1
0
mirror of https://xff.cz/git/u-boot/ synced 2025-10-02 07:51:17 +02:00
Files
u-boot-megous/test/image/spl_load_fs.c
Tom Rini d678a59d2d Revert "Merge patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet""
When bringing in the series 'arm: dts: am62-beagleplay: Fix Beagleplay
Ethernet"' I failed to notice that b4 noticed it was based on next and
so took that as the base commit and merged that part of next to master.

This reverts commit c8ffd1356d, reversing
changes made to 2ee6f3a5f7.

Reported-by: Jonas Karlman <jonas@kwiboo.se>
Signed-off-by: Tom Rini <trini@konsulko.com>
2024-05-19 08:16:36 -06:00

443 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2023 Sean Anderson <seanga2@gmail.com>
*/
#include <common.h>
#include <blk.h>
#include <ext_common.h>
#include <ext4fs.h>
#include <fat.h>
#include <fs.h>
#include <memalign.h>
#include <spl.h>
#include <asm/io.h>
#include <linux/stat.h>
#include <test/spl.h>
#include <test/ut.h>
/**
* create_ext2() - Create an "ext2" filesystem with a single file
* @dst: The location of the new filesystem; MUST be zeroed
* @size: The size of the file
* @filename: The name of the file
* @data_offset: Filled with the offset of the file data from @dst
*
* Budget mke2fs. We use 1k blocks (to reduce overhead) with a single block
* group, which limits us to 8M of data. Almost every feature which increases
* complexity (checksums, hash tree directories, etc.) is disabled. We do cheat
* a little and use extents from ext4 to save having to deal with indirects, but
* U-Boot doesn't care.
*
* If @dst is %NULL, nothing is copied.
*
* Return: The size of the filesystem in bytes
*/
static size_t create_ext2(void *dst, size_t size, const char *filename,
size_t *data_offset)
{
u32 super_block = 1;
u32 group_block = 2;
u32 block_bitmap_block = 3;
u32 inode_bitmap_block = 4;
u32 inode_table_block = 5;
u32 root_block = 6;
u32 file_block = 7;
u32 root_ino = EXT2_ROOT_INO;
u32 file_ino = EXT2_BOOT_LOADER_INO;
u32 block_size = EXT2_MIN_BLOCK_SIZE;
u32 inode_size = sizeof(struct ext2_inode);
u32 file_blocks = (size + block_size - 1) / block_size;
u32 blocks = file_block + file_blocks;
u32 inodes = block_size / inode_size;
u32 filename_len = strlen(filename);
u32 dirent_len = ALIGN(filename_len, sizeof(struct ext2_dirent)) +
sizeof(struct ext2_dirent);
struct ext2_sblock *sblock = dst + super_block * block_size;
struct ext2_block_group *bg = dst + group_block * block_size;
struct ext2_inode *inode_table = dst + inode_table_block * block_size;
struct ext2_inode *root_inode = &inode_table[root_ino - 1];
struct ext2_inode *file_inode = &inode_table[file_ino - 1];
struct ext4_extent_header *ext_block = (void *)&file_inode->b;
struct ext4_extent *extent = (void *)(ext_block + 1);
struct ext2_dirent *dot = dst + root_block * block_size;
struct ext2_dirent *dotdot = dot + 2;
struct ext2_dirent *dirent = dotdot + 2;
struct ext2_dirent *last = ((void *)dirent) + dirent_len;
/* Make sure we fit in one block group */
if (blocks > block_size * 8)
return 0;
if (filename_len > EXT2_NAME_LEN)
return 0;
if (data_offset)
*data_offset = file_block * block_size;
if (!dst)
goto out;
sblock->total_inodes = cpu_to_le32(inodes);
sblock->total_blocks = cpu_to_le32(blocks);
sblock->first_data_block = cpu_to_le32(super_block);
sblock->blocks_per_group = cpu_to_le32(blocks);
sblock->fragments_per_group = cpu_to_le32(blocks);
sblock->inodes_per_group = cpu_to_le32(inodes);
sblock->magic = cpu_to_le16(EXT2_MAGIC);
/* Done mostly so we can pretend to be (in)compatible */
sblock->revision_level = cpu_to_le32(EXT2_DYNAMIC_REV);
/* Not really accurate but it doesn't matter */
sblock->first_inode = cpu_to_le32(EXT2_GOOD_OLD_FIRST_INO);
sblock->inode_size = cpu_to_le32(inode_size);
sblock->feature_incompat = cpu_to_le32(EXT4_FEATURE_INCOMPAT_EXTENTS);
bg->block_id = cpu_to_le32(block_bitmap_block);
bg->inode_id = cpu_to_le32(inode_bitmap_block);
bg->inode_table_id = cpu_to_le32(inode_table_block);
/*
* All blocks/inodes are in-use. I don't want to have to deal with
* endianness, so just fill everything in.
*/
memset(dst + block_bitmap_block * block_size, 0xff, block_size * 2);
root_inode->mode = cpu_to_le16(S_IFDIR | 0755);
root_inode->size = cpu_to_le32(block_size);
root_inode->nlinks = cpu_to_le16(3);
root_inode->blockcnt = cpu_to_le32(1);
root_inode->flags = cpu_to_le32(EXT4_TOPDIR_FL);
root_inode->b.blocks.dir_blocks[0] = root_block;
file_inode->mode = cpu_to_le16(S_IFREG | 0644);
file_inode->size = cpu_to_le32(size);
file_inode->nlinks = cpu_to_le16(1);
file_inode->blockcnt = cpu_to_le32(file_blocks);
file_inode->flags = cpu_to_le32(EXT4_EXTENTS_FL);
ext_block->eh_magic = cpu_to_le16(EXT4_EXT_MAGIC);
ext_block->eh_entries = cpu_to_le16(1);
ext_block->eh_max = cpu_to_le16(sizeof(file_inode->b) /
sizeof(*ext_block) - 1);
extent->ee_len = cpu_to_le16(file_blocks);
extent->ee_start_lo = cpu_to_le16(file_block);
/* I'm not sure we need these, but it can't hurt */
dot->inode = cpu_to_le32(root_ino);
dot->direntlen = cpu_to_le16(2 * sizeof(*dot));
dot->namelen = 1;
dot->filetype = FILETYPE_DIRECTORY;
memcpy(dot + 1, ".", dot->namelen);
dotdot->inode = cpu_to_le32(root_ino);
dotdot->direntlen = cpu_to_le16(2 * sizeof(*dotdot));
dotdot->namelen = 2;
dotdot->filetype = FILETYPE_DIRECTORY;
memcpy(dotdot + 1, "..", dotdot->namelen);
dirent->inode = cpu_to_le32(file_ino);
dirent->direntlen = cpu_to_le16(dirent_len);
dirent->namelen = filename_len;
dirent->filetype = FILETYPE_REG;
memcpy(dirent + 1, filename, filename_len);
last->direntlen = block_size - dirent_len;
out:
return (size_t)blocks * block_size;
}
/**
* create_fat() - Create a FAT32 filesystem with a single file
* @dst: The location of the new filesystem; MUST be zeroed
* @size: The size of the file
* @filename: The name of the file
* @data_offset: Filled with the offset of the file data from @dst
*
* Budget mkfs.fat. We use FAT32 (so I don't have to deal with FAT12) with no
* info sector, and a single one-sector FAT. This limits us to 64k of data
* (enough for anyone). The filename must fit in 8.3.
*
* If @dst is %NULL, nothing is copied.
*
* Return: The size of the filesystem in bytes
*/
static size_t create_fat(void *dst, size_t size, const char *filename,
size_t *data_offset)
{
u16 boot_sector = 0;
u16 fat_sector = 1;
u32 root_sector = 2;
u32 file_sector = 3;
u16 sector_size = 512;
u32 file_sectors = (size + sector_size - 1) / sector_size;
u32 sectors = file_sector + file_sectors;
char *ext;
size_t filename_len, ext_len;
int i;
struct boot_sector *bs = dst + boot_sector * sector_size;
struct volume_info *vi = (void *)(bs + 1);
__le32 *fat = dst + fat_sector * sector_size;
struct dir_entry *dirent = dst + root_sector * sector_size;
/* Make sure we fit in the FAT */
if (sectors > sector_size / sizeof(u32))
return 0;
ext = strchr(filename, '.');
if (ext) {
filename_len = ext - filename;
ext++;
ext_len = strlen(ext);
} else {
filename_len = strlen(filename);
ext_len = 0;
}
if (filename_len > 8 || ext_len > 3)
return 0;
if (data_offset)
*data_offset = file_sector * sector_size;
if (!dst)
goto out;
bs->sector_size[0] = sector_size & 0xff;
bs->sector_size[1] = sector_size >> 8;
bs->cluster_size = 1;
bs->reserved = cpu_to_le16(fat_sector);
bs->fats = 1;
bs->media = 0xf8;
bs->total_sect = cpu_to_le32(sectors);
bs->fat32_length = cpu_to_le32(1);
bs->root_cluster = cpu_to_le32(root_sector);
vi->ext_boot_sign = 0x29;
memcpy(vi->fs_type, "FAT32 ", sizeof(vi->fs_type));
memcpy(dst + 0x1fe, "\x55\xAA", 2);
fat[0] = cpu_to_le32(0x0ffffff8);
fat[1] = cpu_to_le32(0x0fffffff);
fat[2] = cpu_to_le32(0x0ffffff8);
for (i = file_sector; file_sectors > 1; file_sectors--, i++)
fat[i] = cpu_to_le32(i + 1);
fat[i] = cpu_to_le32(0x0ffffff8);
for (i = 0; i < sizeof(dirent->nameext.name); i++) {
if (i < filename_len)
dirent->nameext.name[i] = toupper(filename[i]);
else
dirent->nameext.name[i] = ' ';
}
for (i = 0; i < sizeof(dirent->nameext.ext); i++) {
if (i < ext_len)
dirent->nameext.ext[i] = toupper(ext[i]);
else
dirent->nameext.ext[i] = ' ';
}
dirent->start = cpu_to_le16(file_sector);
dirent->size = cpu_to_le32(size);
out:
return sectors * sector_size;
}
typedef size_t (*create_fs_t)(void *, size_t, const char *, size_t *);
static int spl_test_fs(struct unit_test_state *uts, const char *test_name,
create_fs_t create)
{
const char *filename = CONFIG_SPL_FS_LOAD_PAYLOAD_NAME;
struct blk_desc *dev_desc;
char *data_write, *data_read;
void *fs;
size_t fs_size, fs_data, fs_blocks, data_size = SPL_TEST_DATA_SIZE;
loff_t actread;
fs_size = create(NULL, data_size, filename, &fs_data);
ut_assert(fs_size);
fs = calloc(fs_size, 1);
ut_assertnonnull(fs);
data_write = fs + fs_data;
generate_data(data_write, data_size, test_name);
ut_asserteq(fs_size, create(fs, data_size, filename, NULL));
dev_desc = blk_get_devnum_by_uclass_id(UCLASS_MMC, 0);
ut_assertnonnull(dev_desc);
ut_asserteq(512, dev_desc->blksz);
fs_blocks = fs_size / dev_desc->blksz;
ut_asserteq(fs_blocks, blk_dwrite(dev_desc, 0, fs_blocks, fs));
/* We have to use malloc so we can call virt_to_phys */
data_read = malloc_cache_aligned(data_size);
ut_assertnonnull(data_read);
ut_assertok(fs_set_blk_dev_with_part(dev_desc, 0));
ut_assertok(fs_read("/" CONFIG_SPL_FS_LOAD_PAYLOAD_NAME,
virt_to_phys(data_read), 0, data_size, &actread));
ut_asserteq(data_size, actread);
ut_asserteq_mem(data_write, data_read, data_size);
free(data_read);
free(fs);
return 0;
}
static int spl_test_ext(struct unit_test_state *uts)
{
return spl_test_fs(uts, __func__, create_ext2);
}
SPL_TEST(spl_test_ext, DM_FLAGS);
static int spl_test_fat(struct unit_test_state *uts)
{
spl_fat_force_reregister();
return spl_test_fs(uts, __func__, create_fat);
}
SPL_TEST(spl_test_fat, DM_FLAGS);
static bool spl_mmc_raw;
u32 spl_mmc_boot_mode(struct mmc *mmc, const u32 boot_device)
{
return spl_mmc_raw ? MMCSD_MODE_RAW : MMCSD_MODE_FS;
}
static int spl_test_mmc_fs(struct unit_test_state *uts, const char *test_name,
enum spl_test_image type, create_fs_t create_fs,
bool blk_mode)
{
const char *filename = CONFIG_SPL_FS_LOAD_PAYLOAD_NAME;
struct blk_desc *dev_desc;
size_t fs_size, fs_data, img_size, img_data,
plain_size = SPL_TEST_DATA_SIZE;
struct spl_image_info info_write = {
.name = test_name,
.size = type == LEGACY_LZMA ? lzma_compressed_size :
plain_size,
}, info_read = { };
struct disk_partition part = {
.start = 1,
.sys_ind = 0x83,
};
struct spl_image_loader *loader =
SPL_LOAD_IMAGE_GET(0, BOOT_DEVICE_MMC1, spl_mmc_load_image);
struct spl_boot_device bootdev = {
.boot_device = loader->boot_device,
};
void *fs;
char *data, *plain;
img_size = create_image(NULL, type, &info_write, &img_data);
ut_assert(img_size);
fs_size = create_fs(NULL, img_size, filename, &fs_data);
ut_assert(fs_size);
fs = calloc(fs_size, 1);
ut_assertnonnull(fs);
data = fs + fs_data + img_data;
if (type == LEGACY_LZMA) {
plain = malloc(plain_size);
ut_assertnonnull(plain);
generate_data(plain, plain_size, "lzma");
memcpy(data, lzma_compressed, lzma_compressed_size);
} else {
plain = data;
generate_data(plain, plain_size, test_name);
}
ut_asserteq(img_size, create_image(fs + fs_data, type, &info_write,
NULL));
ut_asserteq(fs_size, create_fs(fs, img_size, filename, NULL));
dev_desc = blk_get_devnum_by_uclass_id(UCLASS_MMC, 0);
ut_assertnonnull(dev_desc);
ut_asserteq(512, dev_desc->blksz);
part.size = fs_size / dev_desc->blksz;
ut_assertok(write_mbr_partitions(dev_desc, &part, 1, 0));
ut_asserteq(part.size, blk_dwrite(dev_desc, part.start, part.size, fs));
spl_mmc_raw = false;
if (blk_mode)
ut_assertok(spl_blk_load_image(&info_read, &bootdev, UCLASS_MMC,
0, 1));
else
ut_assertok(loader->load_image(&info_read, &bootdev));
if (check_image_info(uts, &info_write, &info_read))
return CMD_RET_FAILURE;
if (type == LEGACY_LZMA)
ut_asserteq(plain_size, info_read.size);
ut_asserteq_mem(plain, phys_to_virt(info_write.load_addr), plain_size);
if (type == LEGACY_LZMA)
free(plain);
free(fs);
return 0;
}
static int spl_test_blk(struct unit_test_state *uts, const char *test_name,
enum spl_test_image type)
{
spl_fat_force_reregister();
if (spl_test_mmc_fs(uts, test_name, type, create_fat, true))
return CMD_RET_FAILURE;
return spl_test_mmc_fs(uts, test_name, type, create_ext2, true);
}
SPL_IMG_TEST(spl_test_blk, LEGACY, DM_FLAGS);
SPL_IMG_TEST(spl_test_blk, LEGACY_LZMA, DM_FLAGS);
SPL_IMG_TEST(spl_test_blk, IMX8, DM_FLAGS);
SPL_IMG_TEST(spl_test_blk, FIT_EXTERNAL, DM_FLAGS);
SPL_IMG_TEST(spl_test_blk, FIT_INTERNAL, DM_FLAGS);
static int spl_test_mmc_write_image(struct unit_test_state *uts, void *img,
size_t img_size)
{
struct blk_desc *dev_desc;
size_t img_blocks;
dev_desc = blk_get_devnum_by_uclass_id(UCLASS_MMC, 0);
ut_assertnonnull(dev_desc);
img_blocks = DIV_ROUND_UP(img_size, dev_desc->blksz);
ut_asserteq(img_blocks, blk_dwrite(dev_desc,
CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR,
img_blocks, img));
spl_mmc_raw = true;
return 0;
}
static int spl_test_mmc(struct unit_test_state *uts, const char *test_name,
enum spl_test_image type)
{
spl_mmc_clear_cache();
spl_fat_force_reregister();
if (spl_test_mmc_fs(uts, test_name, type, create_ext2, false))
return CMD_RET_FAILURE;
if (spl_test_mmc_fs(uts, test_name, type, create_fat, false))
return CMD_RET_FAILURE;
return do_spl_test_load(uts, test_name, type,
SPL_LOAD_IMAGE_GET(0, BOOT_DEVICE_MMC1,
spl_mmc_load_image),
spl_test_mmc_write_image);
}
SPL_IMG_TEST(spl_test_mmc, LEGACY, DM_FLAGS);
SPL_IMG_TEST(spl_test_mmc, LEGACY_LZMA, DM_FLAGS);
SPL_IMG_TEST(spl_test_mmc, IMX8, DM_FLAGS);
SPL_IMG_TEST(spl_test_mmc, FIT_EXTERNAL, DM_FLAGS);
SPL_IMG_TEST(spl_test_mmc, FIT_INTERNAL, DM_FLAGS);