libwebp/src/utils/alpha.c
Pascal Massimino 6aac1df17b add a bunch of missing 'extern "C"'
Change-Id: I8c0ada049ce9fa7ef14164b90d58e999cdabba53
2011-12-13 10:51:32 -08:00

440 lines
13 KiB
C

// Copyright 2011 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Alpha plane encoding and decoding library.
//
// Author: vikasa@google.com (Vikas Arora)
#include <string.h> // for memcpy()
#include "./alpha.h"
#include "./bit_reader.h"
#include "./bit_writer.h"
#include "./tcoder.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#define MAX_SYMBOLS 255
#define ALPHA_HEADER_LEN 2
// -----------------------------------------------------------------------------
// Alpha Encode.
static int EncodeIdent(const uint8_t* data, int width, int height,
uint8_t** output, size_t* output_size) {
const size_t data_size = height * width;
uint8_t* alpha = NULL;
assert((output != NULL) && (output_size != NULL));
if (data == NULL) {
return 0;
}
alpha = (uint8_t*)malloc(data_size);
if (alpha == NULL) {
return 0;
}
memcpy(alpha, data, data_size);
*output_size = data_size;
*output = alpha;
return 1;
}
// -----------------------------------------------------------------------------
// Zlib-like encoding using TCoder
typedef struct {
int dist; // backward distance (=0 means: literal)
int literal; // literal value (if dist = 0)
size_t len; // length of matched string for non-literal
} Token;
#define MIN_LEN 2
#define DEFER_SKIP 1 // for deferred evaluation (0 = off)
#define CACHED_COST(coder, c) ((cost_cache[(c)] == 0.) ? \
(cost_cache[(c)] = lit_mode_cost + TCoderSymbolCost((coder), (c))) \
: cost_cache[(c)])
// Record symbol
#define RECORD(TOKEN) { \
TCoderEncode(coderd, (TOKEN)->dist, NULL); \
if ((TOKEN)->dist == 0) { \
TCoderEncode(coder, (TOKEN)->literal, NULL); \
} else { \
TCoderEncode(coderl, (TOKEN)->len - MIN_LEN, NULL); \
} \
}
static size_t GetLongestMatch(const uint8_t* const data,
const uint8_t* const ref, size_t max_len) {
size_t n;
for (n = 0; n < max_len && (data[n] == ref[n]); ++n) { /* do nothing */ }
return n;
}
static int EncodeZlibTCoder(const uint8_t* data, int width, int height,
uint8_t** output, size_t* output_size) {
int ok = 0;
const size_t data_size = width * height;
const size_t MAX_DIST = 3 * width;
const size_t MAX_LEN = 2 * width;
Token* const msg = (Token*)malloc(data_size * sizeof(*msg));
int num_tokens;
TCoder* const coder = TCoderNew(MAX_SYMBOLS);
TCoder* const coderd = TCoderNew(MAX_DIST);
TCoder* const coderl = TCoderNew(MAX_LEN - MIN_LEN);
if (coder == NULL || coderd == NULL || coderl == NULL) {
goto End;
}
if (msg == NULL) {
goto End;
}
{
int deferred_eval = 0;
size_t n = 0;
num_tokens = 0;
while (n < data_size) {
const double lit_mode_cost = TCoderSymbolCost(coderd, 0);
double cost_cache[MAX_SYMBOLS + 1] = { 0. };
Token best;
size_t dist = 0;
double best_cost = CACHED_COST(coder, data[n]);
size_t max_len = MAX_LEN;
if (max_len > data_size - n) {
max_len = data_size - n;
}
best.dist = 0;
best.literal = data[n];
best.len = 1;
for (dist = 1; dist <= MAX_DIST && dist <= n; ++dist) {
const int pos = n - dist;
const size_t min_len = best.len - 1;
size_t len;
// Early out: we probe at two locations for a quick match check
if (data[pos] != data[n] ||
data[pos + min_len] != data[n + min_len]) {
continue;
}
len = GetLongestMatch(data + pos, data + n, max_len);
if (len >= MIN_LEN && len >= best.len) {
// This is the cost of the coding proposal
const double cost = TCoderSymbolCost(coderl, len - MIN_LEN)
+ TCoderSymbolCost(coderd, dist);
// We're gaining an extra len-best.len coded message over the last
// known best. Compute how this would have cost if coded all literal.
