mirror of
				https://xff.cz/git/u-boot/
				synced 2025-10-31 02:15:45 +01:00 
			
		
		
		
	This replaces dm_remove_devices_flags() calls in all boot implementations to ensure non vital devices are consistently removed first. All boot implementation except arch/arm/lib/bootm.c currently just call dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL). This can result in crashes when dependencies between devices exists. The driver model's design document describes DM_FLAG_VITAL as "indicates that the device is 'vital' to the operation of other devices". Device removal at boot should follow this. Instead of adding dm_remove_devices_flags() with (DM_REMOVE_ACTIVE_ALL | DM_REMOVE_NON_VITAL) everywhere add dm_remove_devices_active() which does this. Fixes a NULL pointer deref in the apple dart IOMMU driver during EFI boot. The xhci-pci (driver which depends on the IOMMU to work) removes its mapping on removal. This explodes when the IOMMU device was removed first. dm_remove_devices_flags() is kept since it is used for testing of device_remove() calls in dm. Signed-off-by: Janne Grunau <j@jannau.net>
		
			
				
	
	
		
			1426 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1426 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Tests for the core driver model code
 | |
|  *
 | |
|  * Copyright (c) 2013 Google, Inc
 | |
|  */
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <dm.h>
 | |
| #include <fdtdec.h>
 | |
| #include <log.h>
 | |
| #include <malloc.h>
 | |
| #include <asm/global_data.h>
 | |
| #include <dm/device-internal.h>
 | |
| #include <dm/root.h>
 | |
| #include <dm/util.h>
 | |
| #include <dm/test.h>
 | |
| #include <dm/uclass-internal.h>
 | |
| #include <linux/list.h>
 | |
| #include <test/test.h>
 | |
| #include <test/ut.h>
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| enum {
 | |
| 	TEST_INTVAL1		= 0,
 | |
| 	TEST_INTVAL2		= 3,
 | |
| 	TEST_INTVAL3		= 6,
 | |
| 	TEST_INTVAL_MANUAL	= 101112,
 | |
| 	TEST_INTVAL_PRE_RELOC	= 7,
 | |
| };
 | |
| 
 | |
| static const struct dm_test_pdata test_pdata[] = {
 | |
| 	{ .ping_add		= TEST_INTVAL1, },
 | |
| 	{ .ping_add		= TEST_INTVAL2, },
 | |
| 	{ .ping_add		= TEST_INTVAL3, },
 | |
| };
 | |
| 
 | |
| static const struct dm_test_pdata test_pdata_manual = {
 | |
| 	.ping_add		= TEST_INTVAL_MANUAL,
 | |
| };
 | |
| 
 | |
| static const struct dm_test_pdata test_pdata_pre_reloc = {
 | |
| 	.ping_add		= TEST_INTVAL_PRE_RELOC,
 | |
| };
 | |
| 
 | |
| U_BOOT_DRVINFO(dm_test_info1) = {
 | |
| 	.name = "test_drv",
 | |
| 	.plat = &test_pdata[0],
 | |
| };
 | |
| 
 | |
| U_BOOT_DRVINFO(dm_test_info2) = {
 | |
| 	.name = "test_drv",
 | |
| 	.plat = &test_pdata[1],
 | |
| };
 | |
| 
 | |
| U_BOOT_DRVINFO(dm_test_info3) = {
 | |
| 	.name = "test_drv",
 | |
| 	.plat = &test_pdata[2],
 | |
| };
 | |
| 
 | |
| static struct driver_info driver_info_manual = {
 | |
| 	.name = "test_manual_drv",
 | |
| 	.plat = &test_pdata_manual,
 | |
| };
 | |
| 
 | |
| static struct driver_info driver_info_pre_reloc = {
 | |
| 	.name = "test_pre_reloc_drv",
 | |
| 	.plat = &test_pdata_pre_reloc,
 | |
| };
 | |
| 
 | |
| static struct driver_info driver_info_act_dma = {
 | |
| 	.name = "test_act_dma_drv",
 | |
| };
 | |
| 
 | |
| static struct driver_info driver_info_vital_clk = {
 | |
| 	.name = "test_vital_clk_drv",
 | |
| };
 | |
| 
 | |
| static struct driver_info driver_info_act_dma_vital_clk = {
 | |
| 	.name = "test_act_dma_vital_clk_drv",
 | |
| };
 | |
| 
 | |
| void dm_leak_check_start(struct unit_test_state *uts)
 | |
| {
 | |
| 	uts->start = mallinfo();
 | |
| 	if (!uts->start.uordblks)
 | |
| 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
 | |
| }
 | |
| 
 | |
| int dm_leak_check_end(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct mallinfo end;
 | |
| 	int id, diff;
 | |
| 
 | |
| 	/* Don't delete the root class, since we started with that */
 | |
| 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
 | |
| 		struct uclass *uc;
 | |
| 
 | |
| 		uc = uclass_find(id);
 | |
| 		if (!uc)
 | |
| 			continue;
 | |
| 		ut_assertok(uclass_destroy(uc));
 | |
| 	}
 | |
| 
 | |
| 	end = mallinfo();
 | |
| 	diff = end.uordblks - uts->start.uordblks;
 | |
| 	if (diff > 0)
 | |
| 		printf("Leak: lost %#xd bytes\n", diff);
 | |
| 	else if (diff < 0)
 | |
| 		printf("Leak: gained %#xd bytes\n", -diff);
 | |
| 	ut_asserteq(uts->start.uordblks, end.uordblks);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Test that binding with plat occurs correctly */
 | |
| static int dm_test_autobind(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should have a single class (UCLASS_ROOT) and a single root
 | |
| 	 * device with no children.
 | |
| 	 */
 | |
| 	ut_assert(uts->root);
 | |
| 	ut_asserteq(1, list_count_nodes(gd->uclass_root));
 | |
| 	ut_asserteq(0, list_count_nodes(&gd->dm_root->child_head));
 | |
| 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
 | |
| 
 | |
| 	ut_assertok(dm_scan_plat(false));
 | |
| 
 | |
| 	/* We should have our test class now at least, plus more children */
 | |
| 	ut_assert(1 < list_count_nodes(gd->uclass_root));
 | |
| 	ut_assert(0 < list_count_nodes(&gd->dm_root->child_head));
 | |
| 
 | |
| 	/* Our 3 dm_test_infox children should be bound to the test uclass */
 | |
| 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
 | |
| 
 | |
| 	/* No devices should be probed */
 | |
| 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
 | |
| 		ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
 | |
| 
 | |
| 	/* Our test driver should have been bound 3 times */
 | |
| 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_autobind, 0);
 | |
| 
 | |
| /* Test that binding with uclass plat allocation occurs correctly */
 | |
| static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct dm_test_perdev_uc_pdata *uc_pdata;
 | |
| 	struct udevice *dev;
 | |
| 	struct uclass *uc;
 | |
| 
 | |
| 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
 | |
| 	ut_assert(uc);
 | |
| 
 | |
| 	/**
 | |
| 	 * Test if test uclass driver requires allocation for the uclass
 | |
| 	 * platform data and then check the dev->uclass_plat pointer.
 | |
| 	 */
 | |
| 	ut_assert(uc->uc_drv->per_device_plat_auto);
 | |
| 
 | |
| 	for (uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     uclass_find_next_device(&dev)) {
 | |
| 		ut_assertnonnull(dev);
 | |
| 
 | |
| 		uc_pdata = dev_get_uclass_plat(dev);
 | |
| 		ut_assert(uc_pdata);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_autobind_uclass_pdata_alloc, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* compare node names ignoring the unit address */
 | |
| static int dm_test_compare_node_name(struct unit_test_state *uts)
 | |
| {
 | |
| 	ofnode node;
 | |
| 
 | |
| 	node = ofnode_path("/mmio-bus@0");
 | |
| 	ut_assert(ofnode_valid(node));
 | |
| 	ut_assert(ofnode_name_eq(node, "mmio-bus"));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_compare_node_name, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* Test that binding with uclass plat setting occurs correctly */
 | |
| static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct dm_test_perdev_uc_pdata *uc_pdata;
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	/**
 | |
| 	 * In the test_postbind() method of test uclass driver, the uclass
 | |
| 	 * platform data should be set to three test int values - test it.
 | |
| 	 */
 | |
| 	for (uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     uclass_find_next_device(&dev)) {
 | |
| 		ut_assertnonnull(dev);
 | |
| 
 | |
| 		uc_pdata = dev_get_uclass_plat(dev);
 | |
| 		ut_assert(uc_pdata);
 | |
| 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
 | |
| 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
 | |
| 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_autobind_uclass_pdata_valid, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* Test that autoprobe finds all the expected devices */
 | |
| static int dm_test_autoprobe(struct unit_test_state *uts)
 | |
| {
 | |
| 	int expected_base_add;
 | |
| 	struct udevice *dev;
 | |
| 	struct uclass *uc;
 | |
| 	int i;
 | |
| 
 | |
| 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
 | |
| 	ut_assert(uc);
 | |
| 
 | |
| 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
 | |
| 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
 | |
| 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
 | |
| 
 | |
| 	/* The root device should not be activated until needed */
 | |
| 	ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should be able to find the three test devices, and they should
 | |
| 	 * all be activated as they are used (lazy activation, required by
 | |
| 	 * U-Boot)
 | |
| 	 */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
 | |
| 		ut_assert(dev);
 | |
| 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
 | |
| 			   "Driver %d/%s already activated", i, dev->name);
 | |
| 
 | |
| 		/* This should activate it */
 | |
| 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
 | |
| 		ut_assert(dev);
 | |
| 		ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
 | |
| 
 | |
| 		/* Activating a device should activate the root device */
 | |
| 		if (!i)
 | |
| 			ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Our 3 dm_test_info children should be passed to pre_probe and
 | |
| 	 * post_probe
 | |
| 	 */
 | |
| 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
 | |
| 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
 | |
| 
 | |
| 	/* Also we can check the per-device data */
 | |
| 	expected_base_add = 0;
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		struct dm_test_uclass_perdev_priv *priv;
 | |
| 		struct dm_test_pdata *pdata;
 | |
| 
 | |
| 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
 | |
| 		ut_assert(dev);
 | |
| 
 | |
| 		priv = dev_get_uclass_priv(dev);
 | |
| 		ut_assert(priv);
 | |
| 		ut_asserteq(expected_base_add, priv->base_add);
 | |
| 
 | |
| 		pdata = dev_get_plat(dev);
 | |
| 		expected_base_add += pdata->ping_add;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_autoprobe, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* Check that we see the correct plat in each device */
 | |
| static int dm_test_plat(struct unit_test_state *uts)
 | |
| {
 | |
| 	const struct dm_test_pdata *pdata;
 | |
| 	struct udevice *dev;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
 | |
| 		ut_assert(dev);
 | |
| 		pdata = dev_get_plat(dev);
 | |
| 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_plat, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* Test that we can bind, probe, remove, unbind a driver */
 | |
| static int dm_test_lifecycle(struct unit_test_state *uts)
 | |
| {
 | |
| 	int op_count[DM_TEST_OP_COUNT];
 | |
| 	struct udevice *dev, *test_dev;
 | |
| 	int start_dev_count, start_uc_count;
 | |
| 	int dev_count, uc_count;
 | |
| 	int pingret;
 | |
| 	int ret;
 | |
| 
 | |
| 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
 | |
| 
 | |
| 	dm_get_stats(&start_dev_count, &start_uc_count);
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&dev));
 | |
| 	ut_assert(dev);
 | |
| 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
 | |
| 			== op_count[DM_TEST_OP_BIND] + 1);
 | |
| 	ut_assert(!dev_get_priv(dev));
 | |
| 
 | |
| 	/* We should have one more device */
 | |
| 	dm_get_stats(&dev_count, &uc_count);
 | |
| 	ut_asserteq(start_dev_count + 1, dev_count);
 | |
| 	ut_asserteq(start_uc_count, uc_count);
 | |
| 
 | |
| 	/* Probe the device - it should fail allocating private data */
 | |
| 	uts->force_fail_alloc = 1;
 | |
| 	ret = device_probe(dev);
 | |
| 	ut_assert(ret == -ENOMEM);
 | |
| 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
 | |
| 			== op_count[DM_TEST_OP_PROBE] + 1);
 | |
| 	ut_assert(!dev_get_priv(dev));
 | |
| 
 | |
| 	/* Try again without the alloc failure */
 | |
| 	uts->force_fail_alloc = 0;
 | |
| 	ut_assertok(device_probe(dev));
 | |
| 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
 | |
| 			== op_count[DM_TEST_OP_PROBE] + 2);
 | |
| 	ut_assert(dev_get_priv(dev));
 | |
| 
 | |
| 	/* This should be device 3 in the uclass */
 | |
| 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
 | |
| 	ut_assert(dev == test_dev);
 | |
| 
 | |
| 	/* Try ping */
 | |
| 	ut_assertok(test_ping(dev, 100, &pingret));
 | |
| 	ut_assert(pingret == 102);
 | |
| 
 | |
| 	/* Now remove device 3 */
 | |
| 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
 | |
| 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
 | |
| 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
 | |
| 
 | |
| 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
 | |
| 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
 | |
| 	ut_assertok(device_unbind(dev));
 | |
| 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
 | |
| 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
 | |
| 
 | |
| 	/* We should have one less device */
 | |
| 	dm_get_stats(&dev_count, &uc_count);
 | |
| 	ut_asserteq(start_dev_count, dev_count);
 | |
| 	ut_asserteq(start_uc_count, uc_count);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_lifecycle, UTF_SCAN_PDATA | UTF_PROBE_TEST);
 | |
| 
 | |
| /* Test that we can bind/unbind and the lists update correctly */
 | |
| static int dm_test_ordering(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
 | |
| 	int pingret;
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&dev));
 | |
| 	ut_assert(dev);
 | |
| 
 | |
| 	/* Bind two new devices (numbers 4 and 5) */
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&dev_penultimate));
 | |
| 	ut_assert(dev_penultimate);
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&dev_last));
 | |
| 	ut_assert(dev_last);
 | |
| 
 | |
| 	/* Now remove device 3 */
 | |
| 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
 | |
| 	ut_assertok(device_unbind(dev));
 | |
| 
 | |
| 	/* The device numbering should have shifted down one */
 | |
| 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
 | |
| 	ut_assert(dev_penultimate == test_dev);
 | |
| 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
 | |
| 	ut_assert(dev_last == test_dev);
 | |
| 
 | |
| 	/* Add back the original device 3, now in position 5 */
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&dev));
 | |
| 	ut_assert(dev);
 | |
| 
 | |
| 	/* Try ping */
 | |
| 	ut_assertok(test_ping(dev, 100, &pingret));
 | |
| 	ut_assert(pingret == 102);
 | |
| 
 | |
| 	/* Remove 3 and 4 */
 | |
| 	ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
 | |
| 	ut_assertok(device_unbind(dev_penultimate));
 | |
| 	ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
 | |
| 	ut_assertok(device_unbind(dev_last));
 | |
| 
 | |
| 	/* Our device should now be in position 3 */
 | |
| 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
 | |
| 	ut_assert(dev == test_dev);
 | |
| 
 | |
| 	/* Now remove device 3 */
 | |
| 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
 | |
| 	ut_assertok(device_unbind(dev));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_ordering, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* Check that we can perform operations on a device (do a ping) */
 | |
| int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
 | |
| 			uint32_t base, struct dm_test_priv *priv)
 | |
| {
 | |
| 	int expected;
 | |
| 	int pingret;
 | |
| 
 | |
| 	/* Getting the child device should allocate plat / priv */
 | |
| 	ut_assertok(testfdt_ping(dev, 10, &pingret));
 | |
| 	ut_assert(dev_get_priv(dev));
 | |
| 	ut_assert(dev_get_plat(dev));
 | |
| 
 | |
| 	expected = 10 + base;
 | |
| 	ut_asserteq(expected, pingret);
 | |
| 
 | |
| 	/* Do another ping */
 | |
| 	ut_assertok(testfdt_ping(dev, 20, &pingret));
 | |
| 	expected = 20 + base;
 | |
| 	ut_asserteq(expected, pingret);
 | |
| 
 | |
| 	/* Now check the ping_total */
 | |
| 	priv = dev_get_priv(dev);
 | |
| 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
 | |
| 		    priv->ping_total);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Check that we can perform operations on devices */
 | |
| static int dm_test_operations(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now check that the ping adds are what we expect. This is using the
 | |
| 	 * ping-add property in each node.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
 | |
| 		uint32_t base;
 | |
| 
 | |
| 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
 | |
| 
 | |
| 		/*
 | |
| 		 * Get the 'reg' property, which tells us what the ping add
 | |
| 		 * should be. We don't use the plat because we want
 | |
| 		 * to test the code that sets that up (testfdt_drv_probe()).
 | |
| 		 */
 | |
| 		base = test_pdata[i].ping_add;
 | |
| 		debug("dev=%d, base=%d\n", i, base);
 | |
| 
 | |
| 		ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_operations, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* Remove all drivers and check that things work */
 | |
| static int dm_test_remove(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
 | |
| 		ut_assert(dev);
 | |
| 		ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
 | |
| 			   "Driver %d/%s not activated", i, dev->name);
 | |
| 		ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
 | |
| 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
 | |
| 			   "Driver %d/%s should have deactivated", i,
 | |
| 			   dev->name);
 | |
| 		ut_assert(!dev_get_priv(dev));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_remove, UTF_SCAN_PDATA | UTF_PROBE_TEST);
 | |
| 
 | |
| /* Remove and recreate everything, check for memory leaks */
 | |
| static int dm_test_leak(struct unit_test_state *uts)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		dm_leak_check_start(uts);
 | |
| 
 | |
| 		ut_assertok(dm_scan_plat(false));
 | |
| 		ut_assertok(dm_scan_fdt(false));
 | |
| 
 | |
| 		ret = uclass_probe_all(UCLASS_TEST);
 | |
| 		ut_assertok(ret);
 | |
| 
 | |
| 		ut_assertok(dm_leak_check_end(uts));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_leak, 0);
 | |
| 
 | |
| /* Test uclass init/destroy methods */
 | |
| static int dm_test_uclass(struct unit_test_state *uts)
 | |
| {
 | |
| 	int dev_count, uc_count;
 | |
| 	struct uclass *uc;
 | |
| 
 | |
| 	/* We should have just the root device and uclass */
 | |
| 	dm_get_stats(&dev_count, &uc_count);
 | |
| 	ut_asserteq(1, dev_count);
 | |
| 	ut_asserteq(1, uc_count);
 | |
| 
 | |
| 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
 | |
| 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
 | |
| 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
 | |
| 	ut_assert(uclass_get_priv(uc));
 | |
| 
 | |
| 	dm_get_stats(&dev_count, &uc_count);
 | |
| 	ut_asserteq(1, dev_count);
 | |
| 	ut_asserteq(2, uc_count);
 | |
| 
 | |
| 	ut_assertok(uclass_destroy(uc));
 | |
| 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
 | |
| 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
 | |
| 
 | |
| 	dm_get_stats(&dev_count, &uc_count);
 | |
| 	ut_asserteq(1, dev_count);
 | |
| 	ut_asserteq(1, uc_count);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass, 0);
 | |
| 
 | |
| /**
 | |
|  * create_children() - Create children of a parent node
 | |
|  *
 | |
|  * @dms:	Test system state
 | |
|  * @parent:	Parent device
 | |
|  * @count:	Number of children to create
 | |
|  * @key:	Key value to put in first child. Subsequence children
 | |
|  *		receive an incrementing value
 | |
|  * @child:	If not NULL, then the child device pointers are written into
 | |
|  *		this array.
 | |
|  * Return: 0 if OK, -ve on error
 | |
|  */
 | |
| static int create_children(struct unit_test_state *uts, struct udevice *parent,
 | |
| 			   int count, int key, struct udevice *child[])
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		struct dm_test_pdata *pdata;
 | |
| 
 | |
| 		ut_assertok(device_bind_by_name(parent, false,
 | |
| 						&driver_info_manual, &dev));
 | |
| 		pdata = calloc(1, sizeof(*pdata));
 | |
| 		pdata->ping_add = key + i;
 | |
| 		dev_set_plat(dev, pdata);
 | |
| 		if (child)
 | |
| 			child[i] = dev;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define NODE_COUNT	10
 | |
| 
 | |
| static int dm_test_children(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *top[NODE_COUNT];
 | |
| 	struct udevice *child[NODE_COUNT];
 | |
| 	struct udevice *grandchild[NODE_COUNT];
 | |
| 	struct udevice *dev;
 | |
| 	int total;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	/* We don't care about the numbering for this test */
 | |
| 	uts->skip_post_probe = 1;
 | |
| 
 | |
| 	ut_assert(NODE_COUNT > 5);
 | |
| 
 | |
| 	/* First create 10 top-level children */
 | |
| 	ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
 | |
| 
 | |
| 	/* Now a few have their own children */
 | |
| 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
 | |
| 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
 | |
| 
 | |
| 	/* And grandchildren */
 | |
| 	for (i = 0; i < NODE_COUNT; i++)
 | |
| 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
 | |
| 					    i == 2 ? grandchild : NULL));
 | |
| 
 | |
| 	/* Check total number of devices */
 | |
| 	total = NODE_COUNT * (3 + NODE_COUNT);
 | |
| 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
 | |
| 
 | |
| 	/* Try probing one of the grandchildren */
 | |
| 	ut_assertok(uclass_get_device(UCLASS_TEST,
 | |
| 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
 | |
| 	ut_asserteq_ptr(grandchild[0], dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * This should have probed the child and top node also, for a total
 | |
| 	 * of 3 nodes.
 | |
| 	 */
 | |
| 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
 | |
| 
 | |
| 	/* Probe the other grandchildren */
 | |
| 	for (i = 1; i < NODE_COUNT; i++)
 | |
| 		ut_assertok(device_probe(grandchild[i]));
 | |
| 
 | |
| 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
 | |
| 
 | |
| 	/* Probe everything */
 | |
| 	ret = uclass_probe_all(UCLASS_TEST);
 | |
| 	ut_assertok(ret);
 | |
| 
 | |
| 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
 | |
| 
 | |
| 	/* Remove a top-level child and check that the children are removed */
 | |
| 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
 | |
| 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
 | |
| 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
 | |
| 
 | |
| 	/* Try one with grandchildren */
 | |
| 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
 | |
| 	ut_asserteq_ptr(dev, top[5]);
 | |
| 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
 | |
| 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
 | |
| 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
 | |
| 
 | |
| 	/* Try the same with unbind */
 | |
| 	ut_assertok(device_unbind(top[2]));
 | |
| 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
 | |
| 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
 | |
| 
 | |
| 	/* Try one with grandchildren */
 | |
| 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
 | |
| 	ut_asserteq_ptr(dev, top[6]);
 | |
| 	ut_assertok(device_unbind(top[5]));
 | |
| 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
 | |
| 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_children, 0);
 | |
| 
 | |
| static int dm_test_device_reparent(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *top[NODE_COUNT];
 | |
| 	struct udevice *child[NODE_COUNT];
 | |
| 	struct udevice *grandchild[NODE_COUNT];
 | |
| 	struct udevice *dev;
 | |
| 	int total;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	/* We don't care about the numbering for this test */
 | |
| 	uts->skip_post_probe = 1;
 | |
| 
 | |
| 	ut_assert(NODE_COUNT > 5);
 | |
| 
 | |
| 	/* First create 10 top-level children */
 | |
| 	ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
 | |
| 
 | |
| 	/* Now a few have their own children */
 | |
| 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
 | |
| 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
 | |
| 
 | |
| 	/* And grandchildren */
 | |
| 	for (i = 0; i < NODE_COUNT; i++)
 | |
| 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
 | |
| 					    i == 2 ? grandchild : NULL));
 | |
| 
 | |
| 	/* Check total number of devices */
 | |
| 	total = NODE_COUNT * (3 + NODE_COUNT);
 | |
| 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
 | |
| 
 | |
| 	/* Probe everything */
 | |
| 	for (i = 0; i < total; i++)
 | |
| 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
 | |
| 
 | |
| 	/* Re-parent top-level children with no grandchildren. */
 | |
| 	ut_assertok(device_reparent(top[3], top[0]));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_reparent(top[4], top[0]));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	/* Re-parent top-level children with grandchildren. */
 | |
| 	ut_assertok(device_reparent(top[2], top[0]));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_reparent(top[5], top[2]));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	/* Re-parent grandchildren. */
 | |
| 	ut_assertok(device_reparent(grandchild[0], top[1]));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_reparent(grandchild[1], top[1]));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	/* Remove re-pareneted devices. */
 | |
| 	ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
 | |
| 	/* try to get devices */
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	/* Try the same with unbind */
 | |
| 	ut_assertok(device_unbind(top[3]));
 | |
| 	ut_assertok(device_unbind(top[4]));
 | |
| 	ut_assertok(device_unbind(top[5]));
 | |
| 	ut_assertok(device_unbind(top[2]));
 | |
| 
 | |
| 	ut_assertok(device_unbind(grandchild[0]));
 | |
| 	ut_assertok(device_unbind(grandchild[1]));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_device_reparent, 0);
 | |
| 
 | |
| /* Test that pre-relocation devices work as expected */
 | |
| static int dm_test_pre_reloc(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	/* The normal driver should refuse to bind before relocation */
 | |
| 	ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
 | |
| 						&driver_info_manual, &dev));
 | |
| 
 | |
| 	/* But this one is marked pre-reloc */
 | |
| 	ut_assertok(device_bind_by_name(uts->root, true,
 | |
| 					&driver_info_pre_reloc, &dev));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_pre_reloc, 0);
 | |
| 
 | |
| /*
 | |
|  * Test that removal of devices, either via the "normal" device_remove()
 | |
|  * API or via the device driver selective flag works as expected
 | |
|  */
 | |
| static int dm_test_remove_active_dma(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
 | |
| 					&dev));
 | |
| 	ut_assert(dev);
 | |
| 
 | |
| 	/* Probe the device */
 | |
| 	ut_assertok(device_probe(dev));
 | |
| 
 | |
| 	/* Test if device is active right now */
 | |
| 	ut_asserteq(true, device_active(dev));
 | |
| 
 | |
| 	/* Remove the device via selective remove flag */
 | |
| 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
 | |
| 
 | |
| 	/* Test if device is inactive right now */
 | |
| 	ut_asserteq(false, device_active(dev));
 | |
| 
 | |
| 	/* Probe the device again */
 | |
| 	ut_assertok(device_probe(dev));
 | |
| 
 | |
| 	/* Test if device is active right now */
 | |
| 	ut_asserteq(true, device_active(dev));
 | |
| 
 | |
| 	/* Remove the device via "normal" remove API */
 | |
| 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
 | |
| 
 | |
| 	/* Test if device is inactive right now */
 | |
| 	ut_asserteq(false, device_active(dev));
 | |
| 
 | |
| 	/*
 | |
| 	 * Test if a device without the active DMA flags is not removed upon
 | |
| 	 * the active DMA remove call
 | |
| 	 */
 | |
| 	ut_assertok(device_unbind(dev));
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&dev));
 | |
| 	ut_assert(dev);
 | |
| 
 | |
| 	/* Probe the device */
 | |
| 	ut_assertok(device_probe(dev));
 | |
| 
 | |
| 	/* Test if device is active right now */
 | |
| 	ut_asserteq(true, device_active(dev));
 | |
| 
 | |
| 	/* Remove the device via selective remove flag */
 | |
| 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
 | |
| 
 | |
| 	/* Test if device is still active right now */
 | |
| 	ut_asserteq(true, device_active(dev));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_remove_active_dma, 0);
 | |
| 
 | |
| /* Test removal of 'vital' devices */
 | |
| static int dm_test_remove_vital(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *normal, *dma, *vital, *dma_vital;
 | |
| 
 | |
| 	/* Skip the behaviour in test_post_probe() */
 | |
| 	uts->skip_post_probe = 1;
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&normal));
 | |
| 	ut_assertnonnull(normal);
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
 | |
| 					&dma));
 | |
| 	ut_assertnonnull(dma);
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false,
 | |
| 					&driver_info_vital_clk, &vital));
 | |
| 	ut_assertnonnull(vital);
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false,
 | |
| 					&driver_info_act_dma_vital_clk,
 | |
| 					&dma_vital));
 | |
| 	ut_assertnonnull(dma_vital);
 | |
| 
 | |
| 	/* Probe the devices */
 | |
| 	ut_assertok(device_probe(normal));
 | |
| 	ut_assertok(device_probe(dma));
 | |
| 	ut_assertok(device_probe(vital));
 | |
| 	ut_assertok(device_probe(dma_vital));
 | |
| 
 | |
| 	/* Check that devices are active right now */
 | |
| 	ut_asserteq(true, device_active(normal));
 | |
| 	ut_asserteq(true, device_active(dma));
 | |
| 	ut_asserteq(true, device_active(vital));
 | |
| 	ut_asserteq(true, device_active(dma_vital));
 | |
| 
 | |
| 	/* Remove active devices via selective remove flag */
 | |
| 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that this only has an effect on the dma device, since two
 | |
| 	 * devices are vital and the third does not have active DMA
 | |
| 	 */
 | |
| 	ut_asserteq(true, device_active(normal));
 | |
| 	ut_asserteq(false, device_active(dma));
 | |
| 	ut_asserteq(true, device_active(vital));
 | |
| 	ut_asserteq(true, device_active(dma_vital));
 | |
| 
 | |
| 	/* Remove active devices via selective remove flag */
 | |
| 	ut_assertok(device_probe(dma));
 | |
| 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
 | |
| 
 | |
| 	/* This should have affected both active-dma devices */
 | |
| 	ut_asserteq(true, device_active(normal));
 | |
| 	ut_asserteq(false, device_active(dma));
 | |
| 	ut_asserteq(true, device_active(vital));
 | |
| 	ut_asserteq(false, device_active(dma_vital));
 | |
| 
 | |
| 	/* Remove non-vital devices */
 | |
| 	ut_assertok(device_probe(dma));
 | |
| 	ut_assertok(device_probe(dma_vital));
 | |
| 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
 | |
| 
 | |
| 	/* This should have affected only non-vital devices */
 | |
| 	ut_asserteq(false, device_active(normal));
 | |
| 	ut_asserteq(false, device_active(dma));
 | |
| 	ut_asserteq(true, device_active(vital));
 | |
| 	ut_asserteq(true, device_active(dma_vital));
 | |
| 
 | |
| 	/* Remove vital devices via normal remove flag */
 | |
| 	ut_assertok(device_probe(normal));
 | |
| 	ut_assertok(device_probe(dma));
 | |
| 	dm_remove_devices_flags(DM_REMOVE_NORMAL);
 | |
| 
 | |
| 	/* Check that all devices are inactive right now */
 | |
| 	ut_asserteq(false, device_active(normal));
 | |
| 	ut_asserteq(false, device_active(dma));
 | |
| 	ut_asserteq(false, device_active(vital));
 | |
| 	ut_asserteq(false, device_active(dma_vital));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_remove_vital, 0);
 | |
| 
 | |
| /* Test removal of 'active' devices */
 | |
| static int dm_test_remove_active(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *normal, *dma, *vital, *dma_vital;
 | |
| 
 | |
| 	/* Skip the behaviour in test_post_probe() */
 | |
| 	uts->skip_post_probe = 1;
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&normal));
 | |
| 	ut_assertnonnull(normal);
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
 | |
| 					&dma));
 | |
| 	ut_assertnonnull(dma);
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false,
 | |
| 					&driver_info_vital_clk, &vital));
 | |
| 	ut_assertnonnull(vital);
 | |
| 
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false,
 | |
| 					&driver_info_act_dma_vital_clk,
 | |
| 					&dma_vital));
 | |
| 	ut_assertnonnull(dma_vital);
 | |
| 
 | |
| 	/* Probe the devices */
 | |
| 	ut_assertok(device_probe(normal));
 | |
| 	ut_assertok(device_probe(dma));
 | |
| 	ut_assertok(device_probe(vital));
 | |
| 	ut_assertok(device_probe(dma_vital));
 | |
| 
 | |
| 	/* Check that devices are active right now */
 | |
| 	ut_asserteq(true, device_active(normal));
 | |
| 	ut_asserteq(true, device_active(dma));
 | |
| 	ut_asserteq(true, device_active(vital));
 | |
| 	ut_asserteq(true, device_active(dma_vital));
 | |
| 
 | |
| 	/* Remove active devices in an ordered way */
 | |
| 	dm_remove_devices_active();
 | |
| 
 | |
| 	/* Check that all devices are inactive right now */
 | |
| 	ut_asserteq(true, device_active(normal));
 | |
| 	ut_asserteq(false, device_active(dma));
 | |
| 	ut_asserteq(true, device_active(vital));
 | |
| 	ut_asserteq(false, device_active(dma_vital));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_remove_active, 0);
 | |
| 
 | |
| static int dm_test_uclass_before_ready(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct uclass *uc;
 | |
| 
 | |
| 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
 | |
| 
 | |
| 	gd->dm_root = NULL;
 | |
| 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
 | |
| 
 | |
| 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
 | |
| 	ut_asserteq(-EDEADLK, uclass_get(UCLASS_TEST, &uc));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass_before_ready, 0);
 | |
| 
 | |
| static int dm_test_uclass_devices_find(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_find_next_device(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assertnonnull(dev);
 | |
| 	}
 | |
| 
 | |
| 	ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
 | |
| 	ut_assertnull(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass_devices_find, UTF_SCAN_PDATA);
 | |
| 
 | |
| static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *finddev;
 | |
| 	struct udevice *testdev;
 | |
| 	int findret, ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
 | |
| 	 * use its name and try to find it by uclass_find_device_by_name().
 | |
| 	 * Then, on success check if:
 | |
| 	 * - current 'testdev' name is equal to the returned 'finddev' name
 | |
| 	 * - current 'testdev' pointer is equal to the returned 'finddev'
 | |
| 	 *
 | |
| 	 * We assume that, each uclass's device name is unique, so if not, then
 | |
| 	 * this will fail on checking condition: testdev == finddev, since the
 | |
| 	 * uclass_find_device_by_name(), returns the first device by given name.
 | |
| 	*/
 | |
| 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
 | |
| 	     testdev;
 | |
| 	     ret = uclass_find_next_device(&testdev)) {
 | |
| 		ut_assertok(ret);
 | |
| 		ut_assertnonnull(testdev);
 | |
| 
 | |
| 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
 | |
| 						     testdev->name,
 | |
| 						     &finddev);
 | |
| 
 | |
| 		ut_assertok(findret);
 | |
| 		ut_assert(testdev);
 | |
| 		ut_asserteq_str(testdev->name, finddev->name);
 | |
| 		ut_asserteq_ptr(testdev, finddev);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass_devices_find_by_name, UTF_SCAN_FDT);
 | |
| 
 | |
| static int dm_test_uclass_devices_get(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (ret = uclass_first_device_check(UCLASS_TEST, &dev);
 | |
| 	     dev;
 | |
| 	     ret = uclass_next_device_check(&dev)) {
 | |
| 		ut_assert(!ret);
 | |
| 		ut_assert(device_active(dev));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass_devices_get, UTF_SCAN_PDATA);
 | |
| 
 | |
| static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *finddev;
 | |
| 	struct udevice *testdev;
 | |
| 	int ret, findret;
 | |
| 
 | |
| 	/*
 | |
| 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
 | |
| 	 * use its name and try to get it by uclass_get_device_by_name().
 | |
| 	 * On success check if:
 | |
| 	 * - returned finddev' is active
 | |
| 	 * - current 'testdev' name is equal to the returned 'finddev' name
 | |
| 	 * - current 'testdev' pointer is equal to the returned 'finddev'
 | |
| 	 *
 | |
| 	 * We asserts that the 'testdev' is active on each loop entry, so we
 | |
| 	 * could be sure that the 'finddev' is activated too, but for sure
 | |
| 	 * we check it again.
 | |
| 	 *
 | |
| 	 * We assume that, each uclass's device name is unique, so if not, then
 | |
| 	 * this will fail on checking condition: testdev == finddev, since the
 | |
| 	 * uclass_get_device_by_name(), returns the first device by given name.
 | |
| 	*/
 | |
| 	for (ret = uclass_first_device_check(UCLASS_TEST_FDT, &testdev);
 | |
| 	     testdev;
 | |
| 	     ret = uclass_next_device_check(&testdev)) {
 | |
| 		ut_assertok(ret);
 | |
| 		ut_assert(device_active(testdev));
 | |
| 
 | |
| 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
 | |
| 						    testdev->name,
 | |
| 						    &finddev);
 | |
| 
 | |
| 		ut_assertok(findret);
 | |
| 		ut_assert(finddev);
 | |
| 		ut_assert(device_active(finddev));
 | |
| 		ut_asserteq_str(testdev->name, finddev->name);
 | |
| 		ut_asserteq_ptr(testdev, finddev);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass_devices_get_by_name, UTF_SCAN_FDT);
 | |
| 
 | |
| static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
 | |
| 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_device_get_uclass_id, UTF_SCAN_PDATA);
 | |
| 
 | |
| static int dm_test_uclass_names(struct unit_test_state *uts)
 | |
| {
 | |
| 	ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
 | |
| 	ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
 | |
| 
 | |
| 	ut_asserteq(UCLASS_SPI, uclass_get_by_name("spi"));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass_names, UTF_SCAN_PDATA);
 | |
| 
 | |
| static int dm_test_inactive_child(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *parent, *dev1, *dev2;
 | |
| 
 | |
| 	/* Skip the behaviour in test_post_probe() */
 | |
| 	uts->skip_post_probe = 1;
 | |
| 
 | |
| 	ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a child but do not activate it. Calling the function again
 | |
| 	 * should return the same child.
 | |
| 	 */
 | |
| 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
 | |
| 							UCLASS_TEST, &dev1));
 | |
| 	ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
 | |
| 				"test_child", 0, ofnode_null(), &dev1));
 | |
| 
 | |
| 	ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
 | |
| 						     &dev2));
 | |
| 	ut_asserteq_ptr(dev1, dev2);
 | |
| 
 | |
| 	ut_assertok(device_probe(dev1));
 | |
| 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
 | |
| 							UCLASS_TEST, &dev2));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_inactive_child, UTF_SCAN_PDATA);
 | |
| 
 | |
| /* Make sure all bound devices have a sequence number */
 | |
| static int dm_test_all_have_seq(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 	struct uclass *uc;
 | |
| 
 | |
| 	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
 | |
| 		list_for_each_entry(dev, &uc->dev_head, uclass_node) {
 | |
| 			if (dev->seq_ == -1)
 | |
| 				printf("Device '%s' has no seq (%d)\n",
 | |
| 				       dev->name, dev->seq_);
 | |
| 			ut_assert(dev->seq_ != -1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_all_have_seq, UTF_SCAN_PDATA);
 | |
| 
 | |
| #if CONFIG_IS_ENABLED(DM_DMA)
 | |
| static int dm_test_dma_offset(struct unit_test_state *uts)
 | |
| {
 | |
|        struct udevice *dev;
 | |
|        ofnode node;
 | |
| 
 | |
|        /* Make sure the bus's dma-ranges aren't taken into account here */
 | |
|        node = ofnode_path("/mmio-bus@0");
 | |
|        ut_assert(ofnode_valid(node));
 | |
|        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
 | |
|        ut_asserteq_64(0, dev->dma_offset);
 | |
| 
 | |
|        /* Device behind a bus with dma-ranges */
 | |
|        node = ofnode_path("/mmio-bus@0/subnode@0");
 | |
|        ut_assert(ofnode_valid(node));
 | |
|        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
 | |
|        ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
 | |
| 
 | |
|        /* This one has no dma-ranges */
 | |
|        node = ofnode_path("/mmio-bus@1");
 | |
|        ut_assert(ofnode_valid(node));
 | |
|        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
 | |
|        node = ofnode_path("/mmio-bus@1/subnode@0");
 | |
|        ut_assert(ofnode_valid(node));
 | |
|        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
 | |
|        ut_asserteq_64(0, dev->dma_offset);
 | |
| 
 | |
|        return 0;
 | |
| }
 | |
| DM_TEST(dm_test_dma_offset, UTF_SCAN_PDATA | UTF_SCAN_FDT);
 | |
| #endif
 | |
| 
 | |
| /* Test dm_get_stats() */
 | |
| static int dm_test_get_stats(struct unit_test_state *uts)
 | |
| {
 | |
| 	int dev_count, uc_count;
 | |
| 
 | |
| 	dm_get_stats(&dev_count, &uc_count);
 | |
| 	ut_assert(dev_count > 50);
 | |
| 	ut_assert(uc_count > 30);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_get_stats, UTF_SCAN_FDT);
 | |
| 
 | |
| /* Test uclass_find_device_by_name() */
 | |
| static int dm_test_uclass_find_device(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	ut_assertok(uclass_find_device_by_name(UCLASS_I2C, "i2c@0", &dev));
 | |
| 	ut_asserteq(-ENODEV,
 | |
| 		    uclass_find_device_by_name(UCLASS_I2C, "i2c@0x", &dev));
 | |
| 	ut_assertok(uclass_find_device_by_namelen(UCLASS_I2C, "i2c@0x", 5,
 | |
| 						  &dev));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_uclass_find_device, UTF_SCAN_FDT);
 | |
| 
 | |
| /* Test getting information about tags attached to devices */
 | |
| static int dm_test_dev_get_attach(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
 | |
| 	ut_asserteq_str("a-test", dev->name);
 | |
| 
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT));
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV));
 | |
| 	ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV));
 | |
| 	ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT));
 | |
| 	ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT));
 | |
| 	ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV));
 | |
| 
 | |
| 	ut_asserteq(sizeof(struct dm_test_pdata),
 | |
| 		    dev_get_attach_size(dev, DM_TAG_PLAT));
 | |
| 	ut_asserteq(sizeof(struct dm_test_priv),
 | |
| 		    dev_get_attach_size(dev, DM_TAG_PRIV));
 | |
| 	ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PRIV));
 | |
| 	ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PLAT));
 | |
| 	ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT));
 | |
| 	ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_dev_get_attach, UTF_SCAN_FDT);
 | |
| 
 | |
| /* Test getting information about tags attached to bus devices */
 | |
| static int dm_test_dev_get_attach_bus(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev, *child;
 | |
| 
 | |
| 	ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &dev));
 | |
| 	ut_asserteq_str("some-bus", dev->name);
 | |
| 
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT));
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV));
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV));
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT));
 | |
| 	ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT));
 | |
| 	ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV));
 | |
| 
 | |
| 	ut_asserteq(sizeof(struct dm_test_pdata),
 | |
| 		    dev_get_attach_size(dev, DM_TAG_PLAT));
 | |
| 	ut_asserteq(sizeof(struct dm_test_priv),
 | |
| 		    dev_get_attach_size(dev, DM_TAG_PRIV));
 | |
| 	ut_asserteq(sizeof(struct dm_test_uclass_priv),
 | |
| 		    dev_get_attach_size(dev, DM_TAG_UC_PRIV));
 | |
| 	ut_asserteq(sizeof(struct dm_test_uclass_plat),
 | |
| 		    dev_get_attach_size(dev, DM_TAG_UC_PLAT));
 | |
| 	ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT));
 | |
| 	ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV));
 | |
| 
 | |
| 	/* Now try the child of the bus */
 | |
| 	ut_assertok(device_first_child_err(dev, &child));
 | |
| 	ut_asserteq_str("c-test@5", child->name);
 | |
| 
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PLAT));
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PRIV));
 | |
| 	ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PRIV));
 | |
| 	ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PLAT));
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PLAT));
 | |
| 	ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PRIV));
 | |
| 
 | |
| 	ut_asserteq(sizeof(struct dm_test_pdata),
 | |
| 		    dev_get_attach_size(child, DM_TAG_PLAT));
 | |
| 	ut_asserteq(sizeof(struct dm_test_priv),
 | |
| 		    dev_get_attach_size(child, DM_TAG_PRIV));
 | |
| 	ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PRIV));
 | |
| 	ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PLAT));
 | |
| 	ut_asserteq(sizeof(struct dm_test_parent_plat),
 | |
| 		    dev_get_attach_size(child, DM_TAG_PARENT_PLAT));
 | |
| 	ut_asserteq(sizeof(struct dm_test_parent_data),
 | |
| 		    dev_get_attach_size(child, DM_TAG_PARENT_PRIV));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_dev_get_attach_bus, UTF_SCAN_FDT);
 | |
| 
 | |
| /* Test getting information about tags attached to bus devices */
 | |
| static int dm_test_dev_get_mem(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct dm_stats stats;
 | |
| 
 | |
| 	dm_get_mem(&stats);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_dev_get_mem, UTF_SCAN_FDT);
 | |
| 
 | |
| /* Test uclass_try_first_device() */
 | |
| static int dm_test_try_first_device(struct unit_test_state *uts)
 | |
| {
 | |
| 	struct udevice *dev;
 | |
| 
 | |
| 	/* Check that it doesn't create a device or uclass */
 | |
| 	ut_assertnull(uclass_find(UCLASS_TEST));
 | |
| 	ut_assertnull(uclass_try_first_device(UCLASS_TEST));
 | |
| 	ut_assertnull(uclass_try_first_device(UCLASS_TEST));
 | |
| 	ut_assertnull(uclass_find(UCLASS_TEST));
 | |
| 
 | |
| 	/* Create a test device */
 | |
| 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
 | |
| 					&dev));
 | |
| 	dev = uclass_try_first_device(UCLASS_TEST);
 | |
| 	ut_assertnonnull(dev);
 | |
| 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DM_TEST(dm_test_try_first_device, 0);
 |