mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-31 02:15:45 +01:00 
			
		
		
		
	U-Boot has imported various source files from other projects,
mostly Linux.
Something like
  #ifdef __UBOOT__
    [ modification for U-Boot ]
  #else
    [ original code ]
  #endif
is an often used strategy for clarification of adjusted parts,
that is, easier re-sync in future.
Instead of defining __UBOOT__ in each source file,
passing it from the top Makefile would be easier.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Acked-by: Marek Vasut <marex@denx.de>
Acked-by: Heiko Schocher <hs@denx.de>
		
	
		
			
				
	
	
		
			1400 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1400 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) International Business Machines Corp., 2006
 | |
|  *
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
|  *
 | |
|  * Author: Artem Bityutskiy (Битюцкий Артём)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The UBI Eraseblock Association (EBA) sub-system.
 | |
|  *
 | |
|  * This sub-system is responsible for I/O to/from logical eraseblock.
 | |
|  *
 | |
|  * Although in this implementation the EBA table is fully kept and managed in
 | |
|  * RAM, which assumes poor scalability, it might be (partially) maintained on
 | |
|  * flash in future implementations.
 | |
|  *
 | |
|  * The EBA sub-system implements per-logical eraseblock locking. Before
 | |
|  * accessing a logical eraseblock it is locked for reading or writing. The
 | |
|  * per-logical eraseblock locking is implemented by means of the lock tree. The
 | |
|  * lock tree is an RB-tree which refers all the currently locked logical
 | |
|  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
 | |
|  * They are indexed by (@vol_id, @lnum) pairs.
 | |
|  *
 | |
|  * EBA also maintains the global sequence counter which is incremented each
 | |
|  * time a logical eraseblock is mapped to a physical eraseblock and it is
 | |
|  * stored in the volume identifier header. This means that each VID header has
 | |
|  * a unique sequence number. The sequence number is only increased an we assume
 | |
|  * 64 bits is enough to never overflow.
 | |
|  */
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <linux/slab.h>
 | |
| #include <linux/crc32.h>
 | |
| #else
 | |
| #include <ubi_uboot.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/err.h>
 | |
| #include "ubi.h"
 | |
| 
 | |
| /* Number of physical eraseblocks reserved for atomic LEB change operation */
 | |
| #define EBA_RESERVED_PEBS 1
 | |
| 
 | |
| /**
 | |
|  * next_sqnum - get next sequence number.
 | |
|  * @ubi: UBI device description object
 | |
|  *
 | |
|  * This function returns next sequence number to use, which is just the current
 | |
|  * global sequence counter value. It also increases the global sequence
 | |
|  * counter.
 | |
|  */
 | |
| unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
 | |
| {
 | |
| 	unsigned long long sqnum;
 | |
| 
 | |
| 	spin_lock(&ubi->ltree_lock);
 | |
| 	sqnum = ubi->global_sqnum++;
 | |
| 	spin_unlock(&ubi->ltree_lock);
 | |
| 
 | |
| 	return sqnum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_get_compat - get compatibility flags of a volume.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  *
 | |
|  * This function returns compatibility flags for an internal volume. User
 | |
|  * volumes have no compatibility flags, so %0 is returned.
 | |
|  */
 | |
| static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
 | |
| {
 | |
| 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
 | |
| 		return UBI_LAYOUT_VOLUME_COMPAT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ltree_lookup - look up the lock tree.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  *
 | |
|  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
 | |
|  * object if the logical eraseblock is locked and %NULL if it is not.
 | |
|  * @ubi->ltree_lock has to be locked.
 | |
|  */
 | |
| static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
 | |
| 					    int lnum)
 | |
| {
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	p = ubi->ltree.rb_node;
 | |
| 	while (p) {
 | |
| 		struct ubi_ltree_entry *le;
 | |
| 
 | |
| 		le = rb_entry(p, struct ubi_ltree_entry, rb);
 | |
| 
 | |
| 		if (vol_id < le->vol_id)
 | |
| 			p = p->rb_left;
 | |
| 		else if (vol_id > le->vol_id)
 | |
| 			p = p->rb_right;
 | |
| 		else {
 | |
| 			if (lnum < le->lnum)
 | |
| 				p = p->rb_left;
 | |
| 			else if (lnum > le->lnum)
 | |
| 				p = p->rb_right;
 | |
| 			else
 | |
| 				return le;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ltree_add_entry - add new entry to the lock tree.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  *
 | |
|  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 | |
|  * lock tree. If such entry is already there, its usage counter is increased.
 | |
|  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 | |
|  * failed.
 | |
|  */
 | |
| static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 | |
| 					       int vol_id, int lnum)
 | |
| {
 | |
| 	struct ubi_ltree_entry *le, *le1, *le_free;
 | |
| 
 | |
| 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 | |
| 	if (!le)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	le->users = 0;
 | |
| 	init_rwsem(&le->mutex);
 | |
| 	le->vol_id = vol_id;
 | |
| 	le->lnum = lnum;
 | |
| 
 | |
| 	spin_lock(&ubi->ltree_lock);
 | |
| 	le1 = ltree_lookup(ubi, vol_id, lnum);
 | |
| 
 | |
| 	if (le1) {
 | |
| 		/*
 | |
| 		 * This logical eraseblock is already locked. The newly
 | |
| 		 * allocated lock entry is not needed.
 | |
| 		 */
 | |
| 		le_free = le;
 | |
| 		le = le1;
 | |
| 	} else {
 | |
| 		struct rb_node **p, *parent = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * No lock entry, add the newly allocated one to the
 | |
| 		 * @ubi->ltree RB-tree.
 | |
| 		 */
 | |
| 		le_free = NULL;
 | |
| 
 | |
| 		p = &ubi->ltree.rb_node;
 | |
| 		while (*p) {
 | |
| 			parent = *p;
 | |
| 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 | |
| 
 | |
| 			if (vol_id < le1->vol_id)
 | |
| 				p = &(*p)->rb_left;
 | |
| 			else if (vol_id > le1->vol_id)
 | |
| 				p = &(*p)->rb_right;
 | |
| 			else {
 | |
| 				ubi_assert(lnum != le1->lnum);
 | |
| 				if (lnum < le1->lnum)
 | |
| 					p = &(*p)->rb_left;
 | |
| 				else
 | |
| 					p = &(*p)->rb_right;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		rb_link_node(&le->rb, parent, p);
 | |
| 		rb_insert_color(&le->rb, &ubi->ltree);
 | |
| 	}
 | |
| 	le->users += 1;
 | |
| 	spin_unlock(&ubi->ltree_lock);
 | |
| 
 | |
| 	kfree(le_free);
 | |
| 	return le;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * leb_read_lock - lock logical eraseblock for reading.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  *
 | |
|  * This function locks a logical eraseblock for reading. Returns zero in case
 | |
|  * of success and a negative error code in case of failure.
 | |
|  */
 | |
| static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 | |
| {
 | |
| 	struct ubi_ltree_entry *le;
 | |
| 
 | |
| 	le = ltree_add_entry(ubi, vol_id, lnum);
 | |
| 	if (IS_ERR(le))
 | |
| 		return PTR_ERR(le);
 | |
| 	down_read(&le->mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * leb_read_unlock - unlock logical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  */
 | |
| static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 | |
| {
 | |
| 	struct ubi_ltree_entry *le;
 | |
| 
 | |
| 	spin_lock(&ubi->ltree_lock);
 | |
| 	le = ltree_lookup(ubi, vol_id, lnum);
 | |
| 	le->users -= 1;
 | |
| 	ubi_assert(le->users >= 0);
 | |
| 	up_read(&le->mutex);
 | |
| 	if (le->users == 0) {
 | |
| 		rb_erase(&le->rb, &ubi->ltree);
 | |
| 		kfree(le);
 | |
| 	}
 | |
| 	spin_unlock(&ubi->ltree_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * leb_write_lock - lock logical eraseblock for writing.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  *
 | |
|  * This function locks a logical eraseblock for writing. Returns zero in case
 | |
|  * of success and a negative error code in case of failure.
 | |
|  */
 | |
| static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 | |
| {
 | |
| 	struct ubi_ltree_entry *le;
 | |
| 
 | |
| 	le = ltree_add_entry(ubi, vol_id, lnum);
 | |
| 	if (IS_ERR(le))
 | |
| 		return PTR_ERR(le);
 | |
| 	down_write(&le->mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * leb_write_lock - lock logical eraseblock for writing.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  *
 | |
|  * This function locks a logical eraseblock for writing if there is no
 | |
|  * contention and does nothing if there is contention. Returns %0 in case of
 | |
|  * success, %1 in case of contention, and and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 | |
| {
 | |
| 	struct ubi_ltree_entry *le;
 | |
| 
 | |
| 	le = ltree_add_entry(ubi, vol_id, lnum);
 | |
| 	if (IS_ERR(le))
 | |
| 		return PTR_ERR(le);
 | |
| 	if (down_write_trylock(&le->mutex))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Contention, cancel */
 | |
| 	spin_lock(&ubi->ltree_lock);
 | |
| 	le->users -= 1;
 | |
| 	ubi_assert(le->users >= 0);
 | |
| 	if (le->users == 0) {
 | |
| 		rb_erase(&le->rb, &ubi->ltree);
 | |
| 		kfree(le);
 | |
| 	}
 | |
| 	spin_unlock(&ubi->ltree_lock);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * leb_write_unlock - unlock logical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  */
 | |
| static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 | |
| {
 | |
| 	struct ubi_ltree_entry *le;
 | |
| 
 | |
| 	spin_lock(&ubi->ltree_lock);
 | |
| 	le = ltree_lookup(ubi, vol_id, lnum);
 | |
| 	le->users -= 1;
 | |
| 	ubi_assert(le->users >= 0);
 | |
| 	up_write(&le->mutex);
 | |
| 	if (le->users == 0) {
 | |
| 		rb_erase(&le->rb, &ubi->ltree);
 | |
| 		kfree(le);
 | |
| 	}
 | |
| 	spin_unlock(&ubi->ltree_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_eba_unmap_leb - un-map logical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol: volume description object
 | |
|  * @lnum: logical eraseblock number
 | |
|  *
 | |
|  * This function un-maps logical eraseblock @lnum and schedules corresponding
 | |
|  * physical eraseblock for erasure. Returns zero in case of success and a
 | |
|  * negative error code in case of failure.
 | |
|  */
 | |
| int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 | |
| 		      int lnum)
 | |
| {
 | |
| 	int err, pnum, vol_id = vol->vol_id;
 | |
| 
 | |
| 	if (ubi->ro_mode)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	err = leb_write_lock(ubi, vol_id, lnum);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	pnum = vol->eba_tbl[lnum];
 | |
| 	if (pnum < 0)
 | |
| 		/* This logical eraseblock is already unmapped */
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 | |
| 
 | |
| 	down_read(&ubi->fm_sem);
 | |
| 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
 | |
| 	up_read(&ubi->fm_sem);
 | |
| 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
 | |
| 
 | |
| out_unlock:
 | |
| 	leb_write_unlock(ubi, vol_id, lnum);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_eba_read_leb - read data.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol: volume description object
 | |
|  * @lnum: logical eraseblock number
 | |
|  * @buf: buffer to store the read data
 | |
|  * @offset: offset from where to read
 | |
|  * @len: how many bytes to read
 | |
|  * @check: data CRC check flag
 | |
|  *
 | |
|  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 | |
|  * bytes. The @check flag only makes sense for static volumes and forces
 | |
|  * eraseblock data CRC checking.
 | |
|  *
 | |
|  * In case of success this function returns zero. In case of a static volume,
 | |
|  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 | |
|  * returned for any volume type if an ECC error was detected by the MTD device
 | |
|  * driver. Other negative error cored may be returned in case of other errors.
 | |
|  */
 | |
| int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 | |
| 		     void *buf, int offset, int len, int check)
 | |
| {
 | |
| 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
 | |
| 	struct ubi_vid_hdr *vid_hdr;
 | |
| 	uint32_t uninitialized_var(crc);
 | |
| 
 | |
| 	err = leb_read_lock(ubi, vol_id, lnum);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	pnum = vol->eba_tbl[lnum];
 | |
| 	if (pnum < 0) {
 | |
| 		/*
 | |
| 		 * The logical eraseblock is not mapped, fill the whole buffer
 | |
| 		 * with 0xFF bytes. The exception is static volumes for which
 | |
| 		 * it is an error to read unmapped logical eraseblocks.
 | |
| 		 */
 | |
| 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 | |
| 			len, offset, vol_id, lnum);
 | |
| 		leb_read_unlock(ubi, vol_id, lnum);
 | |
| 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 | |
| 		memset(buf, 0xFF, len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 | |
| 		len, offset, vol_id, lnum, pnum);
 | |
| 
 | |
| 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 | |
| 		check = 0;
 | |
| 
 | |
| retry:
 | |
| 	if (check) {
 | |
| 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 | |
| 		if (!vid_hdr) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 | |
| 		if (err && err != UBI_IO_BITFLIPS) {
 | |
| 			if (err > 0) {
 | |
| 				/*
 | |
| 				 * The header is either absent or corrupted.
 | |
| 				 * The former case means there is a bug -
 | |
| 				 * switch to read-only mode just in case.
 | |
| 				 * The latter case means a real corruption - we
 | |
| 				 * may try to recover data. FIXME: but this is
 | |
| 				 * not implemented.
 | |
| 				 */
 | |
| 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
 | |
| 				    err == UBI_IO_BAD_HDR) {
 | |
| 					ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
 | |
| 						 pnum, vol_id, lnum);
 | |
| 					err = -EBADMSG;
 | |
| 				} else
 | |
| 					ubi_ro_mode(ubi);
 | |
| 			}
 | |
| 			goto out_free;
 | |
| 		} else if (err == UBI_IO_BITFLIPS)
 | |
| 			scrub = 1;
 | |
| 
 | |
| 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 | |
| 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 | |
| 
 | |
| 		crc = be32_to_cpu(vid_hdr->data_crc);
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 | |
| 	if (err) {
 | |
| 		if (err == UBI_IO_BITFLIPS) {
 | |
| 			scrub = 1;
 | |
| 			err = 0;
 | |
| 		} else if (mtd_is_eccerr(err)) {
 | |
| 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 | |
| 				goto out_unlock;
 | |
| 			scrub = 1;
 | |
| 			if (!check) {
 | |
| 				ubi_msg("force data checking");
 | |
| 				check = 1;
 | |
| 				goto retry;
 | |
| 			}
 | |
| 		} else
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (check) {
 | |
| 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 | |
| 		if (crc1 != crc) {
 | |
| 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
 | |
| 				 crc1, crc);
 | |
| 			err = -EBADMSG;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (scrub)
 | |
| 		err = ubi_wl_scrub_peb(ubi, pnum);
 | |
| 
 | |
| 	leb_read_unlock(ubi, vol_id, lnum);
 | |
| 	return err;
 | |
| 
 | |
| out_free:
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| out_unlock:
 | |
| 	leb_read_unlock(ubi, vol_id, lnum);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * recover_peb - recover from write failure.
 | |
|  * @ubi: UBI device description object
 | |
|  * @pnum: the physical eraseblock to recover
 | |
|  * @vol_id: volume ID
 | |
|  * @lnum: logical eraseblock number
 | |
|  * @buf: data which was not written because of the write failure
 | |
|  * @offset: offset of the failed write
 | |
|  * @len: how many bytes should have been written
 | |
|  *
 | |
|  * This function is called in case of a write failure and moves all good data
 | |
|  * from the potentially bad physical eraseblock to a good physical eraseblock.
 | |
|  * This function also writes the data which was not written due to the failure.
 | |
|  * Returns new physical eraseblock number in case of success, and a negative
 | |
|  * error code in case of failure.
 | |
|  */
 | |
| static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 | |
| 		       const void *buf, int offset, int len)
 | |
| {
 | |
| 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
 | |
| 	struct ubi_volume *vol = ubi->volumes[idx];
 | |
| 	struct ubi_vid_hdr *vid_hdr;
 | |
| 
 | |
| 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 | |
| 	if (!vid_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| retry:
 | |
| 	new_pnum = ubi_wl_get_peb(ubi);
 | |
| 	if (new_pnum < 0) {
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		return new_pnum;
 | |
| 	}
 | |
| 
 | |
| 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
 | |
| 
 | |
| 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 | |
| 	if (err && err != UBI_IO_BITFLIPS) {
 | |
| 		if (err > 0)
 | |
| 			err = -EIO;
 | |
| 		goto out_put;
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
 | |
| 	if (err)
 | |
| 		goto write_error;
 | |
| 
 | |
| 	data_size = offset + len;
 | |
| 	mutex_lock(&ubi->buf_mutex);
 | |
| 	memset(ubi->peb_buf + offset, 0xFF, len);
 | |
| 
 | |
| 	/* Read everything before the area where the write failure happened */
 | |
| 	if (offset > 0) {
 | |
| 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
 | |
| 		if (err && err != UBI_IO_BITFLIPS)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ubi->peb_buf + offset, buf, len);
 | |
| 
 | |
| 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
 | |
| 	if (err) {
 | |
| 		mutex_unlock(&ubi->buf_mutex);
 | |
| 		goto write_error;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&ubi->buf_mutex);
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 
 | |
| 	down_read(&ubi->fm_sem);
 | |
| 	vol->eba_tbl[lnum] = new_pnum;
 | |
| 	up_read(&ubi->fm_sem);
 | |
| 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 | |
| 
 | |
| 	ubi_msg("data was successfully recovered");
 | |
| 	return 0;
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&ubi->buf_mutex);
 | |
| out_put:
 | |
| 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	return err;
 | |
| 
 | |
| write_error:
 | |
| 	/*
 | |
| 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
 | |
| 	 * get another one.
 | |
| 	 */
 | |
| 	ubi_warn("failed to write to PEB %d", new_pnum);
 | |
| 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 | |
| 	if (++tries > UBI_IO_RETRIES) {
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		return err;
 | |
| 	}
 | |
| 	ubi_msg("try again");
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_eba_write_leb - write data to dynamic volume.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol: volume description object
 | |
|  * @lnum: logical eraseblock number
 | |
|  * @buf: the data to write
 | |
|  * @offset: offset within the logical eraseblock where to write
 | |
|  * @len: how many bytes to write
 | |
|  *
 | |
|  * This function writes data to logical eraseblock @lnum of a dynamic volume
 | |
|  * @vol. Returns zero in case of success and a negative error code in case
 | |
|  * of failure. In case of error, it is possible that something was still
 | |
|  * written to the flash media, but may be some garbage.
 | |
|  */
 | |
| int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 | |
| 		      const void *buf, int offset, int len)
 | |
| {
 | |
| 	int err, pnum, tries = 0, vol_id = vol->vol_id;
 | |
| 	struct ubi_vid_hdr *vid_hdr;
 | |
| 
 | |
| 	if (ubi->ro_mode)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	err = leb_write_lock(ubi, vol_id, lnum);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	pnum = vol->eba_tbl[lnum];
 | |
| 	if (pnum >= 0) {
 | |
| 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
 | |
| 			len, offset, vol_id, lnum, pnum);
 | |
| 
 | |
| 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 | |
| 		if (err) {
 | |
| 			ubi_warn("failed to write data to PEB %d", pnum);
 | |
| 			if (err == -EIO && ubi->bad_allowed)
 | |
| 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
 | |
| 						  offset, len);
 | |
| 			if (err)
 | |
| 				ubi_ro_mode(ubi);
 | |
| 		}
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The logical eraseblock is not mapped. We have to get a free physical
 | |
| 	 * eraseblock and write the volume identifier header there first.
 | |
| 	 */
 | |
| 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 | |
| 	if (!vid_hdr) {
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 	vid_hdr->vol_id = cpu_to_be32(vol_id);
 | |
| 	vid_hdr->lnum = cpu_to_be32(lnum);
 | |
| 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 | |
| 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 | |
| 
 | |
| retry:
 | |
| 	pnum = ubi_wl_get_peb(ubi);
 | |
| 	if (pnum < 0) {
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		return pnum;
 | |
| 	}
 | |
| 
 | |
| 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 | |
| 		len, offset, vol_id, lnum, pnum);
 | |
| 
 | |
| 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 | |
| 	if (err) {
 | |
| 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 | |
| 			 vol_id, lnum, pnum);
 | |
| 		goto write_error;
 | |
| 	}
 | |
| 
 | |
| 	if (len) {
 | |
| 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 | |
| 		if (err) {
 | |
| 			ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
 | |
| 				 len, offset, vol_id, lnum, pnum);
 | |
| 			goto write_error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	down_read(&ubi->fm_sem);
 | |
| 	vol->eba_tbl[lnum] = pnum;
 | |
| 	up_read(&ubi->fm_sem);
 | |
| 
 | |
| 	leb_write_unlock(ubi, vol_id, lnum);
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	return 0;
 | |
| 
 | |
| write_error:
 | |
| 	if (err != -EIO || !ubi->bad_allowed) {
 | |
| 		ubi_ro_mode(ubi);
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Fortunately, this is the first write operation to this physical
 | |
| 	 * eraseblock, so just put it and request a new one. We assume that if
 | |
| 	 * this physical eraseblock went bad, the erase code will handle that.
 | |
| 	 */
 | |
| 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 | |
| 	if (err || ++tries > UBI_IO_RETRIES) {
 | |
| 		ubi_ro_mode(ubi);
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 	ubi_msg("try another PEB");
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_eba_write_leb_st - write data to static volume.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol: volume description object
 | |
|  * @lnum: logical eraseblock number
 | |
|  * @buf: data to write
 | |
|  * @len: how many bytes to write
 | |
|  * @used_ebs: how many logical eraseblocks will this volume contain
 | |
|  *
 | |
|  * This function writes data to logical eraseblock @lnum of static volume
 | |
|  * @vol. The @used_ebs argument should contain total number of logical
 | |
|  * eraseblock in this static volume.
 | |
|  *
 | |
|  * When writing to the last logical eraseblock, the @len argument doesn't have
 | |
|  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
 | |
|  * to the real data size, although the @buf buffer has to contain the
 | |
|  * alignment. In all other cases, @len has to be aligned.
 | |
|  *
 | |
|  * It is prohibited to write more than once to logical eraseblocks of static
 | |
|  * volumes. This function returns zero in case of success and a negative error
 | |
|  * code in case of failure.
 | |
|  */
 | |
| int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
 | |
| 			 int lnum, const void *buf, int len, int used_ebs)
 | |
| {
 | |
| 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
 | |
| 	struct ubi_vid_hdr *vid_hdr;
 | |
| 	uint32_t crc;
 | |
| 
 | |
| 	if (ubi->ro_mode)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	if (lnum == used_ebs - 1)
 | |
| 		/* If this is the last LEB @len may be unaligned */
 | |
| 		len = ALIGN(data_size, ubi->min_io_size);
 | |
| 	else
 | |
| 		ubi_assert(!(len & (ubi->min_io_size - 1)));
 | |
| 
 | |
| 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 | |
| 	if (!vid_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = leb_write_lock(ubi, vol_id, lnum);
 | |
| 	if (err) {
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 	vid_hdr->vol_id = cpu_to_be32(vol_id);
 | |
| 	vid_hdr->lnum = cpu_to_be32(lnum);
 | |
| 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 | |
| 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 | |
| 
 | |
| 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
 | |
| 	vid_hdr->vol_type = UBI_VID_STATIC;
 | |
| 	vid_hdr->data_size = cpu_to_be32(data_size);
 | |
| 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
 | |
| 	vid_hdr->data_crc = cpu_to_be32(crc);
 | |
| 
 | |
| retry:
 | |
| 	pnum = ubi_wl_get_peb(ubi);
 | |
| 	if (pnum < 0) {
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		return pnum;
 | |
| 	}
 | |
| 
 | |
| 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
 | |
| 		len, vol_id, lnum, pnum, used_ebs);
 | |
| 
 | |
| 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 | |
| 	if (err) {
 | |
| 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 | |
| 			 vol_id, lnum, pnum);
 | |
| 		goto write_error;
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 | |
| 	if (err) {
 | |
| 		ubi_warn("failed to write %d bytes of data to PEB %d",
 | |
| 			 len, pnum);
 | |
| 		goto write_error;
 | |
| 	}
 | |
| 
 | |
| 	ubi_assert(vol->eba_tbl[lnum] < 0);
 | |
| 	down_read(&ubi->fm_sem);
 | |
| 	vol->eba_tbl[lnum] = pnum;
 | |
| 	up_read(&ubi->fm_sem);
 | |
| 
 | |
| 	leb_write_unlock(ubi, vol_id, lnum);
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	return 0;
 | |
| 
 | |
| write_error:
 | |
| 	if (err != -EIO || !ubi->bad_allowed) {
 | |
| 		/*
 | |
| 		 * This flash device does not admit of bad eraseblocks or
 | |
| 		 * something nasty and unexpected happened. Switch to read-only
 | |
| 		 * mode just in case.
 | |
| 		 */
 | |
| 		ubi_ro_mode(ubi);
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 | |
| 	if (err || ++tries > UBI_IO_RETRIES) {
 | |
| 		ubi_ro_mode(ubi);
 | |
| 		leb_write_unlock(ubi, vol_id, lnum);
 | |
| 		ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 	ubi_msg("try another PEB");
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vol: volume description object
 | |
|  * @lnum: logical eraseblock number
 | |
|  * @buf: data to write
 | |
|  * @len: how many bytes to write
 | |
|  *
 | |
|  * This function changes the contents of a logical eraseblock atomically. @buf
 | |
|  * has to contain new logical eraseblock data, and @len - the length of the
 | |
|  * data, which has to be aligned. This function guarantees that in case of an
 | |
|  * unclean reboot the old contents is preserved. Returns zero in case of
 | |
|  * success and a negative error code in case of failure.
 | |
|  *
 | |
|  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
 | |
|  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
 | |
|  */
 | |
| int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
 | |
| 			      int lnum, const void *buf, int len)
 | |
| {
 | |
| 	int err, pnum, tries = 0, vol_id = vol->vol_id;
 | |
| 	struct ubi_vid_hdr *vid_hdr;
 | |
| 	uint32_t crc;
 | |
| 
 | |
| 	if (ubi->ro_mode)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		/*
 | |
| 		 * Special case when data length is zero. In this case the LEB
 | |
| 		 * has to be unmapped and mapped somewhere else.
 | |
| 		 */
 | |
| 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 | |
| 	if (!vid_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&ubi->alc_mutex);
 | |
| 	err = leb_write_lock(ubi, vol_id, lnum);
 | |
| 	if (err)
 | |
| 		goto out_mutex;
 | |
| 
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 	vid_hdr->vol_id = cpu_to_be32(vol_id);
 | |
| 	vid_hdr->lnum = cpu_to_be32(lnum);
 | |
| 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 | |
| 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 | |
| 
 | |
| 	crc = crc32(UBI_CRC32_INIT, buf, len);
 | |
| 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
 | |
| 	vid_hdr->data_size = cpu_to_be32(len);
 | |
| 	vid_hdr->copy_flag = 1;
 | |
| 	vid_hdr->data_crc = cpu_to_be32(crc);
 | |
| 
 | |
| retry:
 | |
| 	pnum = ubi_wl_get_peb(ubi);
 | |
| 	if (pnum < 0) {
 | |
| 		err = pnum;
 | |
| 		goto out_leb_unlock;
 | |
| 	}
 | |
| 
 | |
| 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
 | |
| 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
 | |
| 
 | |
| 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 | |
| 	if (err) {
 | |
| 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 | |
| 			 vol_id, lnum, pnum);
 | |
| 		goto write_error;
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 | |
| 	if (err) {
 | |
| 		ubi_warn("failed to write %d bytes of data to PEB %d",
 | |
| 			 len, pnum);
 | |
| 		goto write_error;
 | |
| 	}
 | |
| 
 | |
| 	if (vol->eba_tbl[lnum] >= 0) {
 | |
| 		err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
 | |
| 		if (err)
 | |
| 			goto out_leb_unlock;
 | |
| 	}
 | |
| 
 | |
| 	down_read(&ubi->fm_sem);
 | |
| 	vol->eba_tbl[lnum] = pnum;
 | |
| 	up_read(&ubi->fm_sem);
 | |
| 
 | |
| out_leb_unlock:
 | |
| 	leb_write_unlock(ubi, vol_id, lnum);
 | |
| out_mutex:
 | |
| 	mutex_unlock(&ubi->alc_mutex);
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	return err;
 | |
| 
 | |
| write_error:
 | |
| 	if (err != -EIO || !ubi->bad_allowed) {
 | |
| 		/*
 | |
| 		 * This flash device does not admit of bad eraseblocks or
 | |
| 		 * something nasty and unexpected happened. Switch to read-only
 | |
| 		 * mode just in case.
 | |
| 		 */
 | |
| 		ubi_ro_mode(ubi);
 | |
| 		goto out_leb_unlock;
 | |
| 	}
 | |
| 
 | |
| 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 | |
| 	if (err || ++tries > UBI_IO_RETRIES) {
 | |
| 		ubi_ro_mode(ubi);
 | |
| 		goto out_leb_unlock;
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 	ubi_msg("try another PEB");
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_error_sane - check whether a read error is sane.
 | |
|  * @err: code of the error happened during reading
 | |
|  *
 | |
|  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
 | |
|  * cannot read data from the target PEB (an error @err happened). If the error
 | |
|  * code is sane, then we treat this error as non-fatal. Otherwise the error is
 | |
|  * fatal and UBI will be switched to R/O mode later.
 | |
|  *
 | |
|  * The idea is that we try not to switch to R/O mode if the read error is
 | |
|  * something which suggests there was a real read problem. E.g., %-EIO. Or a
 | |
|  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
 | |
|  * mode, simply because we do not know what happened at the MTD level, and we
 | |
|  * cannot handle this. E.g., the underlying driver may have become crazy, and
 | |
|  * it is safer to switch to R/O mode to preserve the data.
 | |
|  *
 | |
|  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
 | |
|  * which we have just written.
 | |
|  */
 | |
| static int is_error_sane(int err)
 | |
| {
 | |
| 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
 | |
| 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_eba_copy_leb - copy logical eraseblock.
 | |
|  * @ubi: UBI device description object
 | |
|  * @from: physical eraseblock number from where to copy
 | |
|  * @to: physical eraseblock number where to copy
 | |
|  * @vid_hdr: VID header of the @from physical eraseblock
 | |
|  *
 | |
|  * This function copies logical eraseblock from physical eraseblock @from to
 | |
|  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
 | |
|  * function. Returns:
 | |
|  *   o %0 in case of success;
 | |
|  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
 | |
|  *   o a negative error code in case of failure.
 | |
|  */
 | |
| int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
 | |
| 		     struct ubi_vid_hdr *vid_hdr)
 | |
| {
 | |
| 	int err, vol_id, lnum, data_size, aldata_size, idx;
 | |
| 	struct ubi_volume *vol;
 | |
| 	uint32_t crc;
 | |
| 
 | |
| 	vol_id = be32_to_cpu(vid_hdr->vol_id);
 | |
| 	lnum = be32_to_cpu(vid_hdr->lnum);
 | |
| 
 | |
| 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
 | |
| 
 | |
| 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
 | |
| 		data_size = be32_to_cpu(vid_hdr->data_size);
 | |
| 		aldata_size = ALIGN(data_size, ubi->min_io_size);
 | |
| 	} else
 | |
| 		data_size = aldata_size =
 | |
| 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
 | |
| 
 | |
| 	idx = vol_id2idx(ubi, vol_id);
 | |
| 	spin_lock(&ubi->volumes_lock);
 | |
| 	/*
 | |
| 	 * Note, we may race with volume deletion, which means that the volume
 | |
| 	 * this logical eraseblock belongs to might be being deleted. Since the
 | |
| 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
 | |
| 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
 | |
| 	 */
 | |
| 	vol = ubi->volumes[idx];
 | |
| 	spin_unlock(&ubi->volumes_lock);
 | |
| 	if (!vol) {
 | |
| 		/* No need to do further work, cancel */
 | |
| 		dbg_wl("volume %d is being removed, cancel", vol_id);
 | |
| 		return MOVE_CANCEL_RACE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not want anybody to write to this logical eraseblock while we
 | |
| 	 * are moving it, so lock it.
 | |
| 	 *
 | |
| 	 * Note, we are using non-waiting locking here, because we cannot sleep
 | |
| 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
 | |
| 	 * unmapping the LEB which is mapped to the PEB we are going to move
 | |
| 	 * (@from). This task locks the LEB and goes sleep in the
 | |
| 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
 | |
| 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
 | |
| 	 * LEB is already locked, we just do not move it and return
 | |
| 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
 | |
| 	 * we do not know the reasons of the contention - it may be just a
 | |
| 	 * normal I/O on this LEB, so we want to re-try.
 | |
| 	 */
 | |
| 	err = leb_write_trylock(ubi, vol_id, lnum);
 | |
| 	if (err) {
 | |
| 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
 | |
| 		return MOVE_RETRY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The LEB might have been put meanwhile, and the task which put it is
 | |
| 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
 | |
| 	 * cancel it.
 | |
| 	 */
 | |
| 	if (vol->eba_tbl[lnum] != from) {
 | |
| 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
 | |
| 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
 | |
| 		err = MOVE_CANCEL_RACE;
 | |
| 		goto out_unlock_leb;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, now the LEB is locked and we can safely start moving it. Since
 | |
| 	 * this function utilizes the @ubi->peb_buf buffer which is shared
 | |
| 	 * with some other functions - we lock the buffer by taking the
 | |
| 	 * @ubi->buf_mutex.
 | |
| 	 */
 | |
| 	mutex_lock(&ubi->buf_mutex);
 | |
| 	dbg_wl("read %d bytes of data", aldata_size);
 | |
| 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
 | |
| 	if (err && err != UBI_IO_BITFLIPS) {
 | |
| 		ubi_warn("error %d while reading data from PEB %d",
 | |
| 			 err, from);
 | |
| 		err = MOVE_SOURCE_RD_ERR;
 | |
| 		goto out_unlock_buf;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we have got to calculate how much data we have to copy. In
 | |
| 	 * case of a static volume it is fairly easy - the VID header contains
 | |
| 	 * the data size. In case of a dynamic volume it is more difficult - we
 | |
| 	 * have to read the contents, cut 0xFF bytes from the end and copy only
 | |
| 	 * the first part. We must do this to avoid writing 0xFF bytes as it
 | |
| 	 * may have some side-effects. And not only this. It is important not
 | |
| 	 * to include those 0xFFs to CRC because later the they may be filled
 | |
| 	 * by data.
 | |
| 	 */
 | |
| 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
 | |
| 		aldata_size = data_size =
 | |
| 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
 | |
| 
 | |
| 	cond_resched();
 | |
| 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
 | |
| 	cond_resched();
 | |
| 
 | |
| 	/*
 | |
| 	 * It may turn out to be that the whole @from physical eraseblock
 | |
| 	 * contains only 0xFF bytes. Then we have to only write the VID header
 | |
| 	 * and do not write any data. This also means we should not set
 | |
| 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
 | |
| 	 */
 | |
| 	if (data_size > 0) {
 | |
| 		vid_hdr->copy_flag = 1;
 | |
| 		vid_hdr->data_size = cpu_to_be32(data_size);
 | |
| 		vid_hdr->data_crc = cpu_to_be32(crc);
 | |
| 	}
 | |
| 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 | |
| 
 | |
| 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
 | |
| 	if (err) {
 | |
| 		if (err == -EIO)
 | |
| 			err = MOVE_TARGET_WR_ERR;
 | |
| 		goto out_unlock_buf;
 | |
| 	}
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	/* Read the VID header back and check if it was written correctly */
 | |
| 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
 | |
| 	if (err) {
 | |
| 		if (err != UBI_IO_BITFLIPS) {
 | |
| 			ubi_warn("error %d while reading VID header back from PEB %d",
 | |
| 				 err, to);
 | |
| 			if (is_error_sane(err))
 | |
| 				err = MOVE_TARGET_RD_ERR;
 | |
| 		} else
 | |
| 			err = MOVE_TARGET_BITFLIPS;
 | |
| 		goto out_unlock_buf;
 | |
| 	}
 | |
| 
 | |
| 	if (data_size > 0) {
 | |
| 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
 | |
| 		if (err) {
 | |
| 			if (err == -EIO)
 | |
| 				err = MOVE_TARGET_WR_ERR;
 | |
| 			goto out_unlock_buf;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * We've written the data and are going to read it back to make
 | |
| 		 * sure it was written correctly.
 | |
| 		 */
 | |
| 		memset(ubi->peb_buf, 0xFF, aldata_size);
 | |
| 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
 | |
| 		if (err) {
 | |
| 			if (err != UBI_IO_BITFLIPS) {
 | |
| 				ubi_warn("error %d while reading data back from PEB %d",
 | |
| 					 err, to);
 | |
| 				if (is_error_sane(err))
 | |
| 					err = MOVE_TARGET_RD_ERR;
 | |
| 			} else
 | |
| 				err = MOVE_TARGET_BITFLIPS;
 | |
| 			goto out_unlock_buf;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
 | |
| 			ubi_warn("read data back from PEB %d and it is different",
 | |
| 				 to);
 | |
| 			err = -EINVAL;
 | |
| 			goto out_unlock_buf;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ubi_assert(vol->eba_tbl[lnum] == from);
 | |
| 	down_read(&ubi->fm_sem);
 | |
| 	vol->eba_tbl[lnum] = to;
 | |
| 	up_read(&ubi->fm_sem);
 | |
| 
 | |
| out_unlock_buf:
 | |
| 	mutex_unlock(&ubi->buf_mutex);
 | |
| out_unlock_leb:
 | |
| 	leb_write_unlock(ubi, vol_id, lnum);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * print_rsvd_warning - warn about not having enough reserved PEBs.
 | |
|  * @ubi: UBI device description object
 | |
|  *
 | |
|  * This is a helper function for 'ubi_eba_init()' which is called when UBI
 | |
|  * cannot reserve enough PEBs for bad block handling. This function makes a
 | |
|  * decision whether we have to print a warning or not. The algorithm is as
 | |
|  * follows:
 | |
|  *   o if this is a new UBI image, then just print the warning
 | |
|  *   o if this is an UBI image which has already been used for some time, print
 | |
|  *     a warning only if we can reserve less than 10% of the expected amount of
 | |
|  *     the reserved PEB.
 | |
|  *
 | |
|  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
 | |
|  * of PEBs becomes smaller, which is normal and we do not want to scare users
 | |
|  * with a warning every time they attach the MTD device. This was an issue
 | |
|  * reported by real users.
 | |
|  */
 | |
| static void print_rsvd_warning(struct ubi_device *ubi,
 | |
| 			       struct ubi_attach_info *ai)
 | |
| {
 | |
| 	/*
 | |
| 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
 | |
| 	 * large number to distinguish between newly flashed and used images.
 | |
| 	 */
 | |
| 	if (ai->max_sqnum > (1 << 18)) {
 | |
| 		int min = ubi->beb_rsvd_level / 10;
 | |
| 
 | |
| 		if (!min)
 | |
| 			min = 1;
 | |
| 		if (ubi->beb_rsvd_pebs > min)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
 | |
| 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
 | |
| 	if (ubi->corr_peb_count)
 | |
| 		ubi_warn("%d PEBs are corrupted and not used",
 | |
| 			 ubi->corr_peb_count);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * self_check_eba - run a self check on the EBA table constructed by fastmap.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai_fastmap: UBI attach info object created by fastmap
 | |
|  * @ai_scan: UBI attach info object created by scanning
 | |
|  *
 | |
|  * Returns < 0 in case of an internal error, 0 otherwise.
 | |
|  * If a bad EBA table entry was found it will be printed out and
 | |
|  * ubi_assert() triggers.
 | |
|  */
 | |
| int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
 | |
| 		   struct ubi_attach_info *ai_scan)
 | |
| {
 | |
| 	int i, j, num_volumes, ret = 0;
 | |
| 	int **scan_eba, **fm_eba;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct ubi_volume *vol;
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 	struct rb_node *rb;
 | |
| 
 | |
| 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
 | |
| 
 | |
| 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
 | |
| 	if (!scan_eba)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
 | |
| 	if (!fm_eba) {
 | |
| 		kfree(scan_eba);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_volumes; i++) {
 | |
| 		vol = ubi->volumes[i];
 | |
| 		if (!vol)
 | |
| 			continue;
 | |
| 
 | |
| 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
 | |
| 				      GFP_KERNEL);
 | |
| 		if (!scan_eba[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
 | |
| 				    GFP_KERNEL);
 | |
| 		if (!fm_eba[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < vol->reserved_pebs; j++)
 | |
| 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
 | |
| 
 | |
| 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
 | |
| 		if (!av)
 | |
| 			continue;
 | |
| 
 | |
| 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
 | |
| 			scan_eba[i][aeb->lnum] = aeb->pnum;
 | |
| 
 | |
| 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
 | |
| 		if (!av)
 | |
| 			continue;
 | |
| 
 | |
| 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
 | |
| 			fm_eba[i][aeb->lnum] = aeb->pnum;
 | |
| 
 | |
| 		for (j = 0; j < vol->reserved_pebs; j++) {
 | |
| 			if (scan_eba[i][j] != fm_eba[i][j]) {
 | |
| 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
 | |
| 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
 | |
| 					continue;
 | |
| 
 | |
| 				ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
 | |
| 					vol->vol_id, i, fm_eba[i][j],
 | |
| 					scan_eba[i][j]);
 | |
| 				ubi_assert(0);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_free:
 | |
| 	for (i = 0; i < num_volumes; i++) {
 | |
| 		if (!ubi->volumes[i])
 | |
| 			continue;
 | |
| 
 | |
| 		kfree(scan_eba[i]);
 | |
| 		kfree(fm_eba[i]);
 | |
| 	}
 | |
| 
 | |
| 	kfree(scan_eba);
 | |
| 	kfree(fm_eba);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_eba_init - initialize the EBA sub-system using attaching information.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * This function returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
 | |
| {
 | |
| 	int i, j, err, num_volumes;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct ubi_volume *vol;
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 	struct rb_node *rb;
 | |
| 
 | |
| 	dbg_eba("initialize EBA sub-system");
 | |
| 
 | |
| 	spin_lock_init(&ubi->ltree_lock);
 | |
| 	mutex_init(&ubi->alc_mutex);
 | |
| 	ubi->ltree = RB_ROOT;
 | |
| 
 | |
| 	ubi->global_sqnum = ai->max_sqnum + 1;
 | |
| 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
 | |
| 
 | |
| 	for (i = 0; i < num_volumes; i++) {
 | |
| 		vol = ubi->volumes[i];
 | |
| 		if (!vol)
 | |
| 			continue;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
 | |
| 				       GFP_KERNEL);
 | |
| 		if (!vol->eba_tbl) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < vol->reserved_pebs; j++)
 | |
| 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
 | |
| 
 | |
| 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
 | |
| 		if (!av)
 | |
| 			continue;
 | |
| 
 | |
| 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
 | |
| 			if (aeb->lnum >= vol->reserved_pebs)
 | |
| 				/*
 | |
| 				 * This may happen in case of an unclean reboot
 | |
| 				 * during re-size.
 | |
| 				 */
 | |
| 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
 | |
| 			vol->eba_tbl[aeb->lnum] = aeb->pnum;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
 | |
| 		ubi_err("no enough physical eraseblocks (%d, need %d)",
 | |
| 			ubi->avail_pebs, EBA_RESERVED_PEBS);
 | |
| 		if (ubi->corr_peb_count)
 | |
| 			ubi_err("%d PEBs are corrupted and not used",
 | |
| 				ubi->corr_peb_count);
 | |
| 		err = -ENOSPC;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
 | |
| 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
 | |
| 
 | |
| 	if (ubi->bad_allowed) {
 | |
| 		ubi_calculate_reserved(ubi);
 | |
| 
 | |
| 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
 | |
| 			/* No enough free physical eraseblocks */
 | |
| 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
 | |
| 			print_rsvd_warning(ubi, ai);
 | |
| 		} else
 | |
| 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
 | |
| 
 | |
| 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
 | |
| 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
 | |
| 	}
 | |
| 
 | |
| 	dbg_eba("EBA sub-system is initialized");
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	for (i = 0; i < num_volumes; i++) {
 | |
| 		if (!ubi->volumes[i])
 | |
| 			continue;
 | |
| 		kfree(ubi->volumes[i]->eba_tbl);
 | |
| 		ubi->volumes[i]->eba_tbl = NULL;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 |