libwebp/src/utils/tcoder.c
James Zern c04eb7be9d tcoder.c: define NOT_HAVE_LOG2 for MSVC builds
no version of msvc currently implements log2(). unconditionally define
NOT_HAVE_LOG2 in this case to simplify building libwebp sources in other
projects.

Change-Id: Ia9d985b1125553c5a8271d7e539bc1b4f898d749
2012-05-03 16:59:13 -07:00

498 lines
16 KiB
C

// Copyright 2011 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Tree-coder using VP8's boolean coder
//
// Author: Skal (pascal.massimino@gmail.com)
//
// Rationale:
// We extend the boolean (binary) coder to handle arbitrary-sized alphabets,
// and not just binary ones.
// We dynamically maintain the population count and use the locally-optimal
// probability distribution for coding every symbol. Every symbol can be
// coded using _any_ binary tree. The boolean coder would traverse it and
// branch each nodes left and right with the accumulated probability.
//
// E.g. with 3 symbols A, B, C already coded 30, 50 and 120 times respectively:
//
/* Root Node #0 (count=30+50+120=200)
| \
| A (count=30)
Inner-Node #1 (count=50+120=170)
| \
| C (count=120)
B (count=50)
*/
// If the next symbol to code is "C", we'll first code '0' with probability
// p0 = 170/200 (which is the probability of taking the left branch at the
// Root Node #0) and then code '1' with a probability p1 = 120/170 (which
// is the probability of taking the right branch at the Inner-Node #1). The
// total probability p0 * p1 = 120 / 200 is the correct one for symbol 'C'
// (up to small rounding differences in the boolean coder).
// The alphabet could be coded with _any_ tree, provided the count at the
// inner nodes are updated appropriately. Put otherwise, the binary tree
// is only used to efficiently update the frequency counts in O(ln(N)) time
// instead of O(N).
// For instance, we could use the equivalent tree:
/* Root (count=200)
| \
| C (count=120)
Inner (count=50+30=80)
| \
| B (count=50)
A (count=30)
*/
// The frequency distribution would still be respected when coding the symbols.
// But! There's a noticeable difference: it only takes _one_ call to VP8PutBit()
// when coding the letter 'C' (with probability 120/200), which is the most
// frequent symbol. This has an impact on speed, considering that each call
// to VP8PutBit/VP8GetBit is costly. Hence, in order to minimize the number
// of binary coding, the frequent symbol should be up in the tree.
// Using Huffman tree is a solution, but the management and updating can be
// quite complicated. Here we opt for a simpler option: we use _ternary_
// tree instead, where each inner node can be associated with a symbol, in
// addition to the regular left/right branches. When we traverse down
// the tree, a stop bit is used to signal whether the traversal is finished
// or not. Its probability is proportional to the frequency with which the
// node's symbol has been seen (see probaS_). If the traversal is not
// finished, we keep branching right or left according with a probability
// proportional to each branch's use count (see probaL_).
// When a symbol is seen more frequently than its parent, we simply
// exchange the two symbols without changing the tree structure or the
// left/right branches.
// Hence, both tree examples above can be coded using this ternary tree:
/* Root #0 (count=200)
/ | \
/ C \
Node #1 Node #2
/ | \ / | \
x A x x B x <- where 'x' means un-assigned branches.
*/
// Here, if the symbol 'A' becomes more frequent afterward, we'll just swap it
// with 'C' (cf ExchangeSymbol()) without reorganizing the tree.
//
// Using this simple maintenance, we observed a typical 10-20% reduction
// in the number of calls to VP8PutBit(), leading to 3-5% speed gain.
//
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "./tcoderi.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#if defined(_MSC_VER) && !defined(NOT_HAVE_LOG2)
# define NOT_HAVE_LOG2 1
#endif
#ifdef NOT_HAVE_LOG2
static double log2(double d) {
const double kLog2Reciprocal = 1.442695040888963;
return log(d) * kLog2Reciprocal;
}
#endif
// For code=00001xxx..., returns the position of the leftmost leading '1' bit.
static WEBP_INLINE int CodeLength(int code) {
int length = 0;
if (code > 0) {
while ((code >> length) != 1) ++length;
}
return length;
}
// -----------------------------------------------------------------------------
TCoder* TCoderNew(int max_symbol) {
const int num_nodes = max_symbol + 1;
TCoder* c;
uint8_t* memory;
int size;
if (max_symbol < 0 || max_symbol >= TCODER_MAX_SYMBOL) {
return NULL;
}
size = sizeof(*c) + num_nodes * sizeof(*c->nodes_)
+ num_nodes * sizeof(*c->symbols_);
memory = (uint8_t*)malloc(size);
if (memory == NULL) return NULL;
c = (TCoder*)memory;
memory += sizeof(*c);
c->nodes_ = (Node*)memory - 1;
memory += num_nodes * sizeof(*c->nodes_);
c->symbols_ = (int*)memory;
c->num_nodes_ = num_nodes;
c->frozen_ = 0;
TCoderInit(c);
return c;
}
static WEBP_INLINE void ResetNode(Node* const node, Symbol_t symbol) {
assert(node);
node->countS_ = (Count_t)0;
node->count_ = (Count_t)0;
node->probaS_ = HALF_PROBA;
node->probaL_ = HALF_PROBA;
node->symbol_ = symbol;
}
// Wipe the tree clean.
static void ResetTree(TCoder* const c) {
int pos;
assert(c);
c->num_symbols_ = 0;
c->total_coded_ = 0;
for (pos = 1; pos <= c->num_nodes_; ++pos) {
ResetNode(&c->nodes_[pos], INVALID_SYMBOL);
}
c->fixed_symbols_ = 0;
c->symbol_bit_cost_ = 5 + CodeLength(c->num_nodes_);
}
static void ResetSymbolMap(TCoder* const c) {
Symbol_t s;
assert(c);
c->num_symbols_ = 0;
for (s = 0; s < c->num_nodes_; ++s) {
c->symbols_[s] = INVALID_POS;
}
}
void TCoderInit(TCoder* const c) {
assert(c);
if (!c->frozen_) { // Reset counters
ResetTree(c);
ResetSymbolMap(c);
}
}
void TCoderDelete(TCoder* const c) {
free(c);
}
// -----------------------------------------------------------------------------
// Tree utils around nodes
// Total number of visits on this nodes
static WEBP_INLINE Count_t TotalCount(const Node* const n) {
return n->countS_ + n->count_;
}
// Returns true if node has no child.
static WEBP_INLINE int IsLeaf(const TCoder* const c, int pos) {
return (2 * pos > c->num_symbols_);
}
// Returns true if node has no right child.
static WEBP_INLINE int HasOnlyLeftChild(const TCoder* const c, int pos) {
return (2 * pos == c->num_symbols_);
}
// -----------------------------------------------------------------------------
// Node management
static int NewNode(TCoder* const c, int s) {
// For an initial new symbol position, we pick the slot that is the
// closest to the top of the tree. It shortens the paths' length.
const int pos = 1 + c->num_symbols_;
assert(c);
assert(c->num_symbols_ < c->num_nodes_);
assert(c->symbols_[s] == INVALID_POS);
assert(c->nodes_[pos].symbol_ == INVALID_SYMBOL);
c->symbols_[s] = pos;
ResetNode(&c->nodes_[pos], s);
++c->num_symbols_;
return pos;
}
// trivial method, mainly for debug
static WEBP_INLINE int SymbolToNode(const TCoder* const c, int s) {
const int pos = c->symbols_[s];
assert(s >= 0 && s < c->num_nodes_ && s != INVALID_SYMBOL);
assert(pos != INVALID_POS);
assert(c->nodes_[pos].symbol_ == s);
return pos;
}
#define SWAP(T, a, b) do { \
const T tmp = (a); \
(a) = (b); \
(b) = tmp; \
} while (0)
// Make child symbol bubble up one level
static void ExchangeSymbol(const TCoder* const c, const int pos) {
const int parent = pos >> 1;
Node* const node0 = &c->nodes_[parent]; // parent node
Node* const node1 = &c->nodes_[pos]; // child node
const Symbol_t S0 = node0->symbol_;
const Symbol_t S1 = node1->symbol_;
c->symbols_[S1] = parent;
c->symbols_[S0] = pos;
assert(node1->countS_ >= node0->countS_);
node0->count_ -= (node1->countS_ - node0->countS_);
assert(node0->count_ > 0);
SWAP(Count_t, node0->countS_, node1->countS_);
SWAP(Symbol_t, node0->symbol_, node1->symbol_);
// Note: probaL_ and probaS_ are recomputed. No need to SWAP them.
}
#undef SWAP
// -----------------------------------------------------------------------------
// probability computation
static WEBP_INLINE int CalcProba(Count_t num, Count_t total, int max_proba) {
int p;
assert(total > 0);
p = num * max_proba / total;
assert(p >= 0 && p <= MAX_PROBA);
return MAX_PROBA - p;
}
static WEBP_INLINE void UpdateNodeProbas(TCoder* const c, int pos) {
Node* const node = &c->nodes_[pos];
const Count_t total = TotalCount(node);
if (total < COUNTER_CUT_OFF)
node->probaS_ = CalcProba(node->countS_, total, MAX_PROBA);
if (!IsLeaf(c, pos)) {
const Count_t total_count = node->count_;
if (total_count < COUNTER_CUT_OFF) {
const Count_t left_count = TotalCount(&c->nodes_[2 * pos]);
node->probaL_ =
MAX_PROBA - CalcProba(left_count, total_count, MAX_PROBA);
}
}
}
static void UpdateProbas(TCoder* const c, int pos) {
for ( ; pos >= 1; pos >>= 1) {
UpdateNodeProbas(c, pos);
}
}
// -----------------------------------------------------------------------------
static void UpdateTree(TCoder* const c, int pos) {
Node* node = &c->nodes_[pos];
const int is_fresh_new_symbol = (node->countS_ == 0);
assert(c);
assert(pos >= 1 && pos <= c->num_nodes_);
assert(node->symbol_ != INVALID_SYMBOL);
if (!(c->frozen_ || node->countS_ >= COUNTER_CUT_OFF) ||
is_fresh_new_symbol) {
const int starting_pos = pos; // save for later
// Update the counters up the tree, possibly exchanging some nodes
++node->countS_;
while (pos > 1) {
Node* const parent = &c->nodes_[pos >> 1];
++parent->count_;
if (parent->countS_ < node->countS_) {
ExchangeSymbol(c, pos);
}
pos >>= 1;
node = parent;
}
++c->total_coded_;
UpdateProbas(c, starting_pos); // Update the probas along the modified path
}
}
// -----------------------------------------------------------------------------
// Fixed-length symbol coding
// Note: the symbol will be coded exactly once at most, so using a fixed length
// code is better than Golomb-code (e.g.) on average.
// We use the exact bit-distribution probability considering the upper-bound
// supplied:
// Written in binary, a symbol 's' has a probability of having its k-th bit
// set to 1 which is given by:
// If the k-th bit of max_value is 0:
// P0(k) = [(max_value >> (k + 1)) << k] / max_value
// If the k-th bit of max_value is 1:
// P1(k) = P0(k) + [max_value & ((1 << k) - 1)] / max_value
static WEBP_INLINE void CodeSymbol(VP8BitWriter* const bw, int s,
int max_value) {
int i, up = 1;
assert(bw);
assert(s < max_value);
for (i = 0; up < max_value; up <<= 1, ++i) {
int den = (max_value >> 1) & ~(up - 1);
if (max_value & up) den |= max_value & (up - 1);
VP8PutBit(bw, (s >> i) & 1, MAX_PROBA - MAX_PROBA * den / max_value);
}
}
static WEBP_INLINE int DecodeSymbol(VP8BitReader* const br, int max_value) {
int i, up = 1, v = 0;
assert(br);
for (i = 0; up < max_value; ++i) {
int den = (max_value >> 1) & ~(up - 1);
if (max_value & up) den |= max_value & (up - 1);
v |= VP8GetBit(br, MAX_PROBA - MAX_PROBA * den / max_value) << i;
up <<= 1;
}
return v;
}
// -----------------------------------------------------------------------------
// Encoding
void TCoderEncode(TCoder* const c, int s, VP8BitWriter* const bw) {
int pos;
const int is_new_symbol = (c->symbols_[s] == INVALID_POS);
assert(c);
assert(s >= 0 && s < c->num_nodes_);
if (!c->fixed_symbols_ && c->num_symbols_ < c->num_nodes_) {
if (c->num_symbols_ > 0) {
if (bw != NULL) {
const int new_symbol_proba =
CalcProba(c->num_symbols_, c->total_coded_, HALF_PROBA - 1);
VP8PutBit(bw, is_new_symbol, new_symbol_proba);
}
} else {
assert(is_new_symbol);
}
} else {
assert(!is_new_symbol);
}
if (is_new_symbol) {
if (bw != NULL) {
int k, count = 0;
for (k = 0; k < s; ++k) {
count += (c->symbols_[k] == INVALID_POS);
}
CodeSymbol(bw, count, c->num_nodes_ - c->num_symbols_);
}
pos = NewNode(c, s);
} else {
pos = SymbolToNode(c, s);
if (bw != NULL) {
const int length = CodeLength(pos);
int parent = 1;
int i;
for (i = 0; !IsLeaf(c, parent); ++i) {
const Node* const node = &c->nodes_[parent];
const int symbol_proba = node->probaS_;
const int is_stop = (i == length);
if (VP8PutBit(bw, is_stop, symbol_proba)) {
break;
} else if (!HasOnlyLeftChild(c, parent)) {
const int left_proba = node->probaL_;
const int is_right =
(pos >> (length - 1 - i)) & 1; // extract bits #i
VP8PutBit(bw, is_right, left_proba);
parent = (parent << 1) | is_right;
} else {
parent <<= 1;
break;
}
}
assert(parent == pos);
}
}
UpdateTree(c, pos);
}
// -----------------------------------------------------------------------------
// Decoding
int TCoderDecode(TCoder* const c, VP8BitReader* const br) {
int s;
int pos;
int is_new_symbol = 0;
assert(c);
assert(br);
// Check if we need to transmit the new symbol's value
if (!c->fixed_symbols_ && c->num_symbols_ < c->num_nodes_) {
if (c->num_symbols_ > 0) {
const int new_symbol_proba =
CalcProba(c->num_symbols_, c->total_coded_, HALF_PROBA - 1);
is_new_symbol = VP8GetBit(br, new_symbol_proba);
} else {
is_new_symbol = 1;
}
}
// Code either the raw value, or the path downward to its node.
if (is_new_symbol) {
int count = DecodeSymbol(br, c->num_nodes_ - c->num_symbols_);
// The 'count' value specifies the number of empty slots to jump
// over. We skip the already-used ones.
for (s = 0; s < c->num_nodes_; ++s) {
if (c->symbols_[s] == INVALID_POS) {
if (count-- == 0) break;
}
}
if (s == c->num_nodes_) {
goto Error;
}
pos = NewNode(c, s);
} else {
pos = 1;
while (!IsLeaf(c, pos)) {
const Node* const node = &c->nodes_[pos];
// Did we reach the stopping node?
const int symbol_proba = node->probaS_;
const int is_stop = VP8GetBit(br, symbol_proba);
if (is_stop) {
break; // reached the stopping node for the coded symbol.
} else {
// Not yet done, keep traversing and branching.
if (!HasOnlyLeftChild(c, pos)) {
const int left_proba = node->probaL_;
const int is_right = VP8GetBit(br, left_proba);
pos = (pos << 1) | is_right;
} else {
pos <<= 1;
break;
}
assert(pos <= c->num_nodes_);
}
}
assert(pos <= c->num_symbols_);
s = c->nodes_[pos].symbol_;
assert(pos == SymbolToNode(c, s));
}
assert(pos <= c->num_symbols_);
UpdateTree(c, pos);
return s;
Error:
br->eof_ = 1; // will make decoding abort.
return 0;
}
// -----------------------------------------------------------------------------
double TCoderSymbolCost(const TCoder* const c, int symbol) {
const int pos = c->symbols_[symbol];
assert(c);
assert(symbol >= 0 && symbol < c->num_nodes_);
if (pos != INVALID_POS) {
const Node* const node = &c->nodes_[pos];
const Count_t count = node->countS_;
assert(count > 0);
assert(c->total_coded_ > 0);
// Note: we use 1 + total_coded_ as denominator because we most probably
// intend to code an extra symbol afterward.
// TODO(skal): is log2() too slow ?
return -log2(count / (1. + c->total_coded_));
}
return c->symbol_bit_cost_;
}
// -----------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif