1
0
mirror of https://xff.cz/git/u-boot/ synced 2025-09-26 04:51:17 +02:00
Files
u-boot-megous/drivers/net/pcnet.c
Simon Glass caa4daa2ae dm: treewide: Rename 'platdata' variables to just 'plat'
We use 'priv' for private data but often use 'platdata' for platform data.
We can't really use 'pdata' since that is ambiguous (it could mean private
or platform data).

Rename some of the latter variables to end with 'plat' for consistency.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 16:51:08 -07:00

699 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2002 Wolfgang Grandegger, wg@denx.de.
*
* This driver for AMD PCnet network controllers is derived from the
* Linux driver pcnet32.c written 1996-1999 by Thomas Bogendoerfer.
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#include <netdev.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <pci.h>
#include <linux/delay.h>
#define PCNET_DEBUG_LEVEL 0 /* 0=off, 1=init, 2=rx/tx */
#define PCNET_DEBUG1(fmt,args...) \
debug_cond(PCNET_DEBUG_LEVEL > 0, fmt ,##args)
#define PCNET_DEBUG2(fmt,args...) \
debug_cond(PCNET_DEBUG_LEVEL > 1, fmt ,##args)
/*
* Set the number of Tx and Rx buffers, using Log_2(# buffers).
* Reasonable default values are 4 Tx buffers, and 16 Rx buffers.
* That translates to 2 (4 == 2^^2) and 4 (16 == 2^^4).
*/
#define PCNET_LOG_TX_BUFFERS 0
#define PCNET_LOG_RX_BUFFERS 2
#define TX_RING_SIZE (1 << (PCNET_LOG_TX_BUFFERS))
#define TX_RING_LEN_BITS ((PCNET_LOG_TX_BUFFERS) << 12)
#define RX_RING_SIZE (1 << (PCNET_LOG_RX_BUFFERS))
#define RX_RING_LEN_BITS ((PCNET_LOG_RX_BUFFERS) << 4)
#define PKT_BUF_SZ 1544
/* The PCNET Rx and Tx ring descriptors. */
struct pcnet_rx_head {
u32 base;
s16 buf_length;
s16 status;
u32 msg_length;
u32 reserved;
};
struct pcnet_tx_head {
u32 base;
s16 length;
s16 status;
u32 misc;
u32 reserved;
};
/* The PCNET 32-Bit initialization block, described in databook. */
struct pcnet_init_block {
u16 mode;
u16 tlen_rlen;
u8 phys_addr[6];
u16 reserved;
u32 filter[2];
/* Receive and transmit ring base, along with extra bits. */
u32 rx_ring;
u32 tx_ring;
u32 reserved2;
};
struct pcnet_uncached_priv {
struct pcnet_rx_head rx_ring[RX_RING_SIZE];
struct pcnet_tx_head tx_ring[TX_RING_SIZE];
struct pcnet_init_block init_block;
} __aligned(ARCH_DMA_MINALIGN);
struct pcnet_priv {
struct pcnet_uncached_priv ucp;
/* Receive Buffer space */
unsigned char rx_buf[RX_RING_SIZE][PKT_BUF_SZ + 4];
struct pcnet_uncached_priv *uc;
#ifdef CONFIG_DM_ETH
struct udevice *dev;
const char *name;
#else
pci_dev_t dev;
char *name;
#endif
void __iomem *iobase;
u8 *enetaddr;
u16 status;
int cur_rx;
int cur_tx;
};
/* Offsets from base I/O address for WIO mode */
#define PCNET_RDP 0x10
#define PCNET_RAP 0x12
#define PCNET_RESET 0x14
#define PCNET_BDP 0x16
static u16 pcnet_read_csr(struct pcnet_priv *lp, int index)
{
writew(index, lp->iobase + PCNET_RAP);
return readw(lp->iobase + PCNET_RDP);
}
static void pcnet_write_csr(struct pcnet_priv *lp, int index, u16 val)
{
writew(index, lp->iobase + PCNET_RAP);
writew(val, lp->iobase + PCNET_RDP);
}
static u16 pcnet_read_bcr(struct pcnet_priv *lp, int index)
{
writew(index, lp->iobase + PCNET_RAP);
return readw(lp->iobase + PCNET_BDP);
}
static void pcnet_write_bcr(struct pcnet_priv *lp, int index, u16 val)
{
writew(index, lp->iobase + PCNET_RAP);
writew(val, lp->iobase + PCNET_BDP);
}
static void pcnet_reset(struct pcnet_priv *lp)
{
readw(lp->iobase + PCNET_RESET);
}
static int pcnet_check(struct pcnet_priv *lp)
{
writew(88, lp->iobase + PCNET_RAP);
return readw(lp->iobase + PCNET_RAP) == 88;
}
static inline pci_addr_t pcnet_virt_to_mem(struct pcnet_priv *lp, void *addr)
{
void *virt_addr = addr;
#ifdef CONFIG_DM_ETH
return dm_pci_virt_to_mem(lp->dev, virt_addr);
#else
return pci_virt_to_mem(lp->dev, virt_addr);
#endif
}
static struct pci_device_id supported[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE) },
{}
};
static int pcnet_probe_common(struct pcnet_priv *lp)
{
int chip_version;
char *chipname;
int i;
/* Reset the PCnet controller */
pcnet_reset(lp);
/* Check if register access is working */
if (pcnet_read_csr(lp, 0) != 4 || !pcnet_check(lp)) {
printf("%s: CSR register access check failed\n", lp->name);
return -1;
}
/* Identify the chip */
chip_version = pcnet_read_csr(lp, 88) | (pcnet_read_csr(lp, 89) << 16);
if ((chip_version & 0xfff) != 0x003)
return -1;
chip_version = (chip_version >> 12) & 0xffff;
switch (chip_version) {
case 0x2621:
chipname = "PCnet/PCI II 79C970A"; /* PCI */
break;
case 0x2625:
chipname = "PCnet/FAST III 79C973"; /* PCI */
break;
case 0x2627:
chipname = "PCnet/FAST III 79C975"; /* PCI */
break;
default:
printf("%s: PCnet version %#x not supported\n",
lp->name, chip_version);
return -1;
}
PCNET_DEBUG1("AMD %s\n", chipname);
/*
* In most chips, after a chip reset, the ethernet address is read from
* the station address PROM at the base address and programmed into the
* "Physical Address Registers" CSR12-14.
*/
for (i = 0; i < 3; i++) {
unsigned int val;
val = pcnet_read_csr(lp, i + 12) & 0x0ffff;
/* There may be endianness issues here. */
lp->enetaddr[2 * i] = val & 0x0ff;
lp->enetaddr[2 * i + 1] = (val >> 8) & 0x0ff;
}
return 0;
}
static int pcnet_init_common(struct pcnet_priv *lp)
{
struct pcnet_uncached_priv *uc;
int i, val;
unsigned long addr;
PCNET_DEBUG1("%s: %s...\n", lp->name, __func__);
/* Switch pcnet to 32bit mode */
pcnet_write_bcr(lp, 20, 2);
/* Set/reset autoselect bit */
val = pcnet_read_bcr(lp, 2) & ~2;
val |= 2;
pcnet_write_bcr(lp, 2, val);
/* Enable auto negotiate, setup, disable fd */
val = pcnet_read_bcr(lp, 32) & ~0x98;
val |= 0x20;
pcnet_write_bcr(lp, 32, val);
/*
* Enable NOUFLO on supported controllers, with the transmit
* start point set to the full packet. This will cause entire
* packets to be buffered by the ethernet controller before
* transmission, eliminating underflows which are common on
* slower devices. Controllers which do not support NOUFLO will
* simply be left with a larger transmit FIFO threshold.
*/
val = pcnet_read_bcr(lp, 18);
val |= 1 << 11;
pcnet_write_bcr(lp, 18, val);
val = pcnet_read_csr(lp, 80);
val |= 0x3 << 10;
pcnet_write_csr(lp, 80, val);
uc = lp->uc;
uc->init_block.mode = cpu_to_le16(0x0000);
uc->init_block.filter[0] = 0x00000000;
uc->init_block.filter[1] = 0x00000000;
/*
* Initialize the Rx ring.
*/
lp->cur_rx = 0;
for (i = 0; i < RX_RING_SIZE; i++) {
addr = pcnet_virt_to_mem(lp, lp->rx_buf[i]);
uc->rx_ring[i].base = cpu_to_le32(addr);
uc->rx_ring[i].buf_length = cpu_to_le16(-PKT_BUF_SZ);
uc->rx_ring[i].status = cpu_to_le16(0x8000);
PCNET_DEBUG1
("Rx%d: base=0x%x buf_length=0x%hx status=0x%hx\n", i,
uc->rx_ring[i].base, uc->rx_ring[i].buf_length,
uc->rx_ring[i].status);
}
/*
* Initialize the Tx ring. The Tx buffer address is filled in as
* needed, but we do need to clear the upper ownership bit.
*/
lp->cur_tx = 0;
for (i = 0; i < TX_RING_SIZE; i++) {
uc->tx_ring[i].base = 0;
uc->tx_ring[i].status = 0;
}
/*
* Setup Init Block.
*/
PCNET_DEBUG1("Init block at 0x%p: MAC", &lp->uc->init_block);
for (i = 0; i < 6; i++) {
lp->uc->init_block.phys_addr[i] = lp->enetaddr[i];
PCNET_DEBUG1(" %02x", lp->uc->init_block.phys_addr[i]);
}
uc->init_block.tlen_rlen = cpu_to_le16(TX_RING_LEN_BITS |
RX_RING_LEN_BITS);
addr = pcnet_virt_to_mem(lp, uc->rx_ring);
uc->init_block.rx_ring = cpu_to_le32(addr);
addr = pcnet_virt_to_mem(lp, uc->tx_ring);
uc->init_block.tx_ring = cpu_to_le32(addr);
PCNET_DEBUG1("\ntlen_rlen=0x%x rx_ring=0x%x tx_ring=0x%x\n",
uc->init_block.tlen_rlen,
uc->init_block.rx_ring, uc->init_block.tx_ring);
/*
* Tell the controller where the Init Block is located.
*/
barrier();
addr = pcnet_virt_to_mem(lp, &lp->uc->init_block);
pcnet_write_csr(lp, 1, addr & 0xffff);
pcnet_write_csr(lp, 2, (addr >> 16) & 0xffff);
pcnet_write_csr(lp, 4, 0x0915);
pcnet_write_csr(lp, 0, 0x0001); /* start */
/* Wait for Init Done bit */
for (i = 10000; i > 0; i--) {
if (pcnet_read_csr(lp, 0) & 0x0100)
break;
udelay(10);
}
if (i <= 0) {
printf("%s: TIMEOUT: controller init failed\n", lp->name);
pcnet_reset(lp);
return -1;
}
/*
* Finally start network controller operation.
*/
pcnet_write_csr(lp, 0, 0x0002);
return 0;
}
static int pcnet_send_common(struct pcnet_priv *lp, void *packet, int pkt_len)
{
int i, status;
u32 addr;
struct pcnet_tx_head *entry = &lp->uc->tx_ring[lp->cur_tx];
PCNET_DEBUG2("Tx%d: %d bytes from 0x%p ", lp->cur_tx, pkt_len,
packet);
flush_dcache_range((unsigned long)packet,
(unsigned long)packet + pkt_len);
/* Wait for completion by testing the OWN bit */
for (i = 1000; i > 0; i--) {
status = readw(&entry->status);
if ((status & 0x8000) == 0)
break;
udelay(100);
PCNET_DEBUG2(".");
}
if (i <= 0) {
printf("%s: TIMEOUT: Tx%d failed (status = 0x%x)\n",
lp->name, lp->cur_tx, status);
pkt_len = 0;
goto failure;
}
/*
* Setup Tx ring. Caution: the write order is important here,
* set the status with the "ownership" bits last.
*/
addr = pcnet_virt_to_mem(lp, packet);
writew(-pkt_len, &entry->length);
writel(0, &entry->misc);
writel(addr, &entry->base);
writew(0x8300, &entry->status);
/* Trigger an immediate send poll. */
pcnet_write_csr(lp, 0, 0x0008);
failure:
if (++lp->cur_tx >= TX_RING_SIZE)
lp->cur_tx = 0;
PCNET_DEBUG2("done\n");
return pkt_len;
}
static int pcnet_recv_common(struct pcnet_priv *lp, unsigned char **bufp)
{
struct pcnet_rx_head *entry;
unsigned char *buf;
int pkt_len = 0;
u16 err_status;
entry = &lp->uc->rx_ring[lp->cur_rx];
/*
* If we own the next entry, it's a new packet. Send it up.
*/
lp->status = readw(&entry->status);
if ((lp->status & 0x8000) != 0)
return 0;
err_status = lp->status >> 8;
if (err_status != 0x03) { /* There was an error. */
printf("%s: Rx%d", lp->name, lp->cur_rx);
PCNET_DEBUG1(" (status=0x%x)", err_status);
if (err_status & 0x20)
printf(" Frame");
if (err_status & 0x10)
printf(" Overflow");
if (err_status & 0x08)
printf(" CRC");
if (err_status & 0x04)
printf(" Fifo");
printf(" Error\n");
lp->status &= 0x03ff;
return 0;
}
pkt_len = (readl(&entry->msg_length) & 0xfff) - 4;
if (pkt_len < 60) {
printf("%s: Rx%d: invalid packet length %d\n",
lp->name, lp->cur_rx, pkt_len);
return 0;
}
*bufp = lp->rx_buf[lp->cur_rx];
invalidate_dcache_range((unsigned long)*bufp,
(unsigned long)*bufp + pkt_len);
PCNET_DEBUG2("Rx%d: %d bytes from 0x%p\n",
lp->cur_rx, pkt_len, buf);
return pkt_len;
}
static void pcnet_free_pkt_common(struct pcnet_priv *lp, unsigned int len)
{
struct pcnet_rx_head *entry;
entry = &lp->uc->rx_ring[lp->cur_rx];
lp->status |= 0x8000;
writew(lp->status, &entry->status);
if (++lp->cur_rx >= RX_RING_SIZE)
lp->cur_rx = 0;
}
static void pcnet_halt_common(struct pcnet_priv *lp)
{
int i;
PCNET_DEBUG1("%s: %s...\n", lp->name, __func__);
/* Reset the PCnet controller */
pcnet_reset(lp);
/* Wait for Stop bit */
for (i = 1000; i > 0; i--) {
if (pcnet_read_csr(lp, 0) & 0x4)
break;
udelay(10);
}
if (i <= 0)
printf("%s: TIMEOUT: controller reset failed\n", lp->name);
}
#ifndef CONFIG_DM_ETH
static int pcnet_init(struct eth_device *dev, struct bd_info *bis)
{
struct pcnet_priv *lp = dev->priv;
return pcnet_init_common(lp);
}
static int pcnet_send(struct eth_device *dev, void *packet, int pkt_len)
{
struct pcnet_priv *lp = dev->priv;
return pcnet_send_common(lp, packet, pkt_len);
}
static int pcnet_recv(struct eth_device *dev)
{
struct pcnet_priv *lp = dev->priv;
uchar *packet;
int ret;
ret = pcnet_recv_common(lp, &packet);
if (ret > 0)
net_process_received_packet(packet, ret);
if (ret)
pcnet_free_pkt_common(lp, ret);
return ret;
}
static void pcnet_halt(struct eth_device *dev)
{
struct pcnet_priv *lp = dev->priv;
pcnet_halt_common(lp);
}
int pcnet_initialize(struct bd_info *bis)
{
pci_dev_t devbusfn;
struct eth_device *dev;
struct pcnet_priv *lp;
u16 command, status;
int dev_nr = 0;
u32 bar;
PCNET_DEBUG1("\n%s...\n", __func__);
for (dev_nr = 0; ; dev_nr++) {
/*
* Find the PCnet PCI device(s).
*/
devbusfn = pci_find_devices(supported, dev_nr);
if (devbusfn < 0)
break;
/*
* Allocate and pre-fill the device structure.
*/
dev = calloc(1, sizeof(*dev));
if (!dev) {
printf("pcnet: Can not allocate memory\n");
break;
}
/*
* We only maintain one structure because the drivers will
* never be used concurrently. In 32bit mode the RX and TX
* ring entries must be aligned on 16-byte boundaries.
*/
lp = malloc_cache_aligned(sizeof(*lp));
lp->uc = map_physmem((phys_addr_t)&lp->ucp,
sizeof(lp->ucp), MAP_NOCACHE);
lp->dev = devbusfn;
flush_dcache_range((unsigned long)lp,
(unsigned long)lp + sizeof(*lp));
dev->priv = lp;
sprintf(dev->name, "pcnet#%d", dev_nr);
lp->name = dev->name;
lp->enetaddr = dev->enetaddr;
/*
* Setup the PCI device.
*/
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &bar);
lp->iobase = (void *)(pci_mem_to_phys(devbusfn, bar) & ~0xf);
PCNET_DEBUG1("%s: devbusfn=0x%x iobase=0x%p: ",
lp->name, devbusfn, lp->iobase);
command = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
pci_write_config_word(devbusfn, PCI_COMMAND, command);
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
if ((status & command) != command) {
printf("%s: Couldn't enable IO access or Bus Mastering\n",
lp->name);
free(dev);
continue;
}
pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x40);
/*
* Probe the PCnet chip.
*/
if (pcnet_probe_common(lp) < 0) {
free(dev);
continue;
}
/*
* Setup device structure and register the driver.
*/
dev->init = pcnet_init;
dev->halt = pcnet_halt;
dev->send = pcnet_send;
dev->recv = pcnet_recv;
eth_register(dev);
}
udelay(10 * 1000);
return dev_nr;
}
#else /* DM_ETH */
static int pcnet_start(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct pcnet_priv *priv = dev_get_priv(dev);
memcpy(priv->enetaddr, plat->enetaddr, sizeof(plat->enetaddr));
return pcnet_init_common(priv);
}
static void pcnet_stop(struct udevice *dev)
{
struct pcnet_priv *priv = dev_get_priv(dev);
pcnet_halt_common(priv);
}
static int pcnet_send(struct udevice *dev, void *packet, int length)
{
struct pcnet_priv *priv = dev_get_priv(dev);
int ret;
ret = pcnet_send_common(priv, packet, length);
return ret ? 0 : -ETIMEDOUT;
}
static int pcnet_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct pcnet_priv *priv = dev_get_priv(dev);
return pcnet_recv_common(priv, packetp);
}
static int pcnet_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct pcnet_priv *priv = dev_get_priv(dev);
pcnet_free_pkt_common(priv, length);
return 0;
}
static int pcnet_bind(struct udevice *dev)
{
static int card_number;
char name[16];
sprintf(name, "pcnet#%u", card_number++);
return device_set_name(dev, name);
}
static int pcnet_probe(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct pcnet_priv *lp = dev_get_priv(dev);
u16 command, status;
u32 iobase;
int ret;
dm_pci_read_config32(dev, PCI_BASE_ADDRESS_1, &iobase);
iobase &= ~0xf;
lp->uc = map_physmem((phys_addr_t)&lp->ucp,
sizeof(lp->ucp), MAP_NOCACHE);
lp->dev = dev;
lp->name = dev->name;
lp->enetaddr = plat->enetaddr;
lp->iobase = (void *)dm_pci_mem_to_phys(dev, iobase);
flush_dcache_range((unsigned long)lp,
(unsigned long)lp + sizeof(*lp));
command = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
dm_pci_write_config16(dev, PCI_COMMAND, command);
dm_pci_read_config16(dev, PCI_COMMAND, &status);
if ((status & command) != command) {
printf("%s: Couldn't enable IO access or Bus Mastering\n",
lp->name);
return -EINVAL;
}
dm_pci_write_config8(dev, PCI_LATENCY_TIMER, 0x20);
ret = pcnet_probe_common(lp);
if (ret)
return ret;
return 0;
}
static const struct eth_ops pcnet_ops = {
.start = pcnet_start,
.send = pcnet_send,
.recv = pcnet_recv,
.stop = pcnet_stop,
.free_pkt = pcnet_free_pkt,
};
U_BOOT_DRIVER(eth_pcnet) = {
.name = "eth_pcnet",
.id = UCLASS_ETH,
.bind = pcnet_bind,
.probe = pcnet_probe,
.ops = &pcnet_ops,
.priv_auto = sizeof(struct pcnet_priv),
.plat_auto = sizeof(struct eth_pdata),
.flags = DM_UC_FLAG_ALLOC_PRIV_DMA,
};
U_BOOT_PCI_DEVICE(eth_pcnet, supported);
#endif