// (TODO: we should fully re-evaluate at position best.len and not
// assume all is going be coded as literals. But it's at least an
// upper-bound (worst-case coding). Deferred evaluation used below
// partially addresses this.
double lit_cost = 0;
size_t i;
for (i = best.len; i < len; ++i) {
lit_cost += CACHED_COST(coder, data[n + i]);
}
// So, is it worth ?
if (best_cost + lit_cost >= cost) {
best_cost = cost;
best.len = len;
best.dist = dist;
}
}
if (len >= MAX_LEN) {
break; // No need to search further. We already got a max-long match
}
}
// Deferred evaluation: before finalizing a choice we try to find
// best cost at position n + 1 and see if we get a longer
// match then current best. If so, we transform the current match
// into a literal, go to position n + 1, and try again.
{
Token* cur = &msg[num_tokens];
int forget = 0;
if (deferred_eval) {
--cur;
// If the next match isn't longer, keep previous match
if (best.len <= cur->len) {
deferred_eval = 0;
n += cur->len - DEFER_SKIP;
forget = 1; // forget the new match
RECORD(cur)
} else { // else transform previous match into a shorter one
cur->len = DEFER_SKIP;
if (DEFER_SKIP == 1) {
cur->dist = 0; // literal
}
// TODO(later): RECORD() macro should be changed to take an extra
// "is_final" param, so that we could write the bitstream at once.
RECORD(cur)
++cur;
}
}
if (!forget) {
*cur = best;
++num_tokens;
if (DEFER_SKIP > 0) {
deferred_eval = (cur->len > 2) && (cur->len < MAX_LEN / 2);
}
if (deferred_eval) {
// will probe at a later position before finalizing.
n += DEFER_SKIP;
} else {
// Keep the current choice.
n += cur->len;
RECORD(cur)
}
}
}
}
}
// Final bitstream assembly.
{
int n;
VP8BitWriter bw;
VP8BitWriterInit(&bw, 0);
TCoderInit(coder);
TCoderInit(coderd);
TCoderInit(coderl);
for (n = 0; n < num_tokens; ++n) {
const Token* const t = &msg[n];
const int is_literal = (t->dist == 0);
TCoderEncode(coderd, t->dist, &bw);
if (is_literal) { // literal
TCoderEncode(coder, t->literal, &bw);
} else {
TCoderEncode(coderl, t->len - MIN_LEN, &bw);
}
}
// clean up
VP8BitWriterFinish(&bw);
*output = VP8BitWriterBuf(&bw);
*output_size = VP8BitWriterSize(&bw);
ok = 1;
}
End:
if (coder) TCoderDelete(coder);
if (coderl) TCoderDelete(coderl);
if (coderd) TCoderDelete(coderd);
free(msg);
return ok;
}
// -----------------------------------------------------------------------------
int EncodeAlpha(const uint8_t* data, int width, int height, int stride,
int quality, int method,
uint8_t** output, size_t* output_size) {
const int kMaxImageDim = (1 << 14) - 1;
uint8_t* compressed_alpha = NULL;
uint8_t* quant_alpha = NULL;
uint8_t* out = NULL;
size_t compressed_size = 0;
const size_t data_size = height * width;
float mse = 0.0;
int ok = 0;
int h;
if ((data == NULL) || (output == NULL) || (output_size == NULL)) {
return 0;
}
if (width <= 0 || width > kMaxImageDim ||
height <= 0 || height > kMaxImageDim || stride < width) {
return 0;
}
if (quality < 0 || quality > 100) {
return 0;
}
if (method < 0 || method > 1) {
return 0;
}
quant_alpha = (uint8_t*)malloc(data_size);
if (quant_alpha == NULL) {
return 0;
}
// Extract the alpha data (WidthXHeight) from raw_data (StrideXHeight).
for (h = 0; h < height; ++h) {
memcpy(quant_alpha + h * width, data + h * stride, width);
}
if (quality < 100) { // No Quantization required for 'quality = 100'.
