libwebp/src/utils/alpha.c
James Zern 11ae46ae91 alpha.c: quiet some size_t -> int conversion warnings
Change-Id: I52026a9271bde4028f00df2d752e100c61fd3fe3
2012-04-26 18:47:08 -07:00

465 lines
14 KiB
C

// Copyright 2011 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Alpha plane encoding and decoding library.
//
// Author: vikasa@google.com (Vikas Arora)
#include <string.h> // for memcpy()
#include "./alpha.h"
#include "./bit_reader.h"
#include "./bit_writer.h"
#include "./filters.h"
#include "./tcoder.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#define MAX_SYMBOLS 255
#define ALPHA_HEADER_LEN 2
// -----------------------------------------------------------------------------
// Zlib-like encoding using TCoder
typedef struct {
int dist; // backward distance (=0 means: literal)
int literal; // literal value (if dist = 0)
int len; // length of matched string for non-literal
} Token;
#define MIN_LEN 2
#define DEFER_SKIP 1 // for deferred evaluation (0 = off)
#define CACHED_COST(coder, c) ((cost_cache[(c)] == 0.) ? \
(cost_cache[(c)] = lit_mode_cost + TCoderSymbolCost((coder), (c))) \
: cost_cache[(c)])
// Record symbol
#define RECORD(TOKEN) { \
TCoderEncode(coderd, (TOKEN)->dist, NULL); \
if ((TOKEN)->dist == 0) { \
TCoderEncode(coder, (TOKEN)->literal, NULL); \
} else { \
TCoderEncode(coderl, (TOKEN)->len - MIN_LEN, NULL); \
} \
}
static int GetLongestMatch(const uint8_t* const data,
const uint8_t* const ref, int max_len) {
int n;
for (n = 0; (n < max_len) && (data[n] == ref[n]); ++n) { /* do nothing */ }
return n;
}
static int EncodeZlibTCoder(const uint8_t* data, int width, int height,
VP8BitWriter* const bw) {
int ok = 0;
const int data_len = width * height;
const int MAX_DIST = 3 * width;
const int MAX_LEN = 2 * width;
Token* const msg = (Token*)malloc(data_len * sizeof(*msg));
int num_tokens;
TCoder* const coder = TCoderNew(MAX_SYMBOLS);
TCoder* const coderd = TCoderNew(MAX_DIST);
TCoder* const coderl = TCoderNew(MAX_LEN - MIN_LEN);
if (coder == NULL || coderd == NULL || coderl == NULL) {
goto End;
}
if (msg == NULL) {
goto End;
}
{
int deferred_eval = 0;
int n = 0;
num_tokens = 0;
while (n < data_len) {
const double lit_mode_cost = TCoderSymbolCost(coderd, 0);
double cost_cache[MAX_SYMBOLS + 1] = { 0. };
Token best;
int dist = 0;
double best_cost = CACHED_COST(coder, data[n]);
const int max_len = (MAX_LEN > data_len - n) ? data_len - n : MAX_LEN;
best.dist = 0;
best.literal = data[n];
best.len = 1;
for (dist = 1; dist <= MAX_DIST && dist <= n; ++dist) {
const int pos = n - dist;
const int min_len = best.len - 1;
int len;
// Early out: we probe at two locations for a quick match check
if (data[pos] != data[n] ||
data[pos + min_len] != data[n + min_len]) {
continue;
}
len = GetLongestMatch(data + pos, data + n, max_len);
if (len >= MIN_LEN && len >= best.len) {
// This is the cost of the coding proposal
const double cost = TCoderSymbolCost(coderl, len - MIN_LEN)
+ TCoderSymbolCost(coderd, dist);
// We're gaining an extra len-best.len coded message over the last
// known best. Compute how this would have cost if coded all literal.
// (TODO: we should fully re-evaluate at position best.len and not
// assume all is going be coded as literals. But it's at least an
// upper-bound (worst-case coding). Deferred evaluation used below
// partially addresses this.
double lit_cost = 0;
int i;
for (i = best.len; i < len; ++i) {
lit_cost += CACHED_COST(coder, data[n + i]);
}
// So, is it worth ?
if (best_cost + lit_cost >= cost) {
best_cost = cost;
best.len = len;
best.dist = dist;
}
}
if (len >= max_len) {
break; // No need to search further. We already got a max-long match
}
}
// Deferred evaluation: before finalizing a choice we try to find
// best cost at position n + 1 and see if we get a longer
// match then current best. If so, we transform the current match
// into a literal, go to position n + 1, and try again.
{
Token* cur = &msg[num_tokens];
int forget = 0;
if (deferred_eval) {
--cur;
// If the next match isn't longer, keep previous match
if (best.len <= cur->len) {
deferred_eval = 0;
n += cur->len - DEFER_SKIP;
forget = 1; // forget the new match
RECORD(cur)
} else { // else transform previous match into a shorter one
cur->len = DEFER_SKIP;
if (DEFER_SKIP == 1) {
cur->dist = 0; // literal
}
// TODO(later): RECORD() macro should be changed to take an extra
// "is_final" param, so that we could write the bitstream at once.
RECORD(cur)
++cur;
}
}
if (!forget) {
*cur = best;
++num_tokens;
if (DEFER_SKIP > 0) {
deferred_eval = (cur->len > 2) && (cur->len < MAX_LEN / 2);
}
if (deferred_eval) {
// will probe at a later position before finalizing.
n += DEFER_SKIP;
} else {
// Keep the current choice.
n += cur->len;
RECORD(cur)
}
}
}
}
}
// Final bitstream assembly.
{
int n;
TCoderInit(coder);
TCoderInit(coderd);
TCoderInit(coderl);
for (n = 0; n < num_tokens; ++n) {
const Token* const t = &msg[n];
const int is_literal = (t->dist == 0);
TCoderEncode(coderd, t->dist, bw);
if (is_literal) { // literal
TCoderEncode(coder, t->literal, bw);
} else {
TCoderEncode(coderl, t->len - MIN_LEN, bw);
}
}
ok = 1;
}
End:
if (coder) TCoderDelete(coder);
if (coderl) TCoderDelete(coderl);
if (coderd) TCoderDelete(coderd);
free(msg);
return ok && !bw->error_;
}
// -----------------------------------------------------------------------------
static int EncodeAlphaInternal(const uint8_t* data, int width, int height,
int method, int filter, size_t data_size,
uint8_t* tmp_alpha, VP8BitWriter* const bw) {
int ok = 0;
const uint8_t* alpha_src;
WebPFilterFunc filter_func;
uint8_t header[ALPHA_HEADER_LEN];
const size_t expected_size = (method == 0) ?
(ALPHA_HEADER_LEN + data_size) : (data_size >> 5);
header[0] = (filter << 4) | method;
header[1] = 0; // reserved byte for later use
VP8BitWriterInit(bw, expected_size);
VP8BitWriterAppend(bw, header, sizeof(header));
filter_func = WebPFilters[filter];
if (filter_func) {
filter_func(data, width, height, 1, width, tmp_alpha);
alpha_src = tmp_alpha;
} else {
alpha_src = data;
}
if (method == 0) {
ok = VP8BitWriterAppend(bw, alpha_src, width * height);
ok = ok && !bw->error_;
} else {
ok = EncodeZlibTCoder(alpha_src, width, height, bw);
VP8BitWriterFinish(bw);
}
return ok;
}
// -----------------------------------------------------------------------------
// TODO(skal): move to dsp/ ?
static void CopyPlane(const uint8_t* src, int src_stride,
uint8_t* dst, int dst_stride, int width, int height) {
while (height-- > 0) {
memcpy(dst, src, width);
src += src_stride;
dst += dst_stride;
}
}
int EncodeAlpha(const uint8_t* data, int width, int height, int stride,
int quality, int method, int filter,
uint8_t** output, size_t* output_size) {
uint8_t* quant_alpha = NULL;
const size_t data_size = height * width;
int ok = 1;
// quick sanity checks
assert(data != NULL && output != NULL && output_size != NULL);
assert(width > 0 && height > 0);
assert(stride >= width);
assert(filter >= WEBP_FILTER_NONE && filter <= WEBP_FILTER_FAST);
if (quality < 0 || quality > 100) {
return 0;
}
if (method < 0 || method > 1) {
return 0;
}
quant_alpha = (uint8_t*)malloc(data_size);
if (quant_alpha == NULL) {
return 0;
}
// Extract alpha data (width x height) from raw_data (stride x height).
CopyPlane(data, stride, quant_alpha, width, width, height);
if (quality < 100) { // No Quantization required for 'quality = 100'.
// 16 alpha levels gives quite a low MSE w.r.t original alpha plane hence
// mapped to moderate quality 70. Hence Quality:[0, 70] -> Levels:[2, 16]
// and Quality:]70, 100] -> Levels:]16, 256].
const int alpha_levels = (quality <= 70) ? (2 + quality / 5)
: (16 + (quality - 70) * 8);
ok = QuantizeLevels(quant_alpha, width, height, alpha_levels, NULL);
}
if (ok) {
VP8BitWriter bw;
size_t best_score;
int test_filter;
uint8_t* filtered_alpha = NULL;
// We always test WEBP_FILTER_NONE first.
ok = EncodeAlphaInternal(quant_alpha, width, height, method,
WEBP_FILTER_NONE, data_size, NULL, &bw);
if (!ok) {
VP8BitWriterWipeOut(&bw);
goto End;
}
best_score = VP8BitWriterSize(&bw);
if (filter == WEBP_FILTER_FAST) { // Quick estimate of a second candidate?
