pdfio/pdfio-aes.c

524 lines
15 KiB
C
Raw Permalink Normal View History

//
// AES functions for PDFio.
//
// Copyright © 2021 by Michael R Sweet.
//
// Licensed under Apache License v2.0. See the file "LICENSE" for more
// information.
//
// AES code is adapted from the "tiny-AES-c" project
// (<https://github.com/kokke/tiny-AES-c>)
//
//
// Include necessary headers...
//
#include "pdfio-private.h"
//
// Local types...
//
typedef uint8_t state_t[4][4]; // 4x4 AES state table
//
// Local globals...
//
static const uint8_t sbox[256] = // S-box lookup table
{
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t rsbox[256] = // Reverse S-box lookup table
{
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = // Round constants
{
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
//
// Local functions...
//
static void AddRoundKey(size_t round, state_t *state, const uint8_t *RoundKey);
static void SubBytes(state_t *state);
static void ShiftRows(state_t *state);
static uint8_t xtime(uint8_t x);
static void MixColumns(state_t *state);
static uint8_t Multiply(uint8_t x, uint8_t y);
static void InvMixColumns(state_t *state);
static void InvSubBytes(state_t *state);
static void InvShiftRows(state_t *state);
static void Cipher(state_t *state, const _pdfio_aes_t *ctx);
static void InvCipher(state_t *state, const _pdfio_aes_t *ctx);
static void XorWithIv(uint8_t *buf, const uint8_t *Iv);
//
// '_pdfioCryptoAESInit()' - Initialize an AES context.
//
void
_pdfioCryptoAESInit(
_pdfio_aes_t *ctx, // I - AES context
const uint8_t *key, // I - Key
size_t keylen, // I - Length of key (must be 16 or 32)
const uint8_t *iv) // I - 16-byte initialization vector
{
size_t i; // Looping var
uint8_t *rkptr0, // Previous round_key values
*rkptr, // Current round_key values
*rkend, // End of round_key values
tempa[4]; // Used for the column/row operations
// size_t roundlen = keylen + 24; // Length of round_key
size_t nwords = keylen / 4; // Number of 32-bit words in key
// Clear context
memset(ctx, 0, sizeof(_pdfio_aes_t));
ctx->round_size = keylen / 4 + 6;
// The first round key is the key itself.
memcpy(ctx->round_key, key, keylen);
// All other round keys are found from the previous round keys.
for (rkptr0 = ctx->round_key, rkptr = rkptr0 + keylen, rkend = rkptr + 16 * ctx->round_size, i = nwords; rkptr < rkend; i ++)
{
if ((i % nwords) == 0)
{
// Shifts word left once - [a0,a1,a2,a3] becomes [a1,a2,a3,a0], then
// apply the S-box to each of the four bytes to produce an output word.
tempa[0] = sbox[rkptr[-3]] ^ Rcon[i / nwords];
tempa[1] = sbox[rkptr[-2]];
tempa[2] = sbox[rkptr[-1]];
tempa[3] = sbox[rkptr[-4]];
}
else if (keylen == 32 && (i % nwords) == 4)
{
// Apply the S-box to each of the four bytes to produce an output word.
tempa[0] = sbox[rkptr[-4]];
tempa[1] = sbox[rkptr[-3]];
tempa[2] = sbox[rkptr[-2]];
tempa[3] = sbox[rkptr[-1]];
}
else
{
2021-10-15 16:40:42 +02:00
// Use unshifted values without S-box...
tempa[0] = rkptr[-4];
tempa[1] = rkptr[-3];
tempa[2] = rkptr[-2];
tempa[3] = rkptr[-1];
}
2021-10-15 16:40:42 +02:00
// TODO: Optimize to incorporate this into previous steps
*rkptr++ = *rkptr0++ ^ tempa[0];
*rkptr++ = *rkptr0++ ^ tempa[1];
*rkptr++ = *rkptr0++ ^ tempa[2];
*rkptr++ = *rkptr0++ ^ tempa[3];
}
// Copy the initialization vector...
if (iv)
memcpy(ctx->iv, iv, sizeof(ctx->iv));
}
//
// '_pdfioCryptoAESDecrypt()' - Decrypt a block of bytes with AES.
//
2021-10-15 16:40:42 +02:00
// "inbuffer" and "outbuffer" can point to the same memory. Length must be a
// multiple of 16 bytes (excess is not decrypted).
//
size_t // O - Number of bytes in output buffer
_pdfioCryptoAESDecrypt(
_pdfio_aes_t *ctx, // I - AES context
uint8_t *outbuffer, // I - Output buffer
const uint8_t *inbuffer, // I - Input buffer
size_t len) // I - Number of bytes to decrypt
{
uint8_t next_iv[16]; // Next IV value
size_t outbytes = 0; // Output bytes
if (inbuffer != outbuffer)
{
// Not the most efficient, but we can optimize later - the sample AES code
// manipulates the data directly in memory and doesn't support separate
// input and output buffers...
memcpy(outbuffer, inbuffer, len);
}
while (len > 15)
{
memcpy(next_iv, outbuffer, 16);
InvCipher((state_t *)outbuffer, ctx);
XorWithIv(outbuffer, ctx->iv);
memcpy(ctx->iv, next_iv, 16);
outbuffer += 16;
len -= 16;
outbytes += 16;
}
return (outbytes);
}
//
// '_pdfioCryptoAESEncrypt()' - Encrypt a block of bytes with AES.
//
2021-10-15 16:40:42 +02:00
// "inbuffer" and "outbuffer" can point to the same memory. "outbuffer" must
// be a multiple of 16 bytes.
//
size_t // O - Number of bytes in output buffer
_pdfioCryptoAESEncrypt(
_pdfio_aes_t *ctx, // I - AES context
uint8_t *outbuffer, // I - Output buffer
const uint8_t *inbuffer, // I - Input buffer
size_t len) // I - Number of bytes to decrypt
{
uint8_t *iv = ctx->iv; // Current IV for CBC
size_t outbytes = 0; // Output bytes
if (len == 0)
return (0);
if (inbuffer != outbuffer)
{
// Not the most efficient, but we can optimize later - the sample AES code
// manipulates the data directly in memory and doesn't support separate
// input and output buffers...
memcpy(outbuffer, inbuffer, len);
}
while (len > 15)
{
XorWithIv(outbuffer, iv);
Cipher((state_t*)outbuffer, ctx);
iv = outbuffer;
outbuffer += 16;
len -= 16;
outbytes += 16;
}
if (len > 0)
{
// Pad the final buffer with (16 - len)...
2021-10-15 16:40:42 +02:00
memset(outbuffer + len, 16 - len, 16 - len);
2021-10-15 16:40:42 +02:00
XorWithIv(outbuffer, iv);
Cipher((state_t*)outbuffer, ctx);
iv = outbuffer;
outbytes += 16;
}
/* store Iv in ctx for next call */
memcpy(ctx->iv, iv, 16);
return (outbytes);
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void
AddRoundKey(size_t round, state_t *state, const uint8_t *RoundKey)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
for (RoundKey += round * 16, i = 16; i > 0; i --, sptr ++, RoundKey ++)
*sptr ^= *RoundKey;
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void
SubBytes(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
for (i = 16; i > 0; i --, sptr ++)
*sptr = sbox[*sptr];
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void
ShiftRows(state_t *state)
{
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t temp; // Temporary value
// Rotate first row 1 columns to left
temp = sptr[1];
sptr[1] = sptr[5];
sptr[5] = sptr[9];
sptr[9] = sptr[13];
sptr[13] = temp;
// Rotate second row 2 columns to left
temp = sptr[2];
sptr[2] = sptr[10];
sptr[10] = temp;
temp = sptr[6];
sptr[6] = sptr[14];
sptr[14] = temp;
// Rotate third row 3 columns to left
temp = sptr[3];
sptr[3] = sptr[15];
sptr[15] = sptr[11];
sptr[11] = sptr[7];
sptr[7] = temp;
}
static uint8_t
xtime(uint8_t x)
{
return ((uint8_t)((x << 1) ^ ((x >> 7) * 0x1b)));
}
// MixColumns function mixes the columns of the state matrix
static void
MixColumns(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t Tmp, Tm, t; // Temporary values
for (i = 4; i > 0; i --, sptr += 4)
{
t = sptr[0];
Tmp = sptr[0] ^ sptr[1] ^ sptr[2] ^ sptr[3];
Tm = sptr[0] ^ sptr[1];
Tm = xtime(Tm);
sptr[0] ^= Tm ^ Tmp;
Tm = sptr[1] ^ sptr[2];
Tm = xtime(Tm);
sptr[1] ^= Tm ^ Tmp;
Tm = sptr[2] ^ sptr[3];
Tm = xtime(Tm);
sptr[2] ^= Tm ^ Tmp;
Tm = sptr[3] ^ t;
Tm = xtime(Tm);
sptr[3] ^= Tm ^ Tmp;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void
InvMixColumns(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t a, b, c, d; // Temporary values
for (i = 4; i > 0; i --)
{
a = sptr[0];
b = sptr[1];
c = sptr[2];
d = sptr[3];
*sptr++ = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
*sptr++ = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
*sptr++ = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
*sptr++ = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void
InvSubBytes(state_t *state)
{
unsigned i; // Looping var
uint8_t *sptr = (*state)[0]; // Pointer into state
for (i = 16; i > 0; i --, sptr ++)
*sptr = rsbox[*sptr];
}
static void
InvShiftRows(state_t *state)
{
uint8_t *sptr = (*state)[0]; // Pointer into state
uint8_t temp; // Temporary value
// Rotate first row 1 columns to right
temp = sptr[13];
sptr[13] = sptr[9];
sptr[9] = sptr[5];
sptr[5] = sptr[1];
sptr[1] = temp;
// Rotate second row 2 columns to right
temp = sptr[2];
sptr[2] = sptr[10];
sptr[10] = temp;
temp = sptr[6];
sptr[6] = sptr[14];
sptr[14] = temp;
// Rotate third row 3 columns to right
temp = sptr[3];
sptr[3] = sptr[7];
sptr[7] = sptr[11];
sptr[11] = sptr[15];
sptr[15] = temp;
}
// Cipher is the main function that encrypts the PlainText.
static void
Cipher(state_t *state, const _pdfio_aes_t *ctx)
{
2021-10-26 03:43:32 +02:00
size_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, ctx->round_key);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without MixColumns()
for (round = 1; round < ctx->round_size; round ++)
{
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(round, state, ctx->round_key);
}
// Add round key to last round
SubBytes(state);
ShiftRows(state);
AddRoundKey(ctx->round_size, state, ctx->round_key);
}
static void
InvCipher(state_t *state, const _pdfio_aes_t *ctx)
{
size_t round;
// Add the First round key to the state before starting the rounds.
AddRoundKey(ctx->round_size, state, ctx->round_key);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without InvMixColumn()
for (round = ctx->round_size - 1; ; round --)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, ctx->round_key);
if (round == 0)
break;
InvMixColumns(state);
}
}
static void
XorWithIv(uint8_t *buf, const uint8_t *Iv)
{
// 16-byte block...
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
*buf++ ^= *Iv++;
}