mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-31 10:26:10 +01:00 
			
		
		
		
	Move this uncommon header out of the common header. Signed-off-by: Simon Glass <sjg@chromium.org>
		
			
				
	
	
		
			1767 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1767 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (c) International Business Machines Corp., 2006
 | |
|  *
 | |
|  * Author: Artem Bityutskiy (Битюцкий Артём)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * UBI attaching sub-system.
 | |
|  *
 | |
|  * This sub-system is responsible for attaching MTD devices and it also
 | |
|  * implements flash media scanning.
 | |
|  *
 | |
|  * The attaching information is represented by a &struct ubi_attach_info'
 | |
|  * object. Information about volumes is represented by &struct ubi_ainf_volume
 | |
|  * objects which are kept in volume RB-tree with root at the @volumes field.
 | |
|  * The RB-tree is indexed by the volume ID.
 | |
|  *
 | |
|  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
 | |
|  * objects are kept in per-volume RB-trees with the root at the corresponding
 | |
|  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
 | |
|  * per-volume objects and each of these objects is the root of RB-tree of
 | |
|  * per-LEB objects.
 | |
|  *
 | |
|  * Corrupted physical eraseblocks are put to the @corr list, free physical
 | |
|  * eraseblocks are put to the @free list and the physical eraseblock to be
 | |
|  * erased are put to the @erase list.
 | |
|  *
 | |
|  * About corruptions
 | |
|  * ~~~~~~~~~~~~~~~~~
 | |
|  *
 | |
|  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
 | |
|  * whether the headers are corrupted or not. Sometimes UBI also protects the
 | |
|  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
 | |
|  * when it moves the contents of a PEB for wear-leveling purposes.
 | |
|  *
 | |
|  * UBI tries to distinguish between 2 types of corruptions.
 | |
|  *
 | |
|  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
 | |
|  * tries to handle them gracefully, without printing too many warnings and
 | |
|  * error messages. The idea is that we do not lose important data in these
 | |
|  * cases - we may lose only the data which were being written to the media just
 | |
|  * before the power cut happened, and the upper layers (e.g., UBIFS) are
 | |
|  * supposed to handle such data losses (e.g., by using the FS journal).
 | |
|  *
 | |
|  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
 | |
|  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
 | |
|  * PEBs in the @erase list are scheduled for erasure later.
 | |
|  *
 | |
|  * 2. Unexpected corruptions which are not caused by power cuts. During
 | |
|  * attaching, such PEBs are put to the @corr list and UBI preserves them.
 | |
|  * Obviously, this lessens the amount of available PEBs, and if at some  point
 | |
|  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
 | |
|  * about such PEBs every time the MTD device is attached.
 | |
|  *
 | |
|  * However, it is difficult to reliably distinguish between these types of
 | |
|  * corruptions and UBI's strategy is as follows (in case of attaching by
 | |
|  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
 | |
|  * the data area does not contain all 0xFFs, and there were no bit-flips or
 | |
|  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
 | |
|  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
 | |
|  * are as follows.
 | |
|  *   o If the data area contains only 0xFFs, there are no data, and it is safe
 | |
|  *     to just erase this PEB - this is corruption type 1.
 | |
|  *   o If the data area has bit-flips or data integrity errors (ECC errors on
 | |
|  *     NAND), it is probably a PEB which was being erased when power cut
 | |
|  *     happened, so this is corruption type 1. However, this is just a guess,
 | |
|  *     which might be wrong.
 | |
|  *   o Otherwise this is corruption type 2.
 | |
|  */
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <log.h>
 | |
| #include <dm/devres.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/random.h>
 | |
| #include <u-boot/crc.h>
 | |
| #else
 | |
| #include <div64.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/err.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/math64.h>
 | |
| 
 | |
| #include <ubi_uboot.h>
 | |
| #include "ubi.h"
 | |
| 
 | |
| static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
 | |
| 
 | |
| /* Temporary variables used during scanning */
 | |
| static struct ubi_ec_hdr *ech;
 | |
| static struct ubi_vid_hdr *vidh;
 | |
| 
 | |
| /**
 | |
|  * add_to_list - add physical eraseblock to a list.
 | |
|  * @ai: attaching information
 | |
|  * @pnum: physical eraseblock number to add
 | |
|  * @vol_id: the last used volume id for the PEB
 | |
|  * @lnum: the last used LEB number for the PEB
 | |
|  * @ec: erase counter of the physical eraseblock
 | |
|  * @to_head: if not zero, add to the head of the list
 | |
|  * @list: the list to add to
 | |
|  *
 | |
|  * This function allocates a 'struct ubi_ainf_peb' object for physical
 | |
|  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 | |
|  * It stores the @lnum and @vol_id alongside, which can both be
 | |
|  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 | |
|  * If @to_head is not zero, PEB will be added to the head of the list, which
 | |
|  * basically means it will be processed first later. E.g., we add corrupted
 | |
|  * PEBs (corrupted due to power cuts) to the head of the erase list to make
 | |
|  * sure we erase them first and get rid of corruptions ASAP. This function
 | |
|  * returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 | |
| 		       int lnum, int ec, int to_head, struct list_head *list)
 | |
| {
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 
 | |
| 	if (list == &ai->free) {
 | |
| 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 | |
| 	} else if (list == &ai->erase) {
 | |
| 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 | |
| 	} else if (list == &ai->alien) {
 | |
| 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 | |
| 		ai->alien_peb_count += 1;
 | |
| 	} else
 | |
| 		BUG();
 | |
| 
 | |
| 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 | |
| 	if (!aeb)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	aeb->pnum = pnum;
 | |
| 	aeb->vol_id = vol_id;
 | |
| 	aeb->lnum = lnum;
 | |
| 	aeb->ec = ec;
 | |
| 	if (to_head)
 | |
| 		list_add(&aeb->u.list, list);
 | |
| 	else
 | |
| 		list_add_tail(&aeb->u.list, list);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_corrupted - add a corrupted physical eraseblock.
 | |
|  * @ai: attaching information
 | |
|  * @pnum: physical eraseblock number to add
 | |
|  * @ec: erase counter of the physical eraseblock
 | |
|  *
 | |
|  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 | |
|  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 | |
|  * was presumably not caused by a power cut. Returns zero in case of success
 | |
|  * and a negative error code in case of failure.
 | |
|  */
 | |
| static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 | |
| {
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 
 | |
| 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 | |
| 
 | |
| 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 | |
| 	if (!aeb)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ai->corr_peb_count += 1;
 | |
| 	aeb->pnum = pnum;
 | |
| 	aeb->ec = ec;
 | |
| 	list_add(&aeb->u.list, &ai->corr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * validate_vid_hdr - check volume identifier header.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vid_hdr: the volume identifier header to check
 | |
|  * @av: information about the volume this logical eraseblock belongs to
 | |
|  * @pnum: physical eraseblock number the VID header came from
 | |
|  *
 | |
|  * This function checks that data stored in @vid_hdr is consistent. Returns
 | |
|  * non-zero if an inconsistency was found and zero if not.
 | |
|  *
 | |
|  * Note, UBI does sanity check of everything it reads from the flash media.
 | |
|  * Most of the checks are done in the I/O sub-system. Here we check that the
 | |
|  * information in the VID header is consistent to the information in other VID
 | |
|  * headers of the same volume.
 | |
|  */
 | |
| static int validate_vid_hdr(const struct ubi_device *ubi,
 | |
| 			    const struct ubi_vid_hdr *vid_hdr,
 | |
| 			    const struct ubi_ainf_volume *av, int pnum)
 | |
| {
 | |
| 	int vol_type = vid_hdr->vol_type;
 | |
| 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 | |
| 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 | |
| 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 | |
| 
 | |
| 	if (av->leb_count != 0) {
 | |
| 		int av_vol_type;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is not the first logical eraseblock belonging to this
 | |
| 		 * volume. Ensure that the data in its VID header is consistent
 | |
| 		 * to the data in previous logical eraseblock headers.
 | |
| 		 */
 | |
| 
 | |
| 		if (vol_id != av->vol_id) {
 | |
| 			ubi_err(ubi, "inconsistent vol_id");
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (av->vol_type == UBI_STATIC_VOLUME)
 | |
| 			av_vol_type = UBI_VID_STATIC;
 | |
| 		else
 | |
| 			av_vol_type = UBI_VID_DYNAMIC;
 | |
| 
 | |
| 		if (vol_type != av_vol_type) {
 | |
| 			ubi_err(ubi, "inconsistent vol_type");
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (used_ebs != av->used_ebs) {
 | |
| 			ubi_err(ubi, "inconsistent used_ebs");
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (data_pad != av->data_pad) {
 | |
| 			ubi_err(ubi, "inconsistent data_pad");
 | |
| 			goto bad;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bad:
 | |
| 	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 | |
| 	ubi_dump_vid_hdr(vid_hdr);
 | |
| 	ubi_dump_av(av);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_volume - add volume to the attaching information.
 | |
|  * @ai: attaching information
 | |
|  * @vol_id: ID of the volume to add
 | |
|  * @pnum: physical eraseblock number
 | |
|  * @vid_hdr: volume identifier header
 | |
|  *
 | |
|  * If the volume corresponding to the @vid_hdr logical eraseblock is already
 | |
|  * present in the attaching information, this function does nothing. Otherwise
 | |
|  * it adds corresponding volume to the attaching information. Returns a pointer
 | |
|  * to the allocated "av" object in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 | |
| 					  int vol_id, int pnum,
 | |
| 					  const struct ubi_vid_hdr *vid_hdr)
 | |
| {
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 | |
| 
 | |
| 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 | |
| 
 | |
| 	/* Walk the volume RB-tree to look if this volume is already present */
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
 | |
| 
 | |
| 		if (vol_id == av->vol_id)
 | |
| 			return av;
 | |
| 
 | |
| 		if (vol_id > av->vol_id)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	/* The volume is absent - add it */
 | |
| 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 | |
| 	if (!av)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	av->highest_lnum = av->leb_count = 0;
 | |
| 	av->vol_id = vol_id;
 | |
| 	av->root = RB_ROOT;
 | |
| 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 | |
| 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 | |
| 	av->compat = vid_hdr->compat;
 | |
| 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 | |
| 							    : UBI_STATIC_VOLUME;
 | |
| 	if (vol_id > ai->highest_vol_id)
 | |
| 		ai->highest_vol_id = vol_id;
 | |
| 
 | |
| 	rb_link_node(&av->rb, parent, p);
 | |
| 	rb_insert_color(&av->rb, &ai->volumes);
 | |
| 	ai->vols_found += 1;
 | |
| 	dbg_bld("added volume %d", vol_id);
 | |
| 	return av;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_compare_lebs - find out which logical eraseblock is newer.
 | |
|  * @ubi: UBI device description object
 | |
|  * @aeb: first logical eraseblock to compare
 | |
|  * @pnum: physical eraseblock number of the second logical eraseblock to
 | |
|  * compare
 | |
|  * @vid_hdr: volume identifier header of the second logical eraseblock
 | |
|  *
 | |
|  * This function compares 2 copies of a LEB and informs which one is newer. In
 | |
|  * case of success this function returns a positive value, in case of failure, a
 | |
|  * negative error code is returned. The success return codes use the following
 | |
|  * bits:
 | |
|  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 | |
|  *       second PEB (described by @pnum and @vid_hdr);
 | |
|  *     o bit 0 is set: the second PEB is newer;
 | |
|  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 | |
|  *     o bit 1 is set: bit-flips were detected in the newer LEB;
 | |
|  *     o bit 2 is cleared: the older LEB is not corrupted;
 | |
|  *     o bit 2 is set: the older LEB is corrupted.
 | |
|  */
 | |
| int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 | |
| 			int pnum, const struct ubi_vid_hdr *vid_hdr)
 | |
| {
 | |
| 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 | |
| 	uint32_t data_crc, crc;
 | |
| 	struct ubi_vid_hdr *vh = NULL;
 | |
| 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 | |
| 
 | |
| 	if (sqnum2 == aeb->sqnum) {
 | |
| 		/*
 | |
| 		 * This must be a really ancient UBI image which has been
 | |
| 		 * created before sequence numbers support has been added. At
 | |
| 		 * that times we used 32-bit LEB versions stored in logical
 | |
| 		 * eraseblocks. That was before UBI got into mainline. We do not
 | |
| 		 * support these images anymore. Well, those images still work,
 | |
| 		 * but only if no unclean reboots happened.
 | |
| 		 */
 | |
| 		ubi_err(ubi, "unsupported on-flash UBI format");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Obviously the LEB with lower sequence counter is older */
 | |
| 	second_is_newer = (sqnum2 > aeb->sqnum);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we know which copy is newer. If the copy flag of the PEB with
 | |
| 	 * newer version is not set, then we just return, otherwise we have to
 | |
| 	 * check data CRC. For the second PEB we already have the VID header,
 | |
| 	 * for the first one - we'll need to re-read it from flash.
 | |
| 	 *
 | |
| 	 * Note: this may be optimized so that we wouldn't read twice.
 | |
| 	 */
 | |
| 
 | |
| 	if (second_is_newer) {
 | |
| 		if (!vid_hdr->copy_flag) {
 | |
| 			/* It is not a copy, so it is newer */
 | |
| 			dbg_bld("second PEB %d is newer, copy_flag is unset",
 | |
| 				pnum);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!aeb->copy_flag) {
 | |
| 			/* It is not a copy, so it is newer */
 | |
| 			dbg_bld("first PEB %d is newer, copy_flag is unset",
 | |
| 				pnum);
 | |
| 			return bitflips << 1;
 | |
| 		}
 | |
| 
 | |
| 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 | |
| 		if (!vh)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pnum = aeb->pnum;
 | |
| 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 | |
| 		if (err) {
 | |
| 			if (err == UBI_IO_BITFLIPS)
 | |
| 				bitflips = 1;
 | |
| 			else {
 | |
| 				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 | |
| 					pnum, err);
 | |
| 				if (err > 0)
 | |
| 					err = -EIO;
 | |
| 
 | |
| 				goto out_free_vidh;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		vid_hdr = vh;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the data of the copy and check the CRC */
 | |
| 
 | |
| 	len = be32_to_cpu(vid_hdr->data_size);
 | |
| 
 | |
| 	mutex_lock(&ubi->buf_mutex);
 | |
| 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 | |
| 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	data_crc = be32_to_cpu(vid_hdr->data_crc);
 | |
| 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 | |
| 	if (crc != data_crc) {
 | |
| 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 | |
| 			pnum, crc, data_crc);
 | |
| 		corrupted = 1;
 | |
| 		bitflips = 0;
 | |
| 		second_is_newer = !second_is_newer;
 | |
| 	} else {
 | |
| 		dbg_bld("PEB %d CRC is OK", pnum);
 | |
| 		bitflips |= !!err;
 | |
| 	}
 | |
| 	mutex_unlock(&ubi->buf_mutex);
 | |
| 
 | |
| 	ubi_free_vid_hdr(ubi, vh);
 | |
| 
 | |
| 	if (second_is_newer)
 | |
| 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 | |
| 	else
 | |
| 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 | |
| 
 | |
| 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&ubi->buf_mutex);
 | |
| out_free_vidh:
 | |
| 	ubi_free_vid_hdr(ubi, vh);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_add_to_av - add used physical eraseblock to the attaching information.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  * @pnum: the physical eraseblock number
 | |
|  * @ec: erase counter
 | |
|  * @vid_hdr: the volume identifier header
 | |
|  * @bitflips: if bit-flips were detected when this physical eraseblock was read
 | |
|  *
 | |
|  * This function adds information about a used physical eraseblock to the
 | |
|  * 'used' tree of the corresponding volume. The function is rather complex
 | |
|  * because it has to handle cases when this is not the first physical
 | |
|  * eraseblock belonging to the same logical eraseblock, and the newer one has
 | |
|  * to be picked, while the older one has to be dropped. This function returns
 | |
|  * zero in case of success and a negative error code in case of failure.
 | |
|  */
 | |
| int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 | |
| 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 | |
| {
 | |
| 	int err, vol_id, lnum;
 | |
| 	unsigned long long sqnum;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 
 | |
| 	vol_id = be32_to_cpu(vid_hdr->vol_id);
 | |
| 	lnum = be32_to_cpu(vid_hdr->lnum);
 | |
| 	sqnum = be64_to_cpu(vid_hdr->sqnum);
 | |
| 
 | |
| 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 | |
| 		pnum, vol_id, lnum, ec, sqnum, bitflips);
 | |
| 
 | |
| 	av = add_volume(ai, vol_id, pnum, vid_hdr);
 | |
| 	if (IS_ERR(av))
 | |
| 		return PTR_ERR(av);
 | |
| 
 | |
| 	if (ai->max_sqnum < sqnum)
 | |
| 		ai->max_sqnum = sqnum;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 | |
| 	 * if this is the first instance of this logical eraseblock or not.
 | |
| 	 */
 | |
| 	p = &av->root.rb_node;
 | |
| 	while (*p) {
 | |
| 		int cmp_res;
 | |
| 
 | |
| 		parent = *p;
 | |
| 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 | |
| 		if (lnum != aeb->lnum) {
 | |
| 			if (lnum < aeb->lnum)
 | |
| 				p = &(*p)->rb_left;
 | |
| 			else
 | |
| 				p = &(*p)->rb_right;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * There is already a physical eraseblock describing the same
 | |
| 		 * logical eraseblock present.
 | |
| 		 */
 | |
| 
 | |
| 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 | |
| 			aeb->pnum, aeb->sqnum, aeb->ec);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that the logical eraseblocks have different
 | |
| 		 * sequence numbers. Otherwise the image is bad.
 | |
| 		 *
 | |
| 		 * However, if the sequence number is zero, we assume it must
 | |
| 		 * be an ancient UBI image from the era when UBI did not have
 | |
| 		 * sequence numbers. We still can attach these images, unless
 | |
| 		 * there is a need to distinguish between old and new
 | |
| 		 * eraseblocks, in which case we'll refuse the image in
 | |
| 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
 | |
| 		 * images, but refuse attaching old images with duplicated
 | |
| 		 * logical eraseblocks because there was an unclean reboot.
 | |
| 		 */
 | |
| 		if (aeb->sqnum == sqnum && sqnum != 0) {
 | |
| 			ubi_err(ubi, "two LEBs with same sequence number %llu",
 | |
| 				sqnum);
 | |
| 			ubi_dump_aeb(aeb, 0);
 | |
| 			ubi_dump_vid_hdr(vid_hdr);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we have to drop the older one and preserve the newer
 | |
| 		 * one.
 | |
| 		 */
 | |
| 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 | |
| 		if (cmp_res < 0)
 | |
| 			return cmp_res;
 | |
| 
 | |
| 		if (cmp_res & 1) {
 | |
| 			/*
 | |
| 			 * This logical eraseblock is newer than the one
 | |
| 			 * found earlier.
 | |
| 			 */
 | |
| 			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 | |
| 					  aeb->lnum, aeb->ec, cmp_res & 4,
 | |
| 					  &ai->erase);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			aeb->ec = ec;
 | |
| 			aeb->pnum = pnum;
 | |
| 			aeb->vol_id = vol_id;
 | |
| 			aeb->lnum = lnum;
 | |
| 			aeb->scrub = ((cmp_res & 2) || bitflips);
 | |
| 			aeb->copy_flag = vid_hdr->copy_flag;
 | |
| 			aeb->sqnum = sqnum;
 | |
| 
 | |
| 			if (av->highest_lnum == lnum)
 | |
| 				av->last_data_size =
 | |
| 					be32_to_cpu(vid_hdr->data_size);
 | |
| 
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * This logical eraseblock is older than the one found
 | |
| 			 * previously.
 | |
| 			 */
 | |
| 			return add_to_list(ai, pnum, vol_id, lnum, ec,
 | |
| 					   cmp_res & 4, &ai->erase);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We've met this logical eraseblock for the first time, add it to the
 | |
| 	 * attaching information.
 | |
| 	 */
 | |
| 
 | |
| 	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 | |
| 	if (!aeb)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	aeb->ec = ec;
 | |
| 	aeb->pnum = pnum;
 | |
| 	aeb->vol_id = vol_id;
 | |
| 	aeb->lnum = lnum;
 | |
| 	aeb->scrub = bitflips;
 | |
| 	aeb->copy_flag = vid_hdr->copy_flag;
 | |
| 	aeb->sqnum = sqnum;
 | |
| 
 | |
| 	if (av->highest_lnum <= lnum) {
 | |
| 		av->highest_lnum = lnum;
 | |
| 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 | |
| 	}
 | |
| 
 | |
| 	av->leb_count += 1;
 | |
| 	rb_link_node(&aeb->u.rb, parent, p);
 | |
| 	rb_insert_color(&aeb->u.rb, &av->root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_find_av - find volume in the attaching information.
 | |
|  * @ai: attaching information
 | |
|  * @vol_id: the requested volume ID
 | |
|  *
 | |
|  * This function returns a pointer to the volume description or %NULL if there
 | |
|  * are no data about this volume in the attaching information.
 | |
|  */
 | |
| struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 | |
| 				    int vol_id)
 | |
| {
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct rb_node *p = ai->volumes.rb_node;
 | |
| 
 | |
| 	while (p) {
 | |
| 		av = rb_entry(p, struct ubi_ainf_volume, rb);
 | |
| 
 | |
| 		if (vol_id == av->vol_id)
 | |
| 			return av;
 | |
| 
 | |
| 		if (vol_id > av->vol_id)
 | |
| 			p = p->rb_left;
 | |
| 		else
 | |
| 			p = p->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_remove_av - delete attaching information about a volume.
 | |
|  * @ai: attaching information
 | |
|  * @av: the volume attaching information to delete
 | |
|  */
 | |
| void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 | |
| {
 | |
| 	struct rb_node *rb;
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 
 | |
| 	dbg_bld("remove attaching information about volume %d", av->vol_id);
 | |
| 
 | |
| 	while ((rb = rb_first(&av->root))) {
 | |
| 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 | |
| 		rb_erase(&aeb->u.rb, &av->root);
 | |
| 		list_add_tail(&aeb->u.list, &ai->erase);
 | |
| 	}
 | |
| 
 | |
| 	rb_erase(&av->rb, &ai->volumes);
 | |
| 	kfree(av);
 | |
| 	ai->vols_found -= 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * early_erase_peb - erase a physical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  * @pnum: physical eraseblock number to erase;
 | |
|  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 | |
|  *
 | |
|  * This function erases physical eraseblock 'pnum', and writes the erase
 | |
|  * counter header to it. This function should only be used on UBI device
 | |
|  * initialization stages, when the EBA sub-system had not been yet initialized.
 | |
|  * This function returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| static int early_erase_peb(struct ubi_device *ubi,
 | |
| 			   const struct ubi_attach_info *ai, int pnum, int ec)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubi_ec_hdr *ec_hdr;
 | |
| 
 | |
| 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 | |
| 		/*
 | |
| 		 * Erase counter overflow. Upgrade UBI and use 64-bit
 | |
| 		 * erase counters internally.
 | |
| 		 */
 | |
| 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 | |
| 			pnum, ec);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 | |
| 	if (!ec_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ec_hdr->ec = cpu_to_be64(ec);
 | |
| 
 | |
| 	err = ubi_io_sync_erase(ubi, pnum, 0);
 | |
| 	if (err < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 | |
| 
 | |
| out_free:
 | |
| 	kfree(ec_hdr);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_early_get_peb - get a free physical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * This function returns a free physical eraseblock. It is supposed to be
 | |
|  * called on the UBI initialization stages when the wear-leveling sub-system is
 | |
|  * not initialized yet. This function picks a physical eraseblocks from one of
 | |
|  * the lists, writes the EC header if it is needed, and removes it from the
 | |
|  * list.
 | |
|  *
 | |
|  * This function returns a pointer to the "aeb" of the found free PEB in case
 | |
|  * of success and an error code in case of failure.
 | |
|  */
 | |
| struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 | |
| 				       struct ubi_attach_info *ai)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct ubi_ainf_peb *aeb, *tmp_aeb;
 | |
| 
 | |
| 	if (!list_empty(&ai->free)) {
 | |
| 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 | |
| 		list_del(&aeb->u.list);
 | |
| 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 | |
| 		return aeb;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We try to erase the first physical eraseblock from the erase list
 | |
| 	 * and pick it if we succeed, or try to erase the next one if not. And
 | |
| 	 * so forth. We don't want to take care about bad eraseblocks here -
 | |
| 	 * they'll be handled later.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 | |
| 		if (aeb->ec == UBI_UNKNOWN)
 | |
| 			aeb->ec = ai->mean_ec;
 | |
| 
 | |
| 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 | |
| 		if (err)
 | |
| 			continue;
 | |
| 
 | |
| 		aeb->ec += 1;
 | |
| 		list_del(&aeb->u.list);
 | |
| 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 | |
| 		return aeb;
 | |
| 	}
 | |
| 
 | |
| 	ubi_err(ubi, "no free eraseblocks");
 | |
| 	return ERR_PTR(-ENOSPC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_corruption - check the data area of PEB.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vid_hdr: the (corrupted) VID header of this PEB
 | |
|  * @pnum: the physical eraseblock number to check
 | |
|  *
 | |
|  * This is a helper function which is used to distinguish between VID header
 | |
|  * corruptions caused by power cuts and other reasons. If the PEB contains only
 | |
|  * 0xFF bytes in the data area, the VID header is most probably corrupted
 | |
|  * because of a power cut (%0 is returned in this case). Otherwise, it was
 | |
|  * probably corrupted for some other reasons (%1 is returned in this case). A
 | |
|  * negative error code is returned if a read error occurred.
 | |
|  *
 | |
|  * If the corruption reason was a power cut, UBI can safely erase this PEB.
 | |
|  * Otherwise, it should preserve it to avoid possibly destroying important
 | |
|  * information.
 | |
|  */
 | |
| static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 | |
| 			    int pnum)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&ubi->buf_mutex);
 | |
| 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
 | |
| 
 | |
| 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 | |
| 			  ubi->leb_size);
 | |
| 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 | |
| 		/*
 | |
| 		 * Bit-flips or integrity errors while reading the data area.
 | |
| 		 * It is difficult to say for sure what type of corruption is
 | |
| 		 * this, but presumably a power cut happened while this PEB was
 | |
| 		 * erased, so it became unstable and corrupted, and should be
 | |
| 		 * erased.
 | |
| 		 */
 | |
| 		err = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 | |
| 		pnum);
 | |
| 	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 | |
| 	ubi_dump_vid_hdr(vid_hdr);
 | |
| 	pr_err("hexdump of PEB %d offset %d, length %d",
 | |
| 	       pnum, ubi->leb_start, ubi->leb_size);
 | |
| 	ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
 | |
| 			       ubi->peb_buf, ubi->leb_size, 1);
 | |
| 	err = 1;
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&ubi->buf_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_peb - scan and process UBI headers of a PEB.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  * @pnum: the physical eraseblock number
 | |
|  * @vid: The volume ID of the found volume will be stored in this pointer
 | |
|  * @sqnum: The sqnum of the found volume will be stored in this pointer
 | |
|  *
 | |
|  * This function reads UBI headers of PEB @pnum, checks them, and adds
 | |
|  * information about this PEB to the corresponding list or RB-tree in the
 | |
|  * "attaching info" structure. Returns zero if the physical eraseblock was
 | |
|  * successfully handled and a negative error code in case of failure.
 | |
|  */
 | |
| static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 | |
| 		    int pnum, int *vid, unsigned long long *sqnum)
 | |
| {
 | |
| 	long long uninitialized_var(ec);
 | |
| 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
 | |
| 
 | |
| 	dbg_bld("scan PEB %d", pnum);
 | |
| 
 | |
| 	/* Skip bad physical eraseblocks */
 | |
| 	err = ubi_io_is_bad(ubi, pnum);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	else if (err) {
 | |
| 		ai->bad_peb_count += 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	switch (err) {
 | |
| 	case 0:
 | |
| 		break;
 | |
| 	case UBI_IO_BITFLIPS:
 | |
| 		bitflips = 1;
 | |
| 		break;
 | |
| 	case UBI_IO_FF:
 | |
| 		ai->empty_peb_count += 1;
 | |
| 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 | |
| 				   UBI_UNKNOWN, 0, &ai->erase);
 | |
| 	case UBI_IO_FF_BITFLIPS:
 | |
| 		ai->empty_peb_count += 1;
 | |
| 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 | |
| 				   UBI_UNKNOWN, 1, &ai->erase);
 | |
| 	case UBI_IO_BAD_HDR_EBADMSG:
 | |
| 	case UBI_IO_BAD_HDR:
 | |
| 		/*
 | |
| 		 * We have to also look at the VID header, possibly it is not
 | |
| 		 * corrupted. Set %bitflips flag in order to make this PEB be
 | |
| 		 * moved and EC be re-created.
 | |
| 		 */
 | |
| 		ec_err = err;
 | |
| 		ec = UBI_UNKNOWN;
 | |
| 		bitflips = 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 | |
| 			err);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!ec_err) {
 | |
| 		int image_seq;
 | |
| 
 | |
| 		/* Make sure UBI version is OK */
 | |
| 		if (ech->version != UBI_VERSION) {
 | |
| 			ubi_err(ubi, "this UBI version is %d, image version is %d",
 | |
| 				UBI_VERSION, (int)ech->version);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		ec = be64_to_cpu(ech->ec);
 | |
| 		if (ec > UBI_MAX_ERASECOUNTER) {
 | |
| 			/*
 | |
| 			 * Erase counter overflow. The EC headers have 64 bits
 | |
| 			 * reserved, but we anyway make use of only 31 bit
 | |
| 			 * values, as this seems to be enough for any existing
 | |
| 			 * flash. Upgrade UBI and use 64-bit erase counters
 | |
| 			 * internally.
 | |
| 			 */
 | |
| 			ubi_err(ubi, "erase counter overflow, max is %d",
 | |
| 				UBI_MAX_ERASECOUNTER);
 | |
| 			ubi_dump_ec_hdr(ech);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that all PEBs have the same image sequence number.
 | |
| 		 * This allows us to detect situations when users flash UBI
 | |
| 		 * images incorrectly, so that the flash has the new UBI image
 | |
| 		 * and leftovers from the old one. This feature was added
 | |
| 		 * relatively recently, and the sequence number was always
 | |
| 		 * zero, because old UBI implementations always set it to zero.
 | |
| 		 * For this reasons, we do not panic if some PEBs have zero
 | |
| 		 * sequence number, while other PEBs have non-zero sequence
 | |
| 		 * number.
 | |
| 		 */
 | |
| 		image_seq = be32_to_cpu(ech->image_seq);
 | |
| 		if (!ubi->image_seq)
 | |
| 			ubi->image_seq = image_seq;
 | |
| 		if (image_seq && ubi->image_seq != image_seq) {
 | |
| 			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
 | |
| 				image_seq, pnum, ubi->image_seq);
 | |
| 			ubi_dump_ec_hdr(ech);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* OK, we've done with the EC header, let's look at the VID header */
 | |
| 
 | |
| 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	switch (err) {
 | |
| 	case 0:
 | |
| 		break;
 | |
| 	case UBI_IO_BITFLIPS:
 | |
| 		bitflips = 1;
 | |
| 		break;
 | |
| 	case UBI_IO_BAD_HDR_EBADMSG:
 | |
| 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 | |
| 			/*
 | |
| 			 * Both EC and VID headers are corrupted and were read
 | |
| 			 * with data integrity error, probably this is a bad
 | |
| 			 * PEB, bit it is not marked as bad yet. This may also
 | |
| 			 * be a result of power cut during erasure.
 | |
| 			 */
 | |
| 			ai->maybe_bad_peb_count += 1;
 | |
| 	case UBI_IO_BAD_HDR:
 | |
| 		if (ec_err)
 | |
| 			/*
 | |
| 			 * Both headers are corrupted. There is a possibility
 | |
| 			 * that this a valid UBI PEB which has corresponding
 | |
| 			 * LEB, but the headers are corrupted. However, it is
 | |
| 			 * impossible to distinguish it from a PEB which just
 | |
| 			 * contains garbage because of a power cut during erase
 | |
| 			 * operation. So we just schedule this PEB for erasure.
 | |
| 			 *
 | |
| 			 * Besides, in case of NOR flash, we deliberately
 | |
| 			 * corrupt both headers because NOR flash erasure is
 | |
| 			 * slow and can start from the end.
 | |
| 			 */
 | |
| 			err = 0;
 | |
| 		else
 | |
| 			/*
 | |
| 			 * The EC was OK, but the VID header is corrupted. We
 | |
| 			 * have to check what is in the data area.
 | |
| 			 */
 | |
| 			err = check_corruption(ubi, vidh, pnum);
 | |
| 
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 		else if (!err)
 | |
| 			/* This corruption is caused by a power cut */
 | |
| 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 | |
| 					  UBI_UNKNOWN, ec, 1, &ai->erase);
 | |
| 		else
 | |
| 			/* This is an unexpected corruption */
 | |
| 			err = add_corrupted(ai, pnum, ec);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		goto adjust_mean_ec;
 | |
| 	case UBI_IO_FF_BITFLIPS:
 | |
| 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 | |
| 				  ec, 1, &ai->erase);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		goto adjust_mean_ec;
 | |
| 	case UBI_IO_FF:
 | |
| 		if (ec_err || bitflips)
 | |
| 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 | |
| 					  UBI_UNKNOWN, ec, 1, &ai->erase);
 | |
| 		else
 | |
| 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 | |
| 					  UBI_UNKNOWN, ec, 0, &ai->free);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		goto adjust_mean_ec;
 | |
| 	default:
 | |
| 		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
 | |
| 			err);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	vol_id = be32_to_cpu(vidh->vol_id);
 | |
| 	if (vid)
 | |
| 		*vid = vol_id;
 | |
| 	if (sqnum)
 | |
| 		*sqnum = be64_to_cpu(vidh->sqnum);
 | |
| 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 | |
| 		int lnum = be32_to_cpu(vidh->lnum);
 | |
| 
 | |
| 		/* Unsupported internal volume */
 | |
| 		switch (vidh->compat) {
 | |
| 		case UBI_COMPAT_DELETE:
 | |
| 			if (vol_id != UBI_FM_SB_VOLUME_ID
 | |
| 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
 | |
| 				ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
 | |
| 					vol_id, lnum);
 | |
| 			}
 | |
| 			err = add_to_list(ai, pnum, vol_id, lnum,
 | |
| 					  ec, 1, &ai->erase);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			return 0;
 | |
| 
 | |
| 		case UBI_COMPAT_RO:
 | |
| 			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
 | |
| 				vol_id, lnum);
 | |
| 			ubi->ro_mode = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case UBI_COMPAT_PRESERVE:
 | |
| 			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
 | |
| 				vol_id, lnum);
 | |
| 			err = add_to_list(ai, pnum, vol_id, lnum,
 | |
| 					  ec, 0, &ai->alien);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			return 0;
 | |
| 
 | |
| 		case UBI_COMPAT_REJECT:
 | |
| 			ubi_err(ubi, "incompatible internal volume %d:%d found",
 | |
| 				vol_id, lnum);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ec_err)
 | |
| 		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
 | |
| 			 pnum);
 | |
| 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| adjust_mean_ec:
 | |
| 	if (!ec_err) {
 | |
| 		ai->ec_sum += ec;
 | |
| 		ai->ec_count += 1;
 | |
| 		if (ec > ai->max_ec)
 | |
| 			ai->max_ec = ec;
 | |
| 		if (ec < ai->min_ec)
 | |
| 			ai->min_ec = ec;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * late_analysis - analyze the overall situation with PEB.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * This is a helper function which takes a look what PEBs we have after we
 | |
|  * gather information about all of them ("ai" is compete). It decides whether
 | |
|  * the flash is empty and should be formatted of whether there are too many
 | |
|  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
 | |
|  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
 | |
|  */
 | |
| static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
 | |
| {
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 	int max_corr, peb_count;
 | |
| 
 | |
| 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
 | |
| 	max_corr = peb_count / 20 ?: 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * Few corrupted PEBs is not a problem and may be just a result of
 | |
| 	 * unclean reboots. However, many of them may indicate some problems
 | |
| 	 * with the flash HW or driver.
 | |
| 	 */
 | |
| 	if (ai->corr_peb_count) {
 | |
| 		ubi_err(ubi, "%d PEBs are corrupted and preserved",
 | |
| 			ai->corr_peb_count);
 | |
| 		pr_err("Corrupted PEBs are:");
 | |
| 		list_for_each_entry(aeb, &ai->corr, u.list)
 | |
| 			pr_cont(" %d", aeb->pnum);
 | |
| 		pr_cont("\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * If too many PEBs are corrupted, we refuse attaching,
 | |
| 		 * otherwise, only print a warning.
 | |
| 		 */
 | |
| 		if (ai->corr_peb_count >= max_corr) {
 | |
| 			ubi_err(ubi, "too many corrupted PEBs, refusing");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
 | |
| 		/*
 | |
| 		 * All PEBs are empty, or almost all - a couple PEBs look like
 | |
| 		 * they may be bad PEBs which were not marked as bad yet.
 | |
| 		 *
 | |
| 		 * This piece of code basically tries to distinguish between
 | |
| 		 * the following situations:
 | |
| 		 *
 | |
| 		 * 1. Flash is empty, but there are few bad PEBs, which are not
 | |
| 		 *    marked as bad so far, and which were read with error. We
 | |
| 		 *    want to go ahead and format this flash. While formatting,
 | |
| 		 *    the faulty PEBs will probably be marked as bad.
 | |
| 		 *
 | |
| 		 * 2. Flash contains non-UBI data and we do not want to format
 | |
| 		 *    it and destroy possibly important information.
 | |
| 		 */
 | |
| 		if (ai->maybe_bad_peb_count <= 2) {
 | |
| 			ai->is_empty = 1;
 | |
| 			ubi_msg(ubi, "empty MTD device detected");
 | |
| 			get_random_bytes(&ubi->image_seq,
 | |
| 					 sizeof(ubi->image_seq));
 | |
| 		} else {
 | |
| 			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * destroy_av - free volume attaching information.
 | |
|  * @av: volume attaching information
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * This function destroys the volume attaching information.
 | |
|  */
 | |
| static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 | |
| {
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 	struct rb_node *this = av->root.rb_node;
 | |
| 
 | |
| 	while (this) {
 | |
| 		if (this->rb_left)
 | |
| 			this = this->rb_left;
 | |
| 		else if (this->rb_right)
 | |
| 			this = this->rb_right;
 | |
| 		else {
 | |
| 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
 | |
| 			this = rb_parent(this);
 | |
| 			if (this) {
 | |
| 				if (this->rb_left == &aeb->u.rb)
 | |
| 					this->rb_left = NULL;
 | |
| 				else
 | |
| 					this->rb_right = NULL;
 | |
| 			}
 | |
| 
 | |
| 			kmem_cache_free(ai->aeb_slab_cache, aeb);
 | |
| 		}
 | |
| 	}
 | |
| 	kfree(av);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * destroy_ai - destroy attaching information.
 | |
|  * @ai: attaching information
 | |
|  */
 | |
| static void destroy_ai(struct ubi_attach_info *ai)
 | |
| {
 | |
| 	struct ubi_ainf_peb *aeb, *aeb_tmp;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct rb_node *rb;
 | |
| 
 | |
| 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
 | |
| 		list_del(&aeb->u.list);
 | |
| 		kmem_cache_free(ai->aeb_slab_cache, aeb);
 | |
| 	}
 | |
| 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
 | |
| 		list_del(&aeb->u.list);
 | |
| 		kmem_cache_free(ai->aeb_slab_cache, aeb);
 | |
| 	}
 | |
| 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
 | |
| 		list_del(&aeb->u.list);
 | |
| 		kmem_cache_free(ai->aeb_slab_cache, aeb);
 | |
| 	}
 | |
| 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
 | |
| 		list_del(&aeb->u.list);
 | |
| 		kmem_cache_free(ai->aeb_slab_cache, aeb);
 | |
| 	}
 | |
| 
 | |
| 	/* Destroy the volume RB-tree */
 | |
| 	rb = ai->volumes.rb_node;
 | |
| 	while (rb) {
 | |
| 		if (rb->rb_left)
 | |
| 			rb = rb->rb_left;
 | |
| 		else if (rb->rb_right)
 | |
| 			rb = rb->rb_right;
 | |
| 		else {
 | |
| 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
 | |
| 
 | |
| 			rb = rb_parent(rb);
 | |
| 			if (rb) {
 | |
| 				if (rb->rb_left == &av->rb)
 | |
| 					rb->rb_left = NULL;
 | |
| 				else
 | |
| 					rb->rb_right = NULL;
 | |
| 			}
 | |
| 
 | |
| 			destroy_av(ai, av);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_destroy(ai->aeb_slab_cache);
 | |
| 
 | |
| 	kfree(ai);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_all - scan entire MTD device.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attach info object
 | |
|  * @start: start scanning at this PEB
 | |
|  *
 | |
|  * This function does full scanning of an MTD device and returns complete
 | |
|  * information about it in form of a "struct ubi_attach_info" object. In case
 | |
|  * of failure, an error code is returned.
 | |
|  */
 | |
| static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
 | |
| 		    int start)
 | |
| {
 | |
| 	int err, pnum;
 | |
| 	struct rb_node *rb1, *rb2;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 
 | |
| 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 | |
| 	if (!ech)
 | |
| 		return err;
 | |
| 
 | |
| 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 | |
| 	if (!vidh)
 | |
| 		goto out_ech;
 | |
| 
 | |
| 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		dbg_gen("process PEB %d", pnum);
 | |
| 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
 | |
| 		if (err < 0)
 | |
| 			goto out_vidh;
 | |
| 	}
 | |
| 
 | |
| 	ubi_msg(ubi, "scanning is finished");
 | |
| 
 | |
| 	/* Calculate mean erase counter */
 | |
| 	if (ai->ec_count)
 | |
| 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
 | |
| 
 | |
| 	err = late_analysis(ubi, ai);
 | |
| 	if (err)
 | |
| 		goto out_vidh;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of unknown erase counter we use the mean erase counter
 | |
| 	 * value.
 | |
| 	 */
 | |
| 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
 | |
| 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
 | |
| 			if (aeb->ec == UBI_UNKNOWN)
 | |
| 				aeb->ec = ai->mean_ec;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(aeb, &ai->free, u.list) {
 | |
| 		if (aeb->ec == UBI_UNKNOWN)
 | |
| 			aeb->ec = ai->mean_ec;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(aeb, &ai->corr, u.list)
 | |
| 		if (aeb->ec == UBI_UNKNOWN)
 | |
| 			aeb->ec = ai->mean_ec;
 | |
| 
 | |
| 	list_for_each_entry(aeb, &ai->erase, u.list)
 | |
| 		if (aeb->ec == UBI_UNKNOWN)
 | |
| 			aeb->ec = ai->mean_ec;
 | |
| 
 | |
| 	err = self_check_ai(ubi, ai);
 | |
| 	if (err)
 | |
| 		goto out_vidh;
 | |
| 
 | |
| 	ubi_free_vid_hdr(ubi, vidh);
 | |
| 	kfree(ech);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_vidh:
 | |
| 	ubi_free_vid_hdr(ubi, vidh);
 | |
| out_ech:
 | |
| 	kfree(ech);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct ubi_attach_info *alloc_ai(void)
 | |
| {
 | |
| 	struct ubi_attach_info *ai;
 | |
| 
 | |
| 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
 | |
| 	if (!ai)
 | |
| 		return ai;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ai->corr);
 | |
| 	INIT_LIST_HEAD(&ai->free);
 | |
| 	INIT_LIST_HEAD(&ai->erase);
 | |
| 	INIT_LIST_HEAD(&ai->alien);
 | |
| 	ai->volumes = RB_ROOT;
 | |
| 	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
 | |
| 					       sizeof(struct ubi_ainf_peb),
 | |
| 					       0, 0, NULL);
 | |
| 	if (!ai->aeb_slab_cache) {
 | |
| 		kfree(ai);
 | |
| 		ai = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return ai;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MTD_UBI_FASTMAP
 | |
| 
 | |
| /**
 | |
|  * scan_fastmap - try to find a fastmap and attach from it.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attach info object
 | |
|  *
 | |
|  * Returns 0 on success, negative return values indicate an internal
 | |
|  * error.
 | |
|  * UBI_NO_FASTMAP denotes that no fastmap was found.
 | |
|  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
 | |
|  */
 | |
| static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
 | |
| {
 | |
| 	int err, pnum, fm_anchor = -1;
 | |
| 	unsigned long long max_sqnum = 0;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 
 | |
| 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 | |
| 	if (!ech)
 | |
| 		goto out;
 | |
| 
 | |
| 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 | |
| 	if (!vidh)
 | |
| 		goto out_ech;
 | |
| 
 | |
| 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
 | |
| 		int vol_id = -1;
 | |
| 		unsigned long long sqnum = -1;
 | |
| 		cond_resched();
 | |
| 
 | |
| 		dbg_gen("process PEB %d", pnum);
 | |
| 		err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
 | |
| 		if (err < 0)
 | |
| 			goto out_vidh;
 | |
| 
 | |
| 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
 | |
| 			max_sqnum = sqnum;
 | |
| 			fm_anchor = pnum;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ubi_free_vid_hdr(ubi, vidh);
 | |
| 	kfree(ech);
 | |
| 
 | |
| 	if (fm_anchor < 0)
 | |
| 		return UBI_NO_FASTMAP;
 | |
| 
 | |
| 	destroy_ai(*ai);
 | |
| 	*ai = alloc_ai();
 | |
| 	if (!*ai)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return ubi_scan_fastmap(ubi, *ai, fm_anchor);
 | |
| 
 | |
| out_vidh:
 | |
| 	ubi_free_vid_hdr(ubi, vidh);
 | |
| out_ech:
 | |
| 	kfree(ech);
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * ubi_attach - attach an MTD device.
 | |
|  * @ubi: UBI device descriptor
 | |
|  * @force_scan: if set to non-zero attach by scanning
 | |
|  *
 | |
|  * This function returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| int ubi_attach(struct ubi_device *ubi, int force_scan)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubi_attach_info *ai;
 | |
| 
 | |
| 	ai = alloc_ai();
 | |
| 	if (!ai)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_MTD_UBI_FASTMAP
 | |
| 	/* On small flash devices we disable fastmap in any case. */
 | |
| 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
 | |
| 		ubi->fm_disabled = 1;
 | |
| 		force_scan = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (force_scan)
 | |
| 		err = scan_all(ubi, ai, 0);
 | |
| 	else {
 | |
| 		err = scan_fast(ubi, &ai);
 | |
| 		if (err > 0 || mtd_is_eccerr(err)) {
 | |
| 			if (err != UBI_NO_FASTMAP) {
 | |
| 				destroy_ai(ai);
 | |
| 				ai = alloc_ai();
 | |
| 				if (!ai)
 | |
| 					return -ENOMEM;
 | |
| 
 | |
| 				err = scan_all(ubi, ai, 0);
 | |
| 			} else {
 | |
| 				err = scan_all(ubi, ai, UBI_FM_MAX_START);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	err = scan_all(ubi, ai, 0);
 | |
| #endif
 | |
| 	if (err)
 | |
| 		goto out_ai;
 | |
| 
 | |
| 	ubi->bad_peb_count = ai->bad_peb_count;
 | |
| 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
 | |
| 	ubi->corr_peb_count = ai->corr_peb_count;
 | |
| 	ubi->max_ec = ai->max_ec;
 | |
| 	ubi->mean_ec = ai->mean_ec;
 | |
| 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
 | |
| 
 | |
| 	err = ubi_read_volume_table(ubi, ai);
 | |
| 	if (err)
 | |
| 		goto out_ai;
 | |
| 
 | |
| 	err = ubi_wl_init(ubi, ai);
 | |
| 	if (err)
 | |
| 		goto out_vtbl;
 | |
| 
 | |
| 	err = ubi_eba_init(ubi, ai);
 | |
| 	if (err)
 | |
| 		goto out_wl;
 | |
| 
 | |
| #ifdef CONFIG_MTD_UBI_FASTMAP
 | |
| 	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
 | |
| 		struct ubi_attach_info *scan_ai;
 | |
| 
 | |
| 		scan_ai = alloc_ai();
 | |
| 		if (!scan_ai) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_wl;
 | |
| 		}
 | |
| 
 | |
| 		err = scan_all(ubi, scan_ai, 0);
 | |
| 		if (err) {
 | |
| 			destroy_ai(scan_ai);
 | |
| 			goto out_wl;
 | |
| 		}
 | |
| 
 | |
| 		err = self_check_eba(ubi, ai, scan_ai);
 | |
| 		destroy_ai(scan_ai);
 | |
| 
 | |
| 		if (err)
 | |
| 			goto out_wl;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	destroy_ai(ai);
 | |
| 	return 0;
 | |
| 
 | |
| out_wl:
 | |
| 	ubi_wl_close(ubi);
 | |
| out_vtbl:
 | |
| 	ubi_free_internal_volumes(ubi);
 | |
| 	vfree(ubi->vtbl);
 | |
| out_ai:
 | |
| 	destroy_ai(ai);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * self_check_ai - check the attaching information.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * This function returns zero if the attaching information is all right, and a
 | |
|  * negative error code if not or if an error occurred.
 | |
|  */
 | |
| static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
 | |
| {
 | |
| 	int pnum, err, vols_found = 0;
 | |
| 	struct rb_node *rb1, *rb2;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct ubi_ainf_peb *aeb, *last_aeb;
 | |
| 	uint8_t *buf;
 | |
| 
 | |
| 	if (!ubi_dbg_chk_gen(ubi))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * At first, check that attaching information is OK.
 | |
| 	 */
 | |
| 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
 | |
| 		int leb_count = 0;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		vols_found += 1;
 | |
| 
 | |
| 		if (ai->is_empty) {
 | |
| 			ubi_err(ubi, "bad is_empty flag");
 | |
| 			goto bad_av;
 | |
| 		}
 | |
| 
 | |
| 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
 | |
| 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
 | |
| 		    av->data_pad < 0 || av->last_data_size < 0) {
 | |
| 			ubi_err(ubi, "negative values");
 | |
| 			goto bad_av;
 | |
| 		}
 | |
| 
 | |
| 		if (av->vol_id >= UBI_MAX_VOLUMES &&
 | |
| 		    av->vol_id < UBI_INTERNAL_VOL_START) {
 | |
| 			ubi_err(ubi, "bad vol_id");
 | |
| 			goto bad_av;
 | |
| 		}
 | |
| 
 | |
| 		if (av->vol_id > ai->highest_vol_id) {
 | |
| 			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
 | |
| 				ai->highest_vol_id, av->vol_id);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
 | |
| 		    av->vol_type != UBI_STATIC_VOLUME) {
 | |
| 			ubi_err(ubi, "bad vol_type");
 | |
| 			goto bad_av;
 | |
| 		}
 | |
| 
 | |
| 		if (av->data_pad > ubi->leb_size / 2) {
 | |
| 			ubi_err(ubi, "bad data_pad");
 | |
| 			goto bad_av;
 | |
| 		}
 | |
| 
 | |
| 		last_aeb = NULL;
 | |
| 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
 | |
| 			cond_resched();
 | |
| 
 | |
| 			last_aeb = aeb;
 | |
| 			leb_count += 1;
 | |
| 
 | |
| 			if (aeb->pnum < 0 || aeb->ec < 0) {
 | |
| 				ubi_err(ubi, "negative values");
 | |
| 				goto bad_aeb;
 | |
| 			}
 | |
| 
 | |
| 			if (aeb->ec < ai->min_ec) {
 | |
| 				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
 | |
| 					ai->min_ec, aeb->ec);
 | |
| 				goto bad_aeb;
 | |
| 			}
 | |
| 
 | |
| 			if (aeb->ec > ai->max_ec) {
 | |
| 				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
 | |
| 					ai->max_ec, aeb->ec);
 | |
| 				goto bad_aeb;
 | |
| 			}
 | |
| 
 | |
| 			if (aeb->pnum >= ubi->peb_count) {
 | |
| 				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
 | |
| 					aeb->pnum, ubi->peb_count);
 | |
| 				goto bad_aeb;
 | |
| 			}
 | |
| 
 | |
| 			if (av->vol_type == UBI_STATIC_VOLUME) {
 | |
| 				if (aeb->lnum >= av->used_ebs) {
 | |
| 					ubi_err(ubi, "bad lnum or used_ebs");
 | |
| 					goto bad_aeb;
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (av->used_ebs != 0) {
 | |
| 					ubi_err(ubi, "non-zero used_ebs");
 | |
| 					goto bad_aeb;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (aeb->lnum > av->highest_lnum) {
 | |
| 				ubi_err(ubi, "incorrect highest_lnum or lnum");
 | |
| 				goto bad_aeb;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (av->leb_count != leb_count) {
 | |
| 			ubi_err(ubi, "bad leb_count, %d objects in the tree",
 | |
| 				leb_count);
 | |
| 			goto bad_av;
 | |
| 		}
 | |
| 
 | |
| 		if (!last_aeb)
 | |
| 			continue;
 | |
| 
 | |
| 		aeb = last_aeb;
 | |
| 
 | |
| 		if (aeb->lnum != av->highest_lnum) {
 | |
| 			ubi_err(ubi, "bad highest_lnum");
 | |
| 			goto bad_aeb;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vols_found != ai->vols_found) {
 | |
| 		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
 | |
| 			ai->vols_found, vols_found);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Check that attaching information is correct */
 | |
| 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
 | |
| 		last_aeb = NULL;
 | |
| 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
 | |
| 			int vol_type;
 | |
| 
 | |
| 			cond_resched();
 | |
| 
 | |
| 			last_aeb = aeb;
 | |
| 
 | |
| 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
 | |
| 			if (err && err != UBI_IO_BITFLIPS) {
 | |
| 				ubi_err(ubi, "VID header is not OK (%d)",
 | |
| 					err);
 | |
| 				if (err > 0)
 | |
| 					err = -EIO;
 | |
| 				return err;
 | |
| 			}
 | |
| 
 | |
| 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
 | |
| 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
 | |
| 			if (av->vol_type != vol_type) {
 | |
| 				ubi_err(ubi, "bad vol_type");
 | |
| 				goto bad_vid_hdr;
 | |
| 			}
 | |
| 
 | |
| 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
 | |
| 				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
 | |
| 				goto bad_vid_hdr;
 | |
| 			}
 | |
| 
 | |
| 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
 | |
| 				ubi_err(ubi, "bad vol_id %d", av->vol_id);
 | |
| 				goto bad_vid_hdr;
 | |
| 			}
 | |
| 
 | |
| 			if (av->compat != vidh->compat) {
 | |
| 				ubi_err(ubi, "bad compat %d", vidh->compat);
 | |
| 				goto bad_vid_hdr;
 | |
| 			}
 | |
| 
 | |
| 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
 | |
| 				ubi_err(ubi, "bad lnum %d", aeb->lnum);
 | |
| 				goto bad_vid_hdr;
 | |
| 			}
 | |
| 
 | |
| 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
 | |
| 				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
 | |
| 				goto bad_vid_hdr;
 | |
| 			}
 | |
| 
 | |
| 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
 | |
| 				ubi_err(ubi, "bad data_pad %d", av->data_pad);
 | |
| 				goto bad_vid_hdr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!last_aeb)
 | |
| 			continue;
 | |
| 
 | |
| 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
 | |
| 			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
 | |
| 			goto bad_vid_hdr;
 | |
| 		}
 | |
| 
 | |
| 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
 | |
| 			ubi_err(ubi, "bad last_data_size %d",
 | |
| 				av->last_data_size);
 | |
| 			goto bad_vid_hdr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that all the physical eraseblocks are in one of the lists
 | |
| 	 * or trees.
 | |
| 	 */
 | |
| 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
 | |
| 		err = ubi_io_is_bad(ubi, pnum);
 | |
| 		if (err < 0) {
 | |
| 			kfree(buf);
 | |
| 			return err;
 | |
| 		} else if (err)
 | |
| 			buf[pnum] = 1;
 | |
| 	}
 | |
| 
 | |
| 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
 | |
| 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
 | |
| 			buf[aeb->pnum] = 1;
 | |
| 
 | |
| 	list_for_each_entry(aeb, &ai->free, u.list)
 | |
| 		buf[aeb->pnum] = 1;
 | |
| 
 | |
| 	list_for_each_entry(aeb, &ai->corr, u.list)
 | |
| 		buf[aeb->pnum] = 1;
 | |
| 
 | |
| 	list_for_each_entry(aeb, &ai->erase, u.list)
 | |
| 		buf[aeb->pnum] = 1;
 | |
| 
 | |
| 	list_for_each_entry(aeb, &ai->alien, u.list)
 | |
| 		buf[aeb->pnum] = 1;
 | |
| 
 | |
| 	err = 0;
 | |
| 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
 | |
| 		if (!buf[pnum]) {
 | |
| 			ubi_err(ubi, "PEB %d is not referred", pnum);
 | |
| 			err = 1;
 | |
| 		}
 | |
| 
 | |
| 	kfree(buf);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	return 0;
 | |
| 
 | |
| bad_aeb:
 | |
| 	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
 | |
| 	ubi_dump_aeb(aeb, 0);
 | |
| 	ubi_dump_av(av);
 | |
| 	goto out;
 | |
| 
 | |
| bad_av:
 | |
| 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
 | |
| 	ubi_dump_av(av);
 | |
| 	goto out;
 | |
| 
 | |
| bad_vid_hdr:
 | |
| 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
 | |
| 	ubi_dump_av(av);
 | |
| 	ubi_dump_vid_hdr(vidh);
 | |
| 
 | |
| out:
 | |
| 	dump_stack();
 | |
| 	return -EINVAL;
 | |
| }
 |