filter = EstimateBestFilter(quant_alpha, width, height, width);
}
// Stop?
if (filter == WEBP_FILTER_NONE) {
goto Ok;
}
filtered_alpha = (uint8_t*)malloc(data_size);
ok = (filtered_alpha != NULL);
if (!ok) {
goto End;
}
// Try the other mode(s).
for (test_filter = WEBP_FILTER_HORIZONTAL;
ok && (test_filter <= WEBP_FILTER_GRADIENT);
++test_filter) {
VP8BitWriter tmp_bw;
if (filter != WEBP_FILTER_BEST && test_filter != filter) {
continue;
}
ok = EncodeAlphaInternal(quant_alpha, width, height, method, test_filter,
data_size, filtered_alpha, &tmp_bw);
if (ok) {
const size_t score = VP8BitWriterSize(&tmp_bw);
if (score < best_score) {
// swap bitwriter objects.
VP8BitWriter tmp = tmp_bw;
tmp_bw = bw;
bw = tmp;
best_score = score;
}
} else {
VP8BitWriterWipeOut(&bw);
}
VP8BitWriterWipeOut(&tmp_bw);
}
Ok:
if (ok) {
*output_size = VP8BitWriterSize(&bw);
*output = VP8BitWriterBuf(&bw);
}
free(filtered_alpha);
}
End:
free(quant_alpha);
return ok;
}
// -----------------------------------------------------------------------------
// Alpha Decode.
static int DecompressZlibTCoder(VP8BitReader* const br, int width,
uint8_t* output, size_t output_size) {
int ok = 0;
const int MAX_DIST = 3 * width;
const int MAX_LEN = 2 * width;
TCoder* const coder = TCoderNew(MAX_SYMBOLS);
TCoder* const coderd = TCoderNew(MAX_DIST);
TCoder* const coderl = TCoderNew(MAX_LEN - MIN_LEN);
if (coder == NULL || coderd == NULL || coderl == NULL) {
goto End;
}
{
size_t pos = 0;
assert(br != NULL);
while (pos < output_size && !br->eof_) {
const size_t dist = TCoderDecode(coderd, br);
if (dist == 0) {
output[pos] = TCoderDecode(coder, br);
++pos;
} else {
const size_t len = MIN_LEN + TCoderDecode(coderl, br);
size_t k;
if (pos + len > output_size || pos < dist) goto End;
for (k = 0; k < len; ++k) {
output[pos + k] = output[pos + k - dist];
}
pos += len;
}
}
ok = !br->eof_;
}
End:
if (coder) TCoderDelete(coder);
if (coderl) TCoderDelete(coderl);
if (coderd) TCoderDelete(coderd);
return ok;
}
// -----------------------------------------------------------------------------
int DecodeAlpha(const uint8_t* data, size_t data_size,
int width, int height, int stride,
uint8_t* output) {
uint8_t* decoded_data = NULL;
const size_t decoded_size = height * width;
uint8_t* unfiltered_data = NULL;
WEBP_FILTER_TYPE filter;
int ok = 0;
int method;
assert(width > 0 && height > 0 && stride >= width);
assert(data != NULL && output != NULL);
if (data_size <= ALPHA_HEADER_LEN) {
return 0;
}
method = data[0] & 0x0f;
filter = data[0] >> 4;
ok = (data[1] == 0);
if (method < 0 || method > 1 ||
filter > WEBP_FILTER_GRADIENT || !ok) {
return 0;
}
if (method == 0) {
ok = (data_size >= decoded_size);
decoded_data = (uint8_t*)data + ALPHA_HEADER_LEN;
} else if (method == 1) {
VP8BitReader br;
decoded_data = (uint8_t*)malloc(decoded_size);
if (decoded_data == NULL) {
return 0;
}
VP8InitBitReader(&br, data + ALPHA_HEADER_LEN, data + data_size);
ok = DecompressZlibTCoder(&br, width, decoded_data, decoded_size);
}
if (ok) {
WebPFilterFunc unfilter_func = WebPUnfilters[filter];
if (unfilter_func) {
unfiltered_data = (uint8_t*)malloc(decoded_size);
if (unfiltered_data == NULL) {
if (method == 1) free(decoded_data);
return 0;
}
// TODO(vikas): Implement on-the-fly decoding & filter mechanism to decode
// and apply filter per image-row.
unfilter_func(decoded_data, width, height, 1, width, unfiltered_data);
// Construct raw_data (height x stride) from alpha data (height x width).
CopyPlane(unfiltered_data, width, output, stride, width, height);
free(unfiltered_data);
} else {
// Construct raw_data (height x stride) from alpha data (height x width).
CopyPlane(decoded_data, width, output, stride, width, height);
}
}
if (method == 1) {
free(decoded_data);
}
return ok;
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif