libwebp/src/utils/huffman.c
James Zern 5227d99146 drop: ifdef __cplusplus checks from C files
the prototypes are already marked in the headers

Change-Id: I172fe742200c939ca32a70a2299809b8baf9b094
2013-12-13 11:42:13 -08:00

289 lines
8.7 KiB
C

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for building and looking up Huffman trees.
//
// Author: Urvang Joshi (urvang@google.com)
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "./huffman.h"
#include "../utils/utils.h"
#include "../webp/format_constants.h"
// Uncomment the following to use look-up table for ReverseBits()
// (might be faster on some platform)
// #define USE_LUT_REVERSE_BITS
#define NON_EXISTENT_SYMBOL (-1)
static void TreeNodeInit(HuffmanTreeNode* const node) {
node->children_ = -1; // means: 'unassigned so far'
}
static int NodeIsEmpty(const HuffmanTreeNode* const node) {
return (node->children_ < 0);
}
static int IsFull(const HuffmanTree* const tree) {
return (tree->num_nodes_ == tree->max_nodes_);
}
static void AssignChildren(HuffmanTree* const tree,
HuffmanTreeNode* const node) {
HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
node->children_ = (int)(children - node);
assert(children - node == (int)(children - node));
tree->num_nodes_ += 2;
TreeNodeInit(children + 0);
TreeNodeInit(children + 1);
}
static int TreeInit(HuffmanTree* const tree, int num_leaves) {
assert(tree != NULL);
if (num_leaves == 0) return 0;
// We allocate maximum possible nodes in the tree at once.
// Note that a Huffman tree is a full binary tree; and in a full binary tree
// with L leaves, the total number of nodes N = 2 * L - 1.
tree->max_nodes_ = 2 * num_leaves - 1;
assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table
tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_,
sizeof(*tree->root_));
if (tree->root_ == NULL) return 0;
TreeNodeInit(tree->root_); // Initialize root.
tree->num_nodes_ = 1;
memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
return 1;
}
void HuffmanTreeRelease(HuffmanTree* const tree) {
if (tree != NULL) {
free(tree->root_);
tree->root_ = NULL;
tree->max_nodes_ = 0;
tree->num_nodes_ = 0;
}
}
int HuffmanCodeLengthsToCodes(const int* const code_lengths,
int code_lengths_size, int* const huff_codes) {
int symbol;
int code_len;
int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
int curr_code;
int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
int max_code_length = 0;
assert(code_lengths != NULL);
assert(code_lengths_size > 0);
assert(huff_codes != NULL);
// Calculate max code length.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
if (code_lengths[symbol] > max_code_length) {
max_code_length = code_lengths[symbol];
}
}
if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
// Calculate code length histogram.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
++code_length_hist[code_lengths[symbol]];
}
code_length_hist[0] = 0;
// Calculate the initial values of 'next_codes' for each code length.
// next_codes[code_len] denotes the code to be assigned to the next symbol
// of code length 'code_len'.
curr_code = 0;
next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
for (code_len = 1; code_len <= max_code_length; ++code_len) {
curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
next_codes[code_len] = curr_code;
}
// Get symbols.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
if (code_lengths[symbol] > 0) {
huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
} else {
huff_codes[symbol] = NON_EXISTENT_SYMBOL;
}
}
return 1;
}
#ifndef USE_LUT_REVERSE_BITS
static int ReverseBitsShort(int bits, int num_bits) {
int retval = 0;
int i;
assert(num_bits <= 8); // Not a hard requirement, just for coherency.
for (i = 0; i < num_bits; ++i) {
retval <<= 1;
retval |= bits & 1;
bits >>= 1;
}
return retval;
}
#else
static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values.
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
};
static int ReverseBitsShort(int bits, int num_bits) {
const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
assert(num_bits <= 8);
return v >> (8 - num_bits);
}
#endif
static int TreeAddSymbol(HuffmanTree* const tree,
int symbol, int code, int code_length) {
int step = HUFF_LUT_BITS;
int base_code;
HuffmanTreeNode* node = tree->root_;
const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
assert(symbol == (int16_t)symbol);
if (code_length <= HUFF_LUT_BITS) {
int i;
base_code = ReverseBitsShort(code, code_length);
for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
const int idx = base_code | (i << code_length);
tree->lut_symbol_[idx] = (int16_t)symbol;
tree->lut_bits_[idx] = code_length;
}
} else {
base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
HUFF_LUT_BITS);
}
while (code_length-- > 0) {
if (node >= max_node) {
return 0;
}
if (NodeIsEmpty(node)) {
if (IsFull(tree)) return 0; // error: too many symbols.
AssignChildren(tree, node);
} else if (!HuffmanTreeNodeIsNotLeaf(node)) {
return 0; // leaf is already occupied.
}
node += node->children_ + ((code >> code_length) & 1);
if (--step == 0) {
tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
}
}
if (NodeIsEmpty(node)) {
node->children_ = 0; // turn newly created node into a leaf.
} else if (HuffmanTreeNodeIsNotLeaf(node)) {
return 0; // trying to assign a symbol to already used code.
}
node->symbol_ = symbol; // Add symbol in this node.
return 1;
}
int HuffmanTreeBuildImplicit(HuffmanTree* const tree,
const int* const code_lengths,
int code_lengths_size) {
int symbol;
int num_symbols = 0;
int root_symbol = 0;
assert(tree != NULL);
assert(code_lengths != NULL);
// Find out number of symbols and the root symbol.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
if (code_lengths[symbol] > 0) {
// Note: code length = 0 indicates non-existent symbol.
++num_symbols;
root_symbol = symbol;
}
}
// Initialize the tree. Will fail for num_symbols = 0
if (!TreeInit(tree, num_symbols)) return 0;
// Build tree.
if (num_symbols == 1) { // Trivial case.
const int max_symbol = code_lengths_size;
if (root_symbol < 0 || root_symbol >= max_symbol) {
HuffmanTreeRelease(tree);
return 0;
}
return TreeAddSymbol(tree, root_symbol, 0, 0);
} else { // Normal case.
int ok = 0;
// Get Huffman codes from the code lengths.
int* const codes =
(int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes));
if (codes == NULL) goto End;
if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) {
goto End;
}
// Add symbols one-by-one.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
if (code_lengths[symbol] > 0) {
if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) {
goto End;
}
}
}
ok = 1;
End:
free(codes);
ok = ok && IsFull(tree);
if (!ok) HuffmanTreeRelease(tree);
return ok;
}
}
int HuffmanTreeBuildExplicit(HuffmanTree* const tree,
const int* const code_lengths,
const int* const codes,
const int* const symbols, int max_symbol,
int num_symbols) {
int ok = 0;
int i;
assert(tree != NULL);
assert(code_lengths != NULL);
assert(codes != NULL);
assert(symbols != NULL);
// Initialize the tree. Will fail if num_symbols = 0.
if (!TreeInit(tree, num_symbols)) return 0;
// Add symbols one-by-one.
for (i = 0; i < num_symbols; ++i) {
if (codes[i] != NON_EXISTENT_SYMBOL) {
if (symbols[i] < 0 || symbols[i] >= max_symbol) {
goto End;
}
if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
goto End;
}
}
}
ok = 1;
End:
ok = ok && IsFull(tree);
if (!ok) HuffmanTreeRelease(tree);
return ok;
}