mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-31 10:26:10 +01:00 
			
		
		
		
	Make sure all RGMII internal delay modes are covered. Signed-off-by: Madalin Bucur <madalin.bucur@oss.nxp.com> Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
		
			
				
	
	
		
			527 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			527 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright 2009-2011 Freescale Semiconductor, Inc.
 | |
|  * Author: Timur Tabi <timur@freescale.com>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the board muxing between the Fman Ethernet MACs and
 | |
|  * the RGMII/SGMII/XGMII PHYs on a Freescale P3041/P5020 "Hydra" reference
 | |
|  * board. The RGMII PHYs are the two on-board 1Gb ports.  The SGMII PHYs are
 | |
|  * provided by the standard Freescale four-port SGMII riser card.  The 10Gb
 | |
|  * XGMII PHY is provided via the XAUI riser card.  Since there is only one
 | |
|  * Fman device on a P3041 and P5020, we only support one SGMII card and one
 | |
|  * RGMII card.
 | |
|  *
 | |
|  * Muxing is handled via the PIXIS BRDCFG1 register.  The EMI1 bits control
 | |
|  * muxing among the RGMII PHYs and the SGMII PHYs.  The value for RGMII is
 | |
|  * always the same (0).  The value for SGMII depends on which slot the riser is
 | |
|  * inserted in.  The EMI2 bits control muxing for the the XGMII.  Like SGMII,
 | |
|  * the value is based on which slot the XAUI is inserted in.
 | |
|  *
 | |
|  * The SERDES configuration is used to determine where the SGMII and XAUI cards
 | |
|  * exist, and also which Fman MACs are routed to which PHYs.  So for a given
 | |
|  * Fman MAC, there is one and only PHY it connects to.  MACs cannot be routed
 | |
|  * to PHYs dynamically.
 | |
|  *
 | |
|  *
 | |
|  * This file also updates the device tree in three ways:
 | |
|  *
 | |
|  * 1) The status of each virtual MDIO node that is referenced by an Ethernet
 | |
|  *    node is set to "okay".
 | |
|  *
 | |
|  * 2) The phy-handle property of each active Ethernet MAC node is set to the
 | |
|  *    appropriate PHY node.
 | |
|  *
 | |
|  * 3) The "mux value" for each virtual MDIO node is set to the correct value,
 | |
|  *    if necessary.  Some virtual MDIO nodes do not have configurable mux
 | |
|  *    values, so those values are hard-coded in the DTS.  On the HYDRA board,
 | |
|  *    the virtual MDIO node for the SGMII card needs to be updated.
 | |
|  *
 | |
|  * For all this to work, the device tree needs to have the following:
 | |
|  *
 | |
|  * 1) An alias for each PHY node that an Ethernet node could be routed to.
 | |
|  *
 | |
|  * 2) An alias for each real and virtual MDIO node that is disabled by default
 | |
|  * and might need to be enabled, and also might need to have its mux-value
 | |
|  * updated.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <net.h>
 | |
| #include <netdev.h>
 | |
| #include <asm/fsl_serdes.h>
 | |
| #include <fm_eth.h>
 | |
| #include <fsl_mdio.h>
 | |
| #include <malloc.h>
 | |
| #include <fdt_support.h>
 | |
| #include <fsl_dtsec.h>
 | |
| 
 | |
| #include "../common/ngpixis.h"
 | |
| #include "../common/fman.h"
 | |
| 
 | |
| #ifdef CONFIG_FMAN_ENET
 | |
| 
 | |
| #define BRDCFG1_EMI1_SEL_MASK	0x78
 | |
| #define BRDCFG1_EMI1_SEL_SLOT1	0x10
 | |
| #define BRDCFG1_EMI1_SEL_SLOT2	0x20
 | |
| #define BRDCFG1_EMI1_SEL_SLOT5	0x30
 | |
| #define BRDCFG1_EMI1_SEL_SLOT6	0x40
 | |
| #define BRDCFG1_EMI1_SEL_SLOT7	0x50
 | |
| #define BRDCFG1_EMI1_SEL_RGMII	0x00
 | |
| #define BRDCFG1_EMI1_EN		0x08
 | |
| #define BRDCFG1_EMI2_SEL_MASK	0x06
 | |
| #define BRDCFG1_EMI2_SEL_SLOT1	0x00
 | |
| #define BRDCFG1_EMI2_SEL_SLOT2	0x02
 | |
| 
 | |
| #define BRDCFG2_REG_GPIO_SEL	0x20
 | |
| 
 | |
| #define PHY_BASE_ADDR		0x00
 | |
| 
 | |
| /*
 | |
|  * BRDCFG1 mask and value for each MAC
 | |
|  *
 | |
|  * This array contains the BRDCFG1 values (in mask/val format) that route the
 | |
|  * MDIO bus to a particular RGMII or SGMII PHY.
 | |
|  */
 | |
| struct {
 | |
| 	u8 mask;
 | |
| 	u8 val;
 | |
| } mdio_mux[NUM_FM_PORTS];
 | |
| 
 | |
| /*
 | |
|  * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
 | |
|  * that the mapping must be determined dynamically, or that the lane maps to
 | |
|  * something other than a board slot
 | |
|  */
 | |
| static u8 lane_to_slot[] = {
 | |
| 	7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Set the board muxing for a given MAC
 | |
|  *
 | |
|  * The MDIO layer calls this function every time it wants to talk to a PHY.
 | |
|  */
 | |
| void hydra_mux_mdio(u8 mask, u8 val)
 | |
| {
 | |
| 	clrsetbits_8(&pixis->brdcfg1, mask, val);
 | |
| }
 | |
| 
 | |
| struct hydra_mdio {
 | |
| 	u8 mask;
 | |
| 	u8 val;
 | |
| 	struct mii_dev *realbus;
 | |
| };
 | |
| 
 | |
| static int hydra_mdio_read(struct mii_dev *bus, int addr, int devad,
 | |
| 				int regnum)
 | |
| {
 | |
| 	struct hydra_mdio *priv = bus->priv;
 | |
| 
 | |
| 	hydra_mux_mdio(priv->mask, priv->val);
 | |
| 
 | |
| 	return priv->realbus->read(priv->realbus, addr, devad, regnum);
 | |
| }
 | |
| 
 | |
| static int hydra_mdio_write(struct mii_dev *bus, int addr, int devad,
 | |
| 				int regnum, u16 value)
 | |
| {
 | |
| 	struct hydra_mdio *priv = bus->priv;
 | |
| 
 | |
| 	hydra_mux_mdio(priv->mask, priv->val);
 | |
| 
 | |
| 	return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
 | |
| }
 | |
| 
 | |
| static int hydra_mdio_reset(struct mii_dev *bus)
 | |
| {
 | |
| 	struct hydra_mdio *priv = bus->priv;
 | |
| 
 | |
| 	return priv->realbus->reset(priv->realbus);
 | |
| }
 | |
| 
 | |
| static void hydra_mdio_set_mux(char *name, u8 mask, u8 val)
 | |
| {
 | |
| 	struct mii_dev *bus = miiphy_get_dev_by_name(name);
 | |
| 	struct hydra_mdio *priv = bus->priv;
 | |
| 
 | |
| 	priv->mask = mask;
 | |
| 	priv->val = val;
 | |
| }
 | |
| 
 | |
| static int hydra_mdio_init(char *realbusname, char *fakebusname)
 | |
| {
 | |
| 	struct hydra_mdio *hmdio;
 | |
| 	struct mii_dev *bus = mdio_alloc();
 | |
| 
 | |
| 	if (!bus) {
 | |
| 		printf("Failed to allocate Hydra MDIO bus\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	hmdio = malloc(sizeof(*hmdio));
 | |
| 	if (!hmdio) {
 | |
| 		printf("Failed to allocate Hydra private data\n");
 | |
| 		free(bus);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	bus->read = hydra_mdio_read;
 | |
| 	bus->write = hydra_mdio_write;
 | |
| 	bus->reset = hydra_mdio_reset;
 | |
| 	strcpy(bus->name, fakebusname);
 | |
| 
 | |
| 	hmdio->realbus = miiphy_get_dev_by_name(realbusname);
 | |
| 
 | |
| 	if (!hmdio->realbus) {
 | |
| 		printf("No bus with name %s\n", realbusname);
 | |
| 		free(bus);
 | |
| 		free(hmdio);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	bus->priv = hmdio;
 | |
| 
 | |
| 	return mdio_register(bus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an alias or a path for a node, set the mux value of that node.
 | |
|  *
 | |
|  * If 'alias' is not a valid alias, then it is treated as a full path to the
 | |
|  * node.  No error checking is performed.
 | |
|  *
 | |
|  * This function is normally called to set the fsl,hydra-mdio-muxval property
 | |
|  * of a virtual MDIO node.
 | |
|  */
 | |
| static void fdt_set_mdio_mux(void *fdt, const char *alias, u32 mux)
 | |
| {
 | |
| 	const char *path = fdt_get_alias(fdt, alias);
 | |
| 
 | |
| 	if (!path)
 | |
| 		path = alias;
 | |
| 
 | |
| 	do_fixup_by_path(fdt, path, "reg",
 | |
| 			 &mux, sizeof(mux), 1);
 | |
| 	do_fixup_by_path(fdt, path, "fsl,hydra-mdio-muxval",
 | |
| 			 &mux, sizeof(mux), 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given the following ...
 | |
|  *
 | |
|  * 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
 | |
|  * compatible string and 'addr' physical address)
 | |
|  *
 | |
|  * 2) An Fman port
 | |
|  *
 | |
|  * ... update the phy-handle property of the Ethernet node to point to the
 | |
|  * right PHY.  This assumes that we already know the PHY for each port.  That
 | |
|  * information is stored in mdio_mux[].
 | |
|  *
 | |
|  * The offset of the Fman Ethernet node is also passed in for convenience, but
 | |
|  * it is not used, and we recalculate the offset anyway.
 | |
|  *
 | |
|  * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
 | |
|  * Inside the Fman, "ports" are things that connect to MACs.  We only call them
 | |
|  * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
 | |
|  * and ports are the same thing.
 | |
|  *
 | |
|  * Note that this code would be cleaner if had a function called
 | |
|  * fm_info_get_phy_address(), which returns a value from the fm1_dtsec_info[]
 | |
|  * array.  That's because all we're doing is figuring out the PHY address for
 | |
|  * a given Fman MAC and writing it to the device tree.  Well, we already did
 | |
|  * the hard work to figure that out in board_eth_init(), so it's silly to
 | |
|  * repeat that here.
 | |
|  */
 | |
| void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
 | |
| 			      enum fm_port port, int offset)
 | |
| {
 | |
| 	unsigned int mux = mdio_mux[port].val & mdio_mux[port].mask;
 | |
| 	char phy[16];
 | |
| 
 | |
| 	if (port == FM1_10GEC1) {
 | |
| 		/* XAUI */
 | |
| 		int lane = serdes_get_first_lane(XAUI_FM1);
 | |
| 		if (lane >= 0) {
 | |
| 			/* The XAUI PHY is identified by the slot */
 | |
| 			sprintf(phy, "phy_xgmii_%u", lane_to_slot[lane]);
 | |
| 			fdt_set_phy_handle(fdt, compat, addr, phy);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (mux == (BRDCFG1_EMI1_SEL_RGMII | BRDCFG1_EMI1_EN)) {
 | |
| 		/* RGMII */
 | |
| 		/* The RGMII PHY is identified by the MAC connected to it */
 | |
| 		sprintf(phy, "phy_rgmii_%u", port == FM1_DTSEC4 ? 0 : 1);
 | |
| 		fdt_set_phy_handle(fdt, compat, addr, phy);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* If it's not RGMII or XGMII, it must be SGMII */
 | |
| 	if (mux) {
 | |
| 		/* The SGMII PHY is identified by the MAC connected to it */
 | |
| 		sprintf(phy, "phy_sgmii_%x",
 | |
| 			CONFIG_SYS_FM1_DTSEC1_PHY_ADDR + (port - FM1_DTSEC1));
 | |
| 		fdt_set_phy_handle(fdt, compat, addr, phy);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define PIXIS_SW2_LANE_23_SEL		0x80
 | |
| #define PIXIS_SW2_LANE_45_SEL		0x40
 | |
| #define PIXIS_SW2_LANE_67_SEL_MASK	0x30
 | |
| #define PIXIS_SW2_LANE_67_SEL_5		0x00
 | |
| #define PIXIS_SW2_LANE_67_SEL_6		0x20
 | |
| #define PIXIS_SW2_LANE_67_SEL_7		0x10
 | |
| #define PIXIS_SW2_LANE_8_SEL		0x08
 | |
| #define PIXIS_SW2_LANE_1617_SEL		0x04
 | |
| 
 | |
| /*
 | |
|  * Initialize the lane_to_slot[] array.
 | |
|  *
 | |
|  * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board
 | |
|  * slots is hard-coded.  On the Hydra board, however, the mapping is controlled
 | |
|  * by board switch SW2, so the lane_to_slot[] array needs to be dynamically
 | |
|  * initialized.
 | |
|  */
 | |
| static void initialize_lane_to_slot(void)
 | |
| {
 | |
| 	u8 sw2 = in_8(&PIXIS_SW(2));
 | |
| 
 | |
| 	lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4;
 | |
| 	lane_to_slot[3] = lane_to_slot[2];
 | |
| 
 | |
| 	lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6;
 | |
| 	lane_to_slot[5] = lane_to_slot[4];
 | |
| 
 | |
| 	switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) {
 | |
| 	case PIXIS_SW2_LANE_67_SEL_5:
 | |
| 		lane_to_slot[6] = 5;
 | |
| 		break;
 | |
| 	case PIXIS_SW2_LANE_67_SEL_6:
 | |
| 		lane_to_slot[6] = 6;
 | |
| 		break;
 | |
| 	case PIXIS_SW2_LANE_67_SEL_7:
 | |
| 		lane_to_slot[6] = 7;
 | |
| 		break;
 | |
| 	}
 | |
| 	lane_to_slot[7] = lane_to_slot[6];
 | |
| 
 | |
| 	lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0;
 | |
| 
 | |
| 	lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0;
 | |
| 	lane_to_slot[17] = lane_to_slot[16];
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_FMAN_ENET */
 | |
| 
 | |
| /*
 | |
|  * Configure the status for the virtual MDIO nodes
 | |
|  *
 | |
|  * Rather than create the virtual MDIO nodes from scratch for each active
 | |
|  * virtual MDIO, we expect the DTS to have the nodes defined already, and we
 | |
|  * only enable the ones that are actually active.
 | |
|  *
 | |
|  * We assume that the DTS already hard-codes the status for all the
 | |
|  * virtual MDIO nodes to "disabled", so all we need to do is enable the
 | |
|  * active ones.
 | |
|  *
 | |
|  * For SGMII, we also need to set the mux value in the node.
 | |
|  */
 | |
| void fdt_fixup_board_enet(void *fdt)
 | |
| {
 | |
| #ifdef CONFIG_FMAN_ENET
 | |
| 	unsigned int i;
 | |
| 	int lane;
 | |
| 
 | |
| 	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
 | |
| 		int idx = i - FM1_DTSEC1;
 | |
| 
 | |
| 		switch (fm_info_get_enet_if(i)) {
 | |
| 		case PHY_INTERFACE_MODE_SGMII:
 | |
| 			lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
 | |
| 			if (lane >= 0) {
 | |
| 				fdt_status_okay_by_alias(fdt, "emi1_sgmii");
 | |
| 				/* Also set the MUX value */
 | |
| 				fdt_set_mdio_mux(fdt, "emi1_sgmii",
 | |
| 						 mdio_mux[i].val);
 | |
| 			}
 | |
| 			break;
 | |
| 		case PHY_INTERFACE_MODE_RGMII:
 | |
| 		case PHY_INTERFACE_MODE_RGMII_TXID:
 | |
| 		case PHY_INTERFACE_MODE_RGMII_RXID:
 | |
| 		case PHY_INTERFACE_MODE_RGMII_ID:
 | |
| 			fdt_status_okay_by_alias(fdt, "emi1_rgmii");
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	lane = serdes_get_first_lane(XAUI_FM1);
 | |
| 	if (lane >= 0)
 | |
| 		fdt_status_okay_by_alias(fdt, "emi2_xgmii");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int board_eth_init(struct bd_info *bis)
 | |
| {
 | |
| #ifdef CONFIG_FMAN_ENET
 | |
| 	struct fsl_pq_mdio_info dtsec_mdio_info;
 | |
| 	struct tgec_mdio_info tgec_mdio_info;
 | |
| 	unsigned int i, slot;
 | |
| 	int lane;
 | |
| 	struct mii_dev *bus;
 | |
| 
 | |
| 	printf("Initializing Fman\n");
 | |
| 
 | |
| 	initialize_lane_to_slot();
 | |
| 
 | |
| 	/* We want to use the PIXIS to configure MUX routing, not GPIOs. */
 | |
| 	setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL);
 | |
| 
 | |
| 	memset(mdio_mux, 0, sizeof(mdio_mux));
 | |
| 
 | |
| 	dtsec_mdio_info.regs =
 | |
| 		(struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
 | |
| 	dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;
 | |
| 
 | |
| 	/* Register the real 1G MDIO bus */
 | |
| 	fsl_pq_mdio_init(bis, &dtsec_mdio_info);
 | |
| 
 | |
| 	tgec_mdio_info.regs =
 | |
| 		(struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
 | |
| 	tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;
 | |
| 
 | |
| 	/* Register the real 10G MDIO bus */
 | |
| 	fm_tgec_mdio_init(bis, &tgec_mdio_info);
 | |
| 
 | |
| 	/* Register the three virtual MDIO front-ends */
 | |
| 	hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_RGMII_MDIO");
 | |
| 	hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_SGMII_MDIO");
 | |
| 
 | |
| 	/*
 | |
| 	 * Program the DTSEC PHY addresses assuming that they are all SGMII.
 | |
| 	 * For any DTSEC that's RGMII, we'll override its PHY address later.
 | |
| 	 * We assume that DTSEC5 is only used for RGMII.
 | |
| 	 */
 | |
| 	fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
 | |
| 	fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
 | |
| 	fm_info_set_phy_address(FM1_DTSEC3, CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
 | |
| 	fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
 | |
| 
 | |
| 	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
 | |
| 		int idx = i - FM1_DTSEC1;
 | |
| 
 | |
| 		switch (fm_info_get_enet_if(i)) {
 | |
| 		case PHY_INTERFACE_MODE_SGMII:
 | |
| 			lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
 | |
| 			if (lane < 0)
 | |
| 				break;
 | |
| 			slot = lane_to_slot[lane];
 | |
| 			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
 | |
| 			switch (slot) {
 | |
| 			case 1:
 | |
| 				/* Always DTSEC5 on Bank 3 */
 | |
| 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
 | |
| 						  BRDCFG1_EMI1_EN;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
 | |
| 						  BRDCFG1_EMI1_EN;
 | |
| 				break;
 | |
| 			case 5:
 | |
| 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
 | |
| 						  BRDCFG1_EMI1_EN;
 | |
| 				break;
 | |
| 			case 6:
 | |
| 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
 | |
| 						  BRDCFG1_EMI1_EN;
 | |
| 				break;
 | |
| 			case 7:
 | |
| 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
 | |
| 						  BRDCFG1_EMI1_EN;
 | |
| 				break;
 | |
| 			};
 | |
| 
 | |
| 			hydra_mdio_set_mux("HYDRA_SGMII_MDIO",
 | |
| 					mdio_mux[i].mask, mdio_mux[i].val);
 | |
| 			fm_info_set_mdio(i,
 | |
| 				miiphy_get_dev_by_name("HYDRA_SGMII_MDIO"));
 | |
| 			break;
 | |
| 		case PHY_INTERFACE_MODE_RGMII:
 | |
| 		case PHY_INTERFACE_MODE_RGMII_TXID:
 | |
| 		case PHY_INTERFACE_MODE_RGMII_RXID:
 | |
| 		case PHY_INTERFACE_MODE_RGMII_ID:
 | |
| 			/*
 | |
| 			 * If DTSEC4 is RGMII, then it's routed via via EC1 to
 | |
| 			 * the first on-board RGMII port.  If DTSEC5 is RGMII,
 | |
| 			 * then it's routed via via EC2 to the second on-board
 | |
| 			 * RGMII port. The other DTSECs cannot be routed to
 | |
| 			 * RGMII.
 | |
| 			 */
 | |
| 			fm_info_set_phy_address(i, i == FM1_DTSEC4 ? 0 : 1);
 | |
| 			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
 | |
| 			mdio_mux[i].val  = BRDCFG1_EMI1_SEL_RGMII |
 | |
| 					   BRDCFG1_EMI1_EN;
 | |
| 			hydra_mdio_set_mux("HYDRA_RGMII_MDIO",
 | |
| 					mdio_mux[i].mask, mdio_mux[i].val);
 | |
| 			fm_info_set_mdio(i,
 | |
| 				miiphy_get_dev_by_name("HYDRA_RGMII_MDIO"));
 | |
| 			break;
 | |
| 		case PHY_INTERFACE_MODE_NONE:
 | |
| 			fm_info_set_phy_address(i, 0);
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("Fman1: DTSEC%u set to unknown interface %i\n",
 | |
| 			       idx + 1, fm_info_get_enet_if(i));
 | |
| 			fm_info_set_phy_address(i, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bus = miiphy_get_dev_by_name("HYDRA_SGMII_MDIO");
 | |
| 	set_sgmii_phy(bus, FM1_DTSEC1, CONFIG_SYS_NUM_FM1_DTSEC, PHY_BASE_ADDR);
 | |
| 
 | |
| 	/*
 | |
| 	 * For 10G, we only support one XAUI card per Fman.  If present, then we
 | |
| 	 * force its routing and never touch those bits again, which removes the
 | |
| 	 * need for Linux to do any muxing.  This works because of the way
 | |
| 	 * BRDCFG1 is defined, but it's a bit hackish.
 | |
| 	 *
 | |
| 	 * The PHY address for the XAUI card depends on which slot it's in. The
 | |
| 	 * macros we use imply that the PHY address is based on which FM, but
 | |
| 	 * that's not true.  On the P4080DS, FM1 could only use XAUI in slot 5,
 | |
| 	 * and FM2 could only use a XAUI in slot 4.  On the Hydra board, we
 | |
| 	 * check the actual slot and just use the macros as-is, even though
 | |
| 	 * the P3041 and P5020 only have one Fman.
 | |
| 	 */
 | |
| 	lane = serdes_get_first_lane(XAUI_FM1);
 | |
| 	if (lane >= 0) {
 | |
| 		slot = lane_to_slot[lane];
 | |
| 		if (slot == 1) {
 | |
| 			/* XAUI card is in slot 1 */
 | |
| 			clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK,
 | |
| 				     BRDCFG1_EMI2_SEL_SLOT1);
 | |
| 			fm_info_set_phy_address(FM1_10GEC1,
 | |
| 						CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
 | |
| 		} else {
 | |
| 			/* XAUI card is in slot 2 */
 | |
| 			clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK,
 | |
| 				     BRDCFG1_EMI2_SEL_SLOT2);
 | |
| 			fm_info_set_phy_address(FM1_10GEC1,
 | |
| 						CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fm_info_set_mdio(FM1_10GEC1,
 | |
| 			miiphy_get_dev_by_name(DEFAULT_FM_TGEC_MDIO_NAME));
 | |
| 
 | |
| 	cpu_eth_init(bis);
 | |
| #endif
 | |
| 
 | |
| 	return pci_eth_init(bis);
 | |
| }
 |