 
 | |
| 			pmecc_gen_syndrome(mtd, i);
 | |
| 			pmecc_substitute(mtd);
 | |
| 			pmecc_get_sigma(mtd);
 | |
| 
 | |
| 			err_nbr = pmecc_err_location(mtd);
 | |
| 			if (err_nbr == -1) {
 | |
| 				printk(KERN_ERR "PMECC: Too many errors\n");
 | |
| 				mtd->ecc_stats.failed++;
 | |
| 				return -EIO;
 | |
| 			} else {
 | |
| 				pmecc_correct_data(mtd, buf_pos, ecc, i,
 | |
| 					host->pmecc_bytes_per_sector, err_nbr);
 | |
| 				mtd->ecc_stats.corrected += err_nbr;
 | |
| 			}
 | |
| 		}
 | |
| 		pmecc_stat >>= 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 | |
| 	struct nand_chip *chip, uint8_t *buf, int page)
 | |
| {
 | |
| 	struct atmel_nand_host *host = chip->priv;
 | |
| 	int eccsize = chip->ecc.size;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | |
| 	uint32_t stat;
 | |
| 	int timeout = PMECC_MAX_TIMEOUT_US;
 | |
| 
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 | |
| 	pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
 | |
| 		& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
 | |
| 
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 | |
| 
 | |
| 	chip->read_buf(mtd, buf, eccsize);
 | |
| 	chip->read_buf(mtd, oob, mtd->oobsize);
 | |
| 
 | |
| 	while (--timeout) {
 | |
| 		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 | |
| 			break;
 | |
| 		WATCHDOG_RESET();
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	stat = pmecc_readl(host->pmecc, isr);
 | |
| 	if (stat != 0)
 | |
| 		if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
 | |
| 			return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 | |
| 		struct nand_chip *chip, const uint8_t *buf)
 | |
| {
 | |
| 	struct atmel_nand_host *host = chip->priv;
 | |
| 	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | |
| 	int i, j;
 | |
| 	int timeout = PMECC_MAX_TIMEOUT_US;
 | |
| 
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 | |
| 
 | |
| 	pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
 | |
| 		PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
 | |
| 
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 | |
| 
 | |
| 	chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 | |
| 
 | |
| 	while (--timeout) {
 | |
| 		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 | |
| 			break;
 | |
| 		WATCHDOG_RESET();
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < host->pmecc_sector_number; i++) {
 | |
| 		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
 | |
| 			int pos;
 | |
| 
 | |
| 			pos = i * host->pmecc_bytes_per_sector + j;
 | |
| 			chip->oob_poi[eccpos[pos]] =
 | |
| 				readb(&host->pmecc->ecc_port[i].ecc[j]);
 | |
| 		}
 | |
| 	}
 | |
| 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| }
 | |
| 
 | |
| static void atmel_pmecc_core_init(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	struct atmel_nand_host *host = nand_chip->priv;
 | |
| 	uint32_t val = 0;
 | |
| 	struct nand_ecclayout *ecc_layout;
 | |
| 
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 | |
| 
 | |
| 	switch (host->pmecc_corr_cap) {
 | |
| 	case 2:
 | |
| 		val = PMECC_CFG_BCH_ERR2;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		val = PMECC_CFG_BCH_ERR4;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		val = PMECC_CFG_BCH_ERR8;
 | |
| 		break;
 | |
| 	case 12:
 | |
| 		val = PMECC_CFG_BCH_ERR12;
 | |
| 		break;
 | |
| 	case 24:
 | |
| 		val = PMECC_CFG_BCH_ERR24;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (host->pmecc_sector_size == 512)
 | |
| 		val |= PMECC_CFG_SECTOR512;
 | |
| 	else if (host->pmecc_sector_size == 1024)
 | |
| 		val |= PMECC_CFG_SECTOR1024;
 | |
| 
 | |
| 	switch (host->pmecc_sector_number) {
 | |
| 	case 1:
 | |
| 		val |= PMECC_CFG_PAGE_1SECTOR;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		val |= PMECC_CFG_PAGE_2SECTORS;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		val |= PMECC_CFG_PAGE_4SECTORS;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		val |= PMECC_CFG_PAGE_8SECTORS;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
 | |
| 		| PMECC_CFG_AUTO_DISABLE);
 | |
| 	pmecc_writel(host->pmecc, cfg, val);
 | |
| 
 | |
| 	ecc_layout = nand_chip->ecc.layout;
 | |
| 	pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
 | |
| 	pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
 | |
| 	pmecc_writel(host->pmecc, eaddr,
 | |
| 			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
 | |
| 	/* See datasheet about PMECC Clock Control Register */
 | |
| 	pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
 | |
| 	pmecc_writel(host->pmecc, idr, 0xff);
 | |
| 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 | |
| }
 | |
| 
 | |
| static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
 | |
| 		struct mtd_info *mtd)
 | |
| {
 | |
| 	struct atmel_nand_host *host;
 | |
| 	int cap, sector_size;
 | |
| 
 | |
| 	host = nand->priv = &pmecc_host;
 | |
| 
 | |
| 	nand->ecc.mode = NAND_ECC_HW;
 | |
| 	nand->ecc.calculate = NULL;
 | |
| 	nand->ecc.correct = NULL;
 | |
| 	nand->ecc.hwctl = NULL;
 | |
| 
 | |
| 	cap = host->pmecc_corr_cap = CONFIG_PMECC_CAP;
 | |
| 	sector_size = host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
 | |
| 	host->pmecc_index_table_offset = CONFIG_PMECC_INDEX_TABLE_OFFSET;
 | |
| 
 | |
| 	MTDDEBUG(MTD_DEBUG_LEVEL1,
 | |
| 		"Initialize PMECC params, cap: %d, sector: %d\n",
 | |
| 		cap, sector_size);
 | |
| 
 | |
| 	host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
 | |
| 	host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
 | |
| 			ATMEL_BASE_PMERRLOC;
 | |
| 	host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
 | |
| 
 | |
| 	/* ECC is calculated for the whole page (1 step) */
 | |
| 	nand->ecc.size = mtd->writesize;
 | |
| 
 | |
| 	/* set ECC page size and oob layout */
 | |
| 	switch (mtd->writesize) {
 | |
| 	case 2048:
 | |
| 	case 4096:
 | |
| 		host->pmecc_degree = PMECC_GF_DIMENSION_13;
 | |
| 		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
 | |
| 		host->pmecc_sector_number = mtd->writesize / sector_size;
 | |
| 		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
 | |
| 			cap, sector_size);
 | |
| 		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
 | |
| 		host->pmecc_index_of = host->pmecc_rom_base +
 | |
| 			host->pmecc_index_table_offset;
 | |
| 
 | |
| 		nand->ecc.steps = 1;
 | |
| 		nand->ecc.bytes = host->pmecc_bytes_per_sector *
 | |
| 				       host->pmecc_sector_number;
 | |
| 		if (nand->ecc.bytes > mtd->oobsize - 2) {
 | |
| 			printk(KERN_ERR "No room for ECC bytes\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
 | |
| 					mtd->oobsize,
 | |
| 					nand->ecc.bytes);
 | |
| 		nand->ecc.layout = &atmel_pmecc_oobinfo;
 | |
| 		break;
 | |
| 	case 512:
 | |
| 	case 1024:
 | |
| 		/* TODO */
 | |
| 		printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
 | |
| 	default:
 | |
| 		/* page size not handled by HW ECC */
 | |
| 		/* switching back to soft ECC */
 | |
| 		nand->ecc.mode = NAND_ECC_SOFT;
 | |
| 		nand->ecc.read_page = NULL;
 | |
| 		nand->ecc.postpad = 0;
 | |
| 		nand->ecc.prepad = 0;
 | |
| 		nand->ecc.bytes = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	nand->ecc.read_page = atmel_nand_pmecc_read_page;
 | |
| 	nand->ecc.write_page = atmel_nand_pmecc_write_page;
 | |
| 
 | |
| 	atmel_pmecc_core_init(mtd);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* oob layout for large page size
 | |
|  * bad block info is on bytes 0 and 1
 | |
|  * the bytes have to be consecutives to avoid
 | |
|  * several NAND_CMD_RNDOUT during read
 | |
|  */
 | |
| static struct nand_ecclayout atmel_oobinfo_large = {
 | |
| 	.eccbytes = 4,
 | |
| 	.eccpos = {60, 61, 62, 63},
 | |
| 	.oobfree = {
 | |
| 		{2, 58}
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /* oob layout for small page size
 | |
|  * bad block info is on bytes 4 and 5
 | |
|  * the bytes have to be consecutives to avoid
 | |
|  * several NAND_CMD_RNDOUT during read
 | |
|  */
 | |
| static struct nand_ecclayout atmel_oobinfo_small = {
 | |
| 	.eccbytes = 4,
 | |
| 	.eccpos = {0, 1, 2, 3},
 | |
| 	.oobfree = {
 | |
| 		{6, 10}
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Calculate HW ECC
 | |
|  *
 | |
|  * function called after a write
 | |
|  *
 | |
|  * mtd:        MTD block structure
 | |
|  * dat:        raw data (unused)
 | |
|  * ecc_code:   buffer for ECC
 | |
|  */
 | |
| static int atmel_nand_calculate(struct mtd_info *mtd,
 | |
| 		const u_char *dat, unsigned char *ecc_code)
 | |
| {
 | |
| 	unsigned int ecc_value;
 | |
| 
 | |
| 	/* get the first 2 ECC bytes */
 | |
| 	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
 | |
| 
 | |
| 	ecc_code[0] = ecc_value & 0xFF;
 | |
| 	ecc_code[1] = (ecc_value >> 8) & 0xFF;
 | |
| 
 | |
| 	/* get the last 2 ECC bytes */
 | |
| 	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
 | |
| 
 | |
| 	ecc_code[2] = ecc_value & 0xFF;
 | |
| 	ecc_code[3] = (ecc_value >> 8) & 0xFF;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * HW ECC read page function
 | |
|  *
 | |
|  * mtd:        mtd info structure
 | |
|  * chip:       nand chip info structure
 | |
|  * buf:        buffer to store read data
 | |
|  */
 | |
| static int atmel_nand_read_page(struct mtd_info *mtd,
 | |
| 		struct nand_chip *chip, uint8_t *buf, int page)
 | |
| {
 | |
| 	int eccsize = chip->ecc.size;
 | |
| 	int eccbytes = chip->ecc.bytes;
 | |
| 	uint32_t *eccpos = chip->ecc.layout->eccpos;
 | |
| 	uint8_t *p = buf;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 	uint8_t *ecc_pos;
 | |
| 	int stat;
 | |
| 
 | |
| 	/* read the page */
 | |
| 	chip->read_buf(mtd, p, eccsize);
 | |
| 
 | |
| 	/* move to ECC position if needed */
 | |
| 	if (eccpos[0] != 0) {
 | |
| 		/* This only works on large pages
 | |
| 		 * because the ECC controller waits for
 | |
| 		 * NAND_CMD_RNDOUTSTART after the
 | |
| 		 * NAND_CMD_RNDOUT.
 | |
| 		 * anyway, for small pages, the eccpos[0] == 0
 | |
| 		 */
 | |
| 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
 | |
| 				mtd->writesize + eccpos[0], -1);
 | |
| 	}
 | |
| 
 | |
| 	/* the ECC controller needs to read the ECC just after the data */
 | |
| 	ecc_pos = oob + eccpos[0];
 | |
| 	chip->read_buf(mtd, ecc_pos, eccbytes);
 | |
| 
 | |
| 	/* check if there's an error */
 | |
| 	stat = chip->ecc.correct(mtd, p, oob, NULL);
 | |
| 
 | |
| 	if (stat < 0)
 | |
| 		mtd->ecc_stats.failed++;
 | |
| 	else
 | |
| 		mtd->ecc_stats.corrected += stat;
 | |
| 
 | |
| 	/* get back to oob start (end of page) */
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
 | |
| 
 | |
| 	/* read the oob */
 | |
| 	chip->read_buf(mtd, oob, mtd->oobsize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * HW ECC Correction
 | |
|  *
 | |
|  * function called after a read
 | |
|  *
 | |
|  * mtd:        MTD block structure
 | |
|  * dat:        raw data read from the chip
 | |
|  * read_ecc:   ECC from the chip (unused)
 | |
|  * isnull:     unused
 | |
|  *
 | |
|  * Detect and correct a 1 bit error for a page
 | |
|  */
 | |
| static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
 | |
| 		u_char *read_ecc, u_char *isnull)
 | |
| {
 | |
| 	struct nand_chip *nand_chip = mtd->priv;
 | |
| 	unsigned int ecc_status;
 | |
| 	unsigned int ecc_word, ecc_bit;
 | |
| 
 | |
| 	/* get the status from the Status Register */
 | |
| 	ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
 | |
| 
 | |
| 	/* if there's no error */
 | |
| 	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* get error bit offset (4 bits) */
 | |
| 	ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
 | |
| 	/* get word address (12 bits) */
 | |
| 	ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
 | |
| 	ecc_word >>= 4;
 | |
| 
 | |
| 	/* if there are multiple errors */
 | |
| 	if (ecc_status & ATMEL_ECC_MULERR) {
 | |
| 		/* check if it is a freshly erased block
 | |
| 		 * (filled with 0xff) */
 | |
| 		if ((ecc_bit == ATMEL_ECC_BITADDR)
 | |
| 				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
 | |
| 			/* the block has just been erased, return OK */
 | |
| 			return 0;
 | |
| 		}
 | |
| 		/* it doesn't seems to be a freshly
 | |
| 		 * erased block.
 | |
| 		 * We can't correct so many errors */
 | |
| 		printk(KERN_WARNING "atmel_nand : multiple errors detected."
 | |
| 				" Unable to correct.\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* if there's a single bit error : we can correct it */
 | |
| 	if (ecc_status & ATMEL_ECC_ECCERR) {
 | |
| 		/* there's nothing much to do here.
 | |
| 		 * the bit error is on the ECC itself.
 | |
| 		 */
 | |
| 		printk(KERN_WARNING "atmel_nand : one bit error on ECC code."
 | |
| 				" Nothing to correct\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_WARNING "atmel_nand : one bit error on data."
 | |
| 			" (word offset in the page :"
 | |
| 			" 0x%x bit offset : 0x%x)\n",
 | |
| 			ecc_word, ecc_bit);
 | |
| 	/* correct the error */
 | |
| 	if (nand_chip->options & NAND_BUSWIDTH_16) {
 | |
| 		/* 16 bits words */
 | |
| 		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
 | |
| 	} else {
 | |
| 		/* 8 bits words */
 | |
| 		dat[ecc_word] ^= (1 << ecc_bit);
 | |
| 	}
 | |
| 	printk(KERN_WARNING "atmel_nand : error corrected\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable HW ECC : unused on most chips
 | |
|  */
 | |
| static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| }
 | |
| 
 | |
| int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
 | |
| {
 | |
| 	nand->ecc.mode = NAND_ECC_HW;
 | |
| 	nand->ecc.calculate = atmel_nand_calculate;
 | |
| 	nand->ecc.correct = atmel_nand_correct;
 | |
| 	nand->ecc.hwctl = atmel_nand_hwctl;
 | |
| 	nand->ecc.read_page = atmel_nand_read_page;
 | |
| 	nand->ecc.bytes = 4;
 | |
| 
 | |
| 	if (nand->ecc.mode == NAND_ECC_HW) {
 | |
| 		/* ECC is calculated for the whole page (1 step) */
 | |
| 		nand->ecc.size = mtd->writesize;
 | |
| 
 | |
| 		/* set ECC page size and oob layout */
 | |
| 		switch (mtd->writesize) {
 | |
| 		case 512:
 | |
| 			nand->ecc.layout = &atmel_oobinfo_small;
 | |
| 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | |
| 					ATMEL_ECC_PAGESIZE_528);
 | |
| 			break;
 | |
| 		case 1024:
 | |
| 			nand->ecc.layout = &atmel_oobinfo_large;
 | |
| 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | |
| 					ATMEL_ECC_PAGESIZE_1056);
 | |
| 			break;
 | |
| 		case 2048:
 | |
| 			nand->ecc.layout = &atmel_oobinfo_large;
 | |
| 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | |
| 					ATMEL_ECC_PAGESIZE_2112);
 | |
| 			break;
 | |
| 		case 4096:
 | |
| 			nand->ecc.layout = &atmel_oobinfo_large;
 | |
| 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
 | |
| 					ATMEL_ECC_PAGESIZE_4224);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* page size not handled by HW ECC */
 | |
| 			/* switching back to soft ECC */
 | |
| 			nand->ecc.mode = NAND_ECC_SOFT;
 | |
| 			nand->ecc.calculate = NULL;
 | |
| 			nand->ecc.correct = NULL;
 | |
| 			nand->ecc.hwctl = NULL;
 | |
| 			nand->ecc.read_page = NULL;
 | |
| 			nand->ecc.postpad = 0;
 | |
| 			nand->ecc.prepad = 0;
 | |
| 			nand->ecc.bytes = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
 | |
| 
 | |
| #endif /* CONFIG_ATMEL_NAND_HWECC */
 | |
| 
 | |
| static void at91_nand_hwcontrol(struct mtd_info *mtd,
 | |
| 					 int cmd, unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 
 | |
| 	if (ctrl & NAND_CTRL_CHANGE) {
 | |
| 		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
 | |
| 		IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
 | |
| 			     | CONFIG_SYS_NAND_MASK_CLE);
 | |
| 
 | |
| 		if (ctrl & NAND_CLE)
 | |
| 			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
 | |
| 		if (ctrl & NAND_ALE)
 | |
| 			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_ENABLE_PIN
 | |
| 		at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
 | |
| 				    !(ctrl & NAND_NCE));
 | |
| #endif
 | |
| 		this->IO_ADDR_W = (void *) IO_ADDR_W;
 | |
| 	}
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		writeb(cmd, this->IO_ADDR_W);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_READY_PIN
 | |
| static int at91_nand_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_SYS_NAND_BASE_LIST
 | |
| #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
 | |
| #endif
 | |
| static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
 | |
| static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
 | |
| 
 | |
| int atmel_nand_chip_init(int devnum, ulong base_addr)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct mtd_info *mtd = &nand_info[devnum];
 | |
| 	struct nand_chip *nand = &nand_chip[devnum];
 | |
| 
 | |
| 	mtd->priv = nand;
 | |
| 	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
 | |
| 
 | |
| 	nand->ecc.mode = NAND_ECC_SOFT;
 | |
| #ifdef CONFIG_SYS_NAND_DBW_16
 | |
| 	nand->options = NAND_BUSWIDTH_16;
 | |
| #endif
 | |
| 	nand->cmd_ctrl = at91_nand_hwcontrol;
 | |
| #ifdef CONFIG_SYS_NAND_READY_PIN
 | |
| 	nand->dev_ready = at91_nand_ready;
 | |
| #endif
 | |
| 	nand->chip_delay = 20;
 | |
| 
 | |
| 	ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| #ifdef CONFIG_ATMEL_NAND_HWECC
 | |
| #ifdef CONFIG_ATMEL_NAND_HW_PMECC
 | |
| 	ret = atmel_pmecc_nand_init_params(nand, mtd);
 | |
| #else
 | |
| 	ret = atmel_hwecc_nand_init_param(nand, mtd);
 | |
| #endif
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| #endif
 | |
| 
 | |
| 	ret = nand_scan_tail(mtd);
 | |
| 	if (!ret)
 | |
| 		nand_register(devnum);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void board_nand_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
 | |
| 		if (atmel_nand_chip_init(i, base_addr[i]))
 | |
| 			printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip",
 | |
| 				i);
 | |
| }
 |