// // AES functions for PDFio. // // Copyright © 2021 by Michael R Sweet. // // Licensed under Apache License v2.0. See the file "LICENSE" for more // information. // // AES code is adapted from the "tiny-AES-c" project // () // // // Include necessary headers... // #include "pdfio-private.h" // // Local types... // typedef uint8_t state_t[4][4]; // 4x4 AES state table // // Local globals... // static const uint8_t sbox[256] = // S-box lookup table { //0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static const uint8_t rsbox[256] = // Reverse S-box lookup table { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; // The round constant word array, Rcon[i], contains the values given by // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) static const uint8_t Rcon[11] = // Round constants { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; // // Local functions... // static void AddRoundKey(size_t round, state_t *state, const uint8_t *RoundKey); static void SubBytes(state_t *state); static void ShiftRows(state_t *state); static uint8_t xtime(uint8_t x); static void MixColumns(state_t *state); static uint8_t Multiply(uint8_t x, uint8_t y); static void InvMixColumns(state_t *state); static void InvSubBytes(state_t *state); static void InvShiftRows(state_t *state); static void Cipher(state_t *state, const _pdfio_aes_t *ctx); static void InvCipher(state_t *state, const _pdfio_aes_t *ctx); static void XorWithIv(uint8_t *buf, const uint8_t *Iv); // // '_pdfioCryptoAESInit()' - Initialize an AES context. // void _pdfioCryptoAESInit( _pdfio_aes_t *ctx, // I - AES context const uint8_t *key, // I - Key size_t keylen, // I - Length of key (must be 16 or 32) const uint8_t *iv) // I - 16-byte initialization vector { size_t i; // Looping var uint8_t *rkptr0, // Previous round_key values *rkptr, // Current round_key values *rkend, // End of round_key values tempa[4]; // Used for the column/row operations // size_t roundlen = keylen + 24; // Length of round_key size_t nwords = keylen / 4; // Number of 32-bit words in key // Clear context memset(ctx, 0, sizeof(_pdfio_aes_t)); ctx->round_size = keylen / 4 + 6; // The first round key is the key itself. memcpy(ctx->round_key, key, keylen); // All other round keys are found from the previous round keys. for (rkptr0 = ctx->round_key, rkptr = rkptr0 + keylen, rkend = rkptr + 16 * ctx->round_size, i = nwords; rkptr < rkend; i ++) { if ((i % nwords) == 0) { // Shifts word left once - [a0,a1,a2,a3] becomes [a1,a2,a3,a0], then // apply the S-box to each of the four bytes to produce an output word. tempa[0] = sbox[rkptr[-3]] ^ Rcon[i / nwords]; tempa[1] = sbox[rkptr[-2]]; tempa[2] = sbox[rkptr[-1]]; tempa[3] = sbox[rkptr[-4]]; } else if (keylen == 32 && (i % nwords) == 4) { // Apply the S-box to each of the four bytes to produce an output word. tempa[0] = sbox[rkptr[-4]]; tempa[1] = sbox[rkptr[-3]]; tempa[2] = sbox[rkptr[-2]]; tempa[3] = sbox[rkptr[-1]]; } else { // Use unshifted values without S-box... tempa[0] = rkptr[-4]; tempa[1] = rkptr[-3]; tempa[2] = rkptr[-2]; tempa[3] = rkptr[-1]; } // TODO: Optimize to incorporate this into previous steps *rkptr++ = *rkptr0++ ^ tempa[0]; *rkptr++ = *rkptr0++ ^ tempa[1]; *rkptr++ = *rkptr0++ ^ tempa[2]; *rkptr++ = *rkptr0++ ^ tempa[3]; } // Copy the initialization vector... if (iv) memcpy(ctx->iv, iv, sizeof(ctx->iv)); } // // '_pdfioCryptoAESDecrypt()' - Decrypt a block of bytes with AES. // // "inbuffer" and "outbuffer" can point to the same memory. Length must be a // multiple of 16 bytes (excess is not decrypted). // size_t // O - Number of bytes in output buffer _pdfioCryptoAESDecrypt( _pdfio_aes_t *ctx, // I - AES context uint8_t *outbuffer, // I - Output buffer const uint8_t *inbuffer, // I - Input buffer size_t len) // I - Number of bytes to decrypt { uint8_t next_iv[16]; // Next IV value size_t outbytes = 0; // Output bytes if (inbuffer != outbuffer) { // Not the most efficient, but we can optimize later - the sample AES code // manipulates the data directly in memory and doesn't support separate // input and output buffers... memcpy(outbuffer, inbuffer, len); } while (len > 15) { memcpy(next_iv, outbuffer, 16); InvCipher((state_t *)outbuffer, ctx); XorWithIv(outbuffer, ctx->iv); memcpy(ctx->iv, next_iv, 16); outbuffer += 16; len -= 16; outbytes += 16; } return (outbytes); } // // '_pdfioCryptoAESEncrypt()' - Encrypt a block of bytes with AES. // // "inbuffer" and "outbuffer" can point to the same memory. "outbuffer" must // be a multiple of 16 bytes. // size_t // O - Number of bytes in output buffer _pdfioCryptoAESEncrypt( _pdfio_aes_t *ctx, // I - AES context uint8_t *outbuffer, // I - Output buffer const uint8_t *inbuffer, // I - Input buffer size_t len) // I - Number of bytes to decrypt { uint8_t *iv = ctx->iv; // Current IV for CBC size_t outbytes = 0; // Output bytes if (len == 0) return (0); if (inbuffer != outbuffer) { // Not the most efficient, but we can optimize later - the sample AES code // manipulates the data directly in memory and doesn't support separate // input and output buffers... memcpy(outbuffer, inbuffer, len); } while (len > 15) { XorWithIv(outbuffer, iv); Cipher((state_t*)outbuffer, ctx); iv = outbuffer; outbuffer += 16; len -= 16; outbytes += 16; } if (len > 0) { // Pad the final buffer with (16 - len)... memset(outbuffer + len, 16 - len, 16 - len); XorWithIv(outbuffer, iv); Cipher((state_t*)outbuffer, ctx); iv = outbuffer; outbytes += 16; } /* store Iv in ctx for next call */ memcpy(ctx->iv, iv, 16); return (outbytes); } // This function adds the round key to state. // The round key is added to the state by an XOR function. static void AddRoundKey(size_t round, state_t *state, const uint8_t *RoundKey) { unsigned i; // Looping var uint8_t *sptr = (*state)[0]; // Pointer into state for (RoundKey += round * 16, i = 16; i > 0; i --, sptr ++, RoundKey ++) *sptr ^= *RoundKey; } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void SubBytes(state_t *state) { unsigned i; // Looping var uint8_t *sptr = (*state)[0]; // Pointer into state for (i = 16; i > 0; i --, sptr ++) *sptr = sbox[*sptr]; } // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. static void ShiftRows(state_t *state) { uint8_t *sptr = (*state)[0]; // Pointer into state uint8_t temp; // Temporary value // Rotate first row 1 columns to left temp = sptr[1]; sptr[1] = sptr[5]; sptr[5] = sptr[9]; sptr[9] = sptr[13]; sptr[13] = temp; // Rotate second row 2 columns to left temp = sptr[2]; sptr[2] = sptr[10]; sptr[10] = temp; temp = sptr[6]; sptr[6] = sptr[14]; sptr[14] = temp; // Rotate third row 3 columns to left temp = sptr[3]; sptr[3] = sptr[15]; sptr[15] = sptr[11]; sptr[11] = sptr[7]; sptr[7] = temp; } static uint8_t xtime(uint8_t x) { return ((uint8_t)((x << 1) ^ ((x >> 7) * 0x1b))); } // MixColumns function mixes the columns of the state matrix static void MixColumns(state_t *state) { unsigned i; // Looping var uint8_t *sptr = (*state)[0]; // Pointer into state uint8_t Tmp, Tm, t; // Temporary values for (i = 4; i > 0; i --, sptr += 4) { t = sptr[0]; Tmp = sptr[0] ^ sptr[1] ^ sptr[2] ^ sptr[3]; Tm = sptr[0] ^ sptr[1]; Tm = xtime(Tm); sptr[0] ^= Tm ^ Tmp; Tm = sptr[1] ^ sptr[2]; Tm = xtime(Tm); sptr[1] ^= Tm ^ Tmp; Tm = sptr[2] ^ sptr[3]; Tm = xtime(Tm); sptr[2] ^= Tm ^ Tmp; Tm = sptr[3] ^ t; Tm = xtime(Tm); sptr[3] ^= Tm ^ Tmp; } } // Multiply is used to multiply numbers in the field GF(2^8) // Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary // The compiler seems to be able to vectorize the operation better this way. // See https://github.com/kokke/tiny-AES-c/pull/34 static uint8_t Multiply(uint8_t x, uint8_t y) { return (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ } // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. static void InvMixColumns(state_t *state) { unsigned i; // Looping var uint8_t *sptr = (*state)[0]; // Pointer into state uint8_t a, b, c, d; // Temporary values for (i = 4; i > 0; i --) { a = sptr[0]; b = sptr[1]; c = sptr[2]; d = sptr[3]; *sptr++ = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); *sptr++ = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); *sptr++ = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); *sptr++ = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void InvSubBytes(state_t *state) { unsigned i; // Looping var uint8_t *sptr = (*state)[0]; // Pointer into state for (i = 16; i > 0; i --, sptr ++) *sptr = rsbox[*sptr]; } static void InvShiftRows(state_t *state) { uint8_t *sptr = (*state)[0]; // Pointer into state uint8_t temp; // Temporary value // Rotate first row 1 columns to right temp = sptr[13]; sptr[13] = sptr[9]; sptr[9] = sptr[5]; sptr[5] = sptr[1]; sptr[1] = temp; // Rotate second row 2 columns to right temp = sptr[2]; sptr[2] = sptr[10]; sptr[10] = temp; temp = sptr[6]; sptr[6] = sptr[14]; sptr[14] = temp; // Rotate third row 3 columns to right temp = sptr[3]; sptr[3] = sptr[7]; sptr[7] = sptr[11]; sptr[11] = sptr[15]; sptr[15] = temp; } // Cipher is the main function that encrypts the PlainText. static void Cipher(state_t *state, const _pdfio_aes_t *ctx) { size_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(0, state, ctx->round_key); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr rounds are executed in the loop below. // Last one without MixColumns() for (round = 1; round < ctx->round_size; round ++) { SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(round, state, ctx->round_key); } // Add round key to last round SubBytes(state); ShiftRows(state); AddRoundKey(ctx->round_size, state, ctx->round_key); } static void InvCipher(state_t *state, const _pdfio_aes_t *ctx) { size_t round; // Add the First round key to the state before starting the rounds. AddRoundKey(ctx->round_size, state, ctx->round_key); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr rounds are executed in the loop below. // Last one without InvMixColumn() for (round = ctx->round_size - 1; ; round --) { InvShiftRows(state); InvSubBytes(state); AddRoundKey(round, state, ctx->round_key); if (round == 0) break; InvMixColumns(state); } } static void XorWithIv(uint8_t *buf, const uint8_t *Iv) { // 16-byte block... *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; *buf++ ^= *Iv++; }