// 16 Alpha levels gives quite a low MSE w.r.t Original Alpha plane hence
// mapped to moderate quality 70. Hence Quality:[0, 70] -> Levels:[2, 16]
// and Quality:]70, 100] -> Levels:]16, 256].
const int alpha_levels = (quality <= 70) ?
2 + quality / 5 :
16 + (quality - 70) * 8;
ok = QuantizeLevels(quant_alpha, width, height, alpha_levels, &mse);
if (!ok) {
free(quant_alpha);
return 0;
}
}
if (method == 0) {
ok = EncodeIdent(quant_alpha, width, height,
&compressed_alpha, &compressed_size);
} else if (method == 1) {
ok = EncodeZlibTCoder(quant_alpha, width, height,
&compressed_alpha, &compressed_size);
}
free(quant_alpha);
if (!ok) {
return 0;
}
out = (uint8_t*)malloc(compressed_size + ALPHA_HEADER_LEN);
if (out == NULL) {
free(compressed_alpha);
return 0;
} else {
*output = out;
}
// Alpha bit-stream Header:
// Byte0: Compression Method.
// Byte1: Reserved for later extension.
out[0] = method & 0xff;
out[1] = 0; // Reserved Byte.
out += ALPHA_HEADER_LEN;
memcpy(out, compressed_alpha, compressed_size);
free(compressed_alpha);
out += compressed_size;
*output_size = out - *output;
return 1;
}
// -----------------------------------------------------------------------------
// Alpha Decode.
static int DecodeIdent(const uint8_t* data, size_t data_size,
uint8_t* output) {
assert((data != NULL) && (output != NULL));
memcpy(output, data, data_size);
return 1;
}
static int DecompressZlibTCoder(const uint8_t* data, size_t data_size,
int width, int height,
uint8_t* output, size_t output_size) {
int ok = 1;
const size_t MAX_DIST = 3 * width;
const size_t MAX_LEN = 2 * width;
TCoder* const coder = TCoderNew(MAX_SYMBOLS);
TCoder* const coderd = TCoderNew(MAX_DIST);
TCoder* const coderl = TCoderNew(MAX_LEN - MIN_LEN);
if (coder == NULL || coderd == NULL || coderl == NULL) {
goto End;
}
(void)height; // unused parameter
{
size_t pos = 0;
VP8BitReader br;
VP8InitBitReader(&br, data, data + data_size);
while (pos < output_size && !br.eof_) {
const size_t dist = TCoderDecode(coderd, &br);
if (dist == 0) {
const int literal = TCoderDecode(coder, &br);
output[pos] = literal;
++pos;
} else {
const size_t len = MIN_LEN + TCoderDecode(coderl, &br);
size_t k;
if (pos + len > output_size || pos < dist) goto End;
for (k = 0; k < len; ++k) {
output[pos + k] = output[pos + k - dist];
}
pos += len;
}
}
ok = !br.eof_;
}
End:
if (coder) TCoderDelete(coder);
if (coderl) TCoderDelete(coderl);
if (coderd) TCoderDelete(coderd);
return ok;
}
// -----------------------------------------------------------------------------
int DecodeAlpha(const uint8_t* data, size_t data_size,
int width, int height, int stride,
uint8_t* output) {
uint8_t* decoded_data = NULL;
int ok = 0;
int method;
size_t decoded_size = height * width;
if (data == NULL || output == NULL) {
return 0;
}
if (data_size <= ALPHA_HEADER_LEN) {
return 0;
}
if (width <= 0 || height <= 0 || stride < width) {
return 0;
}
method = data[0];
if (method < 0 || method > 1) {
return 0;
}
decoded_data = (uint8_t*)malloc(decoded_size);
if (decoded_data == NULL) {
return 0;
}
data_size -= ALPHA_HEADER_LEN;
data += ALPHA_HEADER_LEN;
if (method == 0) {
ok = DecodeIdent(data, data_size, decoded_data);
} else if (method == 1) {
ok = DecompressZlibTCoder(data, data_size, width, height,
decoded_data, decoded_size);
}
if (ok) {
// Construct raw_data (HeightXStride) from the alpha data (HeightXWidth).
int h;
for (h = 0; h < height; ++h) {
memcpy(output + h * stride, decoded_data + h * width, width);
}
}
free(decoded_data);
return ok;
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif