mirror of
https://xff.cz/git/u-boot/
synced 2025-11-01 19:05:51 +01:00
x86: tsc: Move tsc_timer.c to drivers/timer
To group all dm timer drivers together, move tsc timer to drivers/timer directory. Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Acked-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
389
drivers/timer/tsc_timer.c
Normal file
389
drivers/timer/tsc_timer.c
Normal file
@@ -0,0 +1,389 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The Chromium OS Authors.
|
||||
*
|
||||
* TSC calibration codes are adapted from Linux kernel
|
||||
* arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
#include <common.h>
|
||||
#include <dm.h>
|
||||
#include <malloc.h>
|
||||
#include <timer.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/i8254.h>
|
||||
#include <asm/ibmpc.h>
|
||||
#include <asm/msr.h>
|
||||
#include <asm/u-boot-x86.h>
|
||||
|
||||
/* CPU reference clock frequency: in KHz */
|
||||
#define FREQ_83 83200
|
||||
#define FREQ_100 99840
|
||||
#define FREQ_133 133200
|
||||
#define FREQ_166 166400
|
||||
|
||||
#define MAX_NUM_FREQS 8
|
||||
|
||||
DECLARE_GLOBAL_DATA_PTR;
|
||||
|
||||
/*
|
||||
* According to Intel 64 and IA-32 System Programming Guide,
|
||||
* if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
|
||||
* read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
|
||||
* Unfortunately some Intel Atom SoCs aren't quite compliant to this,
|
||||
* so we need manually differentiate SoC families. This is what the
|
||||
* field msr_plat does.
|
||||
*/
|
||||
struct freq_desc {
|
||||
u8 x86_family; /* CPU family */
|
||||
u8 x86_model; /* model */
|
||||
/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
|
||||
u8 msr_plat;
|
||||
u32 freqs[MAX_NUM_FREQS];
|
||||
};
|
||||
|
||||
static struct freq_desc freq_desc_tables[] = {
|
||||
/* PNW */
|
||||
{ 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
|
||||
/* CLV+ */
|
||||
{ 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
|
||||
/* TNG */
|
||||
{ 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
|
||||
/* VLV2 */
|
||||
{ 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
|
||||
/* Ivybridge */
|
||||
{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
|
||||
/* ANN */
|
||||
{ 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
|
||||
};
|
||||
|
||||
static int match_cpu(u8 family, u8 model)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
|
||||
if ((family == freq_desc_tables[i].x86_family) &&
|
||||
(model == freq_desc_tables[i].x86_model))
|
||||
return i;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
|
||||
#define id_to_freq(cpu_index, freq_id) \
|
||||
(freq_desc_tables[cpu_index].freqs[freq_id])
|
||||
|
||||
/*
|
||||
* Do MSR calibration only for known/supported CPUs.
|
||||
*
|
||||
* Returns the calibration value or 0 if MSR calibration failed.
|
||||
*/
|
||||
static unsigned long __maybe_unused try_msr_calibrate_tsc(void)
|
||||
{
|
||||
u32 lo, hi, ratio, freq_id, freq;
|
||||
unsigned long res;
|
||||
int cpu_index;
|
||||
|
||||
cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
|
||||
if (cpu_index < 0)
|
||||
return 0;
|
||||
|
||||
if (freq_desc_tables[cpu_index].msr_plat) {
|
||||
rdmsr(MSR_PLATFORM_INFO, lo, hi);
|
||||
ratio = (lo >> 8) & 0x1f;
|
||||
} else {
|
||||
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
|
||||
ratio = (hi >> 8) & 0x1f;
|
||||
}
|
||||
debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
|
||||
|
||||
if (!ratio)
|
||||
goto fail;
|
||||
|
||||
if (freq_desc_tables[cpu_index].msr_plat == 2) {
|
||||
/* TODO: Figure out how best to deal with this */
|
||||
freq = FREQ_100;
|
||||
debug("Using frequency: %u KHz\n", freq);
|
||||
} else {
|
||||
/* Get FSB FREQ ID */
|
||||
rdmsr(MSR_FSB_FREQ, lo, hi);
|
||||
freq_id = lo & 0x7;
|
||||
freq = id_to_freq(cpu_index, freq_id);
|
||||
debug("Resolved frequency ID: %u, frequency: %u KHz\n",
|
||||
freq_id, freq);
|
||||
}
|
||||
if (!freq)
|
||||
goto fail;
|
||||
|
||||
/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
|
||||
res = freq * ratio / 1000;
|
||||
debug("TSC runs at %lu MHz\n", res);
|
||||
|
||||
return res;
|
||||
|
||||
fail:
|
||||
debug("Fast TSC calibration using MSR failed\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* This reads the current MSB of the PIT counter, and
|
||||
* checks if we are running on sufficiently fast and
|
||||
* non-virtualized hardware.
|
||||
*
|
||||
* Our expectations are:
|
||||
*
|
||||
* - the PIT is running at roughly 1.19MHz
|
||||
*
|
||||
* - each IO is going to take about 1us on real hardware,
|
||||
* but we allow it to be much faster (by a factor of 10) or
|
||||
* _slightly_ slower (ie we allow up to a 2us read+counter
|
||||
* update - anything else implies a unacceptably slow CPU
|
||||
* or PIT for the fast calibration to work.
|
||||
*
|
||||
* - with 256 PIT ticks to read the value, we have 214us to
|
||||
* see the same MSB (and overhead like doing a single TSC
|
||||
* read per MSB value etc).
|
||||
*
|
||||
* - We're doing 2 reads per loop (LSB, MSB), and we expect
|
||||
* them each to take about a microsecond on real hardware.
|
||||
* So we expect a count value of around 100. But we'll be
|
||||
* generous, and accept anything over 50.
|
||||
*
|
||||
* - if the PIT is stuck, and we see *many* more reads, we
|
||||
* return early (and the next caller of pit_expect_msb()
|
||||
* then consider it a failure when they don't see the
|
||||
* next expected value).
|
||||
*
|
||||
* These expectations mean that we know that we have seen the
|
||||
* transition from one expected value to another with a fairly
|
||||
* high accuracy, and we didn't miss any events. We can thus
|
||||
* use the TSC value at the transitions to calculate a pretty
|
||||
* good value for the TSC frequencty.
|
||||
*/
|
||||
static inline int pit_verify_msb(unsigned char val)
|
||||
{
|
||||
/* Ignore LSB */
|
||||
inb(0x42);
|
||||
return inb(0x42) == val;
|
||||
}
|
||||
|
||||
static inline int pit_expect_msb(unsigned char val, u64 *tscp,
|
||||
unsigned long *deltap)
|
||||
{
|
||||
int count;
|
||||
u64 tsc = 0, prev_tsc = 0;
|
||||
|
||||
for (count = 0; count < 50000; count++) {
|
||||
if (!pit_verify_msb(val))
|
||||
break;
|
||||
prev_tsc = tsc;
|
||||
tsc = rdtsc();
|
||||
}
|
||||
*deltap = rdtsc() - prev_tsc;
|
||||
*tscp = tsc;
|
||||
|
||||
/*
|
||||
* We require _some_ success, but the quality control
|
||||
* will be based on the error terms on the TSC values.
|
||||
*/
|
||||
return count > 5;
|
||||
}
|
||||
|
||||
/*
|
||||
* How many MSB values do we want to see? We aim for
|
||||
* a maximum error rate of 500ppm (in practice the
|
||||
* real error is much smaller), but refuse to spend
|
||||
* more than 50ms on it.
|
||||
*/
|
||||
#define MAX_QUICK_PIT_MS 50
|
||||
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
|
||||
|
||||
static unsigned long __maybe_unused quick_pit_calibrate(void)
|
||||
{
|
||||
int i;
|
||||
u64 tsc, delta;
|
||||
unsigned long d1, d2;
|
||||
|
||||
/* Set the Gate high, disable speaker */
|
||||
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
||||
|
||||
/*
|
||||
* Counter 2, mode 0 (one-shot), binary count
|
||||
*
|
||||
* NOTE! Mode 2 decrements by two (and then the
|
||||
* output is flipped each time, giving the same
|
||||
* final output frequency as a decrement-by-one),
|
||||
* so mode 0 is much better when looking at the
|
||||
* individual counts.
|
||||
*/
|
||||
outb(0xb0, 0x43);
|
||||
|
||||
/* Start at 0xffff */
|
||||
outb(0xff, 0x42);
|
||||
outb(0xff, 0x42);
|
||||
|
||||
/*
|
||||
* The PIT starts counting at the next edge, so we
|
||||
* need to delay for a microsecond. The easiest way
|
||||
* to do that is to just read back the 16-bit counter
|
||||
* once from the PIT.
|
||||
*/
|
||||
pit_verify_msb(0);
|
||||
|
||||
if (pit_expect_msb(0xff, &tsc, &d1)) {
|
||||
for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
|
||||
if (!pit_expect_msb(0xff-i, &delta, &d2))
|
||||
break;
|
||||
|
||||
/*
|
||||
* Iterate until the error is less than 500 ppm
|
||||
*/
|
||||
delta -= tsc;
|
||||
if (d1+d2 >= delta >> 11)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Check the PIT one more time to verify that
|
||||
* all TSC reads were stable wrt the PIT.
|
||||
*
|
||||
* This also guarantees serialization of the
|
||||
* last cycle read ('d2') in pit_expect_msb.
|
||||
*/
|
||||
if (!pit_verify_msb(0xfe - i))
|
||||
break;
|
||||
goto success;
|
||||
}
|
||||
}
|
||||
debug("Fast TSC calibration failed\n");
|
||||
return 0;
|
||||
|
||||
success:
|
||||
/*
|
||||
* Ok, if we get here, then we've seen the
|
||||
* MSB of the PIT decrement 'i' times, and the
|
||||
* error has shrunk to less than 500 ppm.
|
||||
*
|
||||
* As a result, we can depend on there not being
|
||||
* any odd delays anywhere, and the TSC reads are
|
||||
* reliable (within the error).
|
||||
*
|
||||
* kHz = ticks / time-in-seconds / 1000;
|
||||
* kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
|
||||
* kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
|
||||
*/
|
||||
delta *= PIT_TICK_RATE;
|
||||
delta /= (i*256*1000);
|
||||
debug("Fast TSC calibration using PIT\n");
|
||||
return delta / 1000;
|
||||
}
|
||||
|
||||
/* Get the speed of the TSC timer in MHz */
|
||||
unsigned notrace long get_tbclk_mhz(void)
|
||||
{
|
||||
return get_tbclk() / 1000000;
|
||||
}
|
||||
|
||||
static ulong get_ms_timer(void)
|
||||
{
|
||||
return (get_ticks() * 1000) / get_tbclk();
|
||||
}
|
||||
|
||||
ulong get_timer(ulong base)
|
||||
{
|
||||
return get_ms_timer() - base;
|
||||
}
|
||||
|
||||
ulong notrace timer_get_us(void)
|
||||
{
|
||||
return get_ticks() / get_tbclk_mhz();
|
||||
}
|
||||
|
||||
ulong timer_get_boot_us(void)
|
||||
{
|
||||
return timer_get_us();
|
||||
}
|
||||
|
||||
void __udelay(unsigned long usec)
|
||||
{
|
||||
u64 now = get_ticks();
|
||||
u64 stop;
|
||||
|
||||
stop = now + usec * get_tbclk_mhz();
|
||||
|
||||
while ((int64_t)(stop - get_ticks()) > 0)
|
||||
#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
|
||||
/*
|
||||
* Add a 'pause' instruction on qemu target,
|
||||
* to give other VCPUs a chance to run.
|
||||
*/
|
||||
asm volatile("pause");
|
||||
#else
|
||||
;
|
||||
#endif
|
||||
}
|
||||
|
||||
int timer_init(void)
|
||||
{
|
||||
#ifdef CONFIG_I8254_TIMER
|
||||
/* Set up the i8254 timer if required */
|
||||
i8254_init();
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int tsc_timer_get_count(struct udevice *dev, u64 *count)
|
||||
{
|
||||
u64 now_tick = rdtsc();
|
||||
|
||||
*count = now_tick - gd->arch.tsc_base;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int tsc_timer_probe(struct udevice *dev)
|
||||
{
|
||||
struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
|
||||
|
||||
gd->arch.tsc_base = rdtsc();
|
||||
|
||||
/*
|
||||
* If there is no clock frequency specified in the device tree,
|
||||
* calibrate it by ourselves.
|
||||
*/
|
||||
if (!uc_priv->clock_rate) {
|
||||
unsigned long fast_calibrate;
|
||||
|
||||
fast_calibrate = try_msr_calibrate_tsc();
|
||||
if (!fast_calibrate) {
|
||||
fast_calibrate = quick_pit_calibrate();
|
||||
if (!fast_calibrate)
|
||||
panic("TSC frequency is ZERO");
|
||||
}
|
||||
|
||||
uc_priv->clock_rate = fast_calibrate * 1000000;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct timer_ops tsc_timer_ops = {
|
||||
.get_count = tsc_timer_get_count,
|
||||
};
|
||||
|
||||
static const struct udevice_id tsc_timer_ids[] = {
|
||||
{ .compatible = "x86,tsc-timer", },
|
||||
{ }
|
||||
};
|
||||
|
||||
U_BOOT_DRIVER(tsc_timer) = {
|
||||
.name = "tsc_timer",
|
||||
.id = UCLASS_TIMER,
|
||||
.of_match = tsc_timer_ids,
|
||||
.probe = tsc_timer_probe,
|
||||
.ops = &tsc_timer_ops,
|
||||
.flags = DM_FLAG_PRE_RELOC,
|
||||
};
|
||||
Reference in New Issue
Block a user