libwebp/src/utils/filters.c
Djordje Pesut b4dc4069a2 MIPS: dspr2: added optimization for (un)filters
HorizontalFilter
VerticalFilter
GradientFilter
HorizontalUnfilter
VerticalUnfilter
GradientUnfilter

Change-Id: I54055b4767c37719691811072e95bf79c1f627b1
2014-08-14 11:55:19 -07:00

267 lines
8.8 KiB
C

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Spatial prediction using various filters
//
// Author: Urvang (urvang@google.com)
#include "./filters.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
//------------------------------------------------------------------------------
// Helpful macro.
# define SANITY_CHECK(in, out) \
assert(in != NULL); \
assert(out != NULL); \
assert(width > 0); \
assert(height > 0); \
assert(stride >= width); \
assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \
(void)height; // Silence unused warning.
static WEBP_INLINE void PredictLine(const uint8_t* src, const uint8_t* pred,
uint8_t* dst, int length, int inverse) {
int i;
if (inverse) {
for (i = 0; i < length; ++i) dst[i] = src[i] + pred[i];
} else {
for (i = 0; i < length; ++i) dst[i] = src[i] - pred[i];
}
}
//------------------------------------------------------------------------------
// Horizontal filter.
static WEBP_INLINE void DoHorizontalFilter(const uint8_t* in,
int width, int height, int stride,
int row, int num_rows,
int inverse, uint8_t* out) {
const uint8_t* preds;
const size_t start_offset = row * stride;
const int last_row = row + num_rows;
SANITY_CHECK(in, out);
in += start_offset;
out += start_offset;
preds = inverse ? out : in;
if (row == 0) {
// Leftmost pixel is the same as input for topmost scanline.
out[0] = in[0];
PredictLine(in + 1, preds, out + 1, width - 1, inverse);
row = 1;
preds += stride;
in += stride;
out += stride;
}
// Filter line-by-line.
while (row < last_row) {
// Leftmost pixel is predicted from above.
PredictLine(in, preds - stride, out, 1, inverse);
PredictLine(in + 1, preds, out + 1, width - 1, inverse);
++row;
preds += stride;
in += stride;
out += stride;
}
}
static void HorizontalFilter(const uint8_t* data, int width, int height,
int stride, uint8_t* filtered_data) {
DoHorizontalFilter(data, width, height, stride, 0, height, 0, filtered_data);
}
static void HorizontalUnfilter(int width, int height, int stride, int row,
int num_rows, uint8_t* data) {
DoHorizontalFilter(data, width, height, stride, row, num_rows, 1, data);
}
//------------------------------------------------------------------------------
// Vertical filter.
static WEBP_INLINE void DoVerticalFilter(const uint8_t* in,
int width, int height, int stride,
int row, int num_rows,
int inverse, uint8_t* out) {
const uint8_t* preds;
const size_t start_offset = row * stride;
const int last_row = row + num_rows;
SANITY_CHECK(in, out);
in += start_offset;
out += start_offset;
preds = inverse ? out : in;
if (row == 0) {
// Very first top-left pixel is copied.
out[0] = in[0];
// Rest of top scan-line is left-predicted.
PredictLine(in + 1, preds, out + 1, width - 1, inverse);
row = 1;
in += stride;
out += stride;
} else {
// We are starting from in-between. Make sure 'preds' points to prev row.
preds -= stride;
}
// Filter line-by-line.
while (row < last_row) {
PredictLine(in, preds, out, width, inverse);
++row;
preds += stride;
in += stride;
out += stride;
}
}
static void VerticalFilter(const uint8_t* data, int width, int height,
int stride, uint8_t* filtered_data) {
DoVerticalFilter(data, width, height, stride, 0, height, 0, filtered_data);
}
static void VerticalUnfilter(int width, int height, int stride, int row,
int num_rows, uint8_t* data) {
DoVerticalFilter(data, width, height, stride, row, num_rows, 1, data);
}
//------------------------------------------------------------------------------
// Gradient filter.
static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) {
const int g = a + b - c;
return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit
}
static WEBP_INLINE void DoGradientFilter(const uint8_t* in,
int width, int height, int stride,
int row, int num_rows,
int inverse, uint8_t* out) {
const uint8_t* preds;
const size_t start_offset = row * stride;
const int last_row = row + num_rows;
SANITY_CHECK(in, out);
in += start_offset;
out += start_offset;
preds = inverse ? out : in;
// left prediction for top scan-line
if (row == 0) {
out[0] = in[0];
PredictLine(in + 1, preds, out + 1, width - 1, inverse);
row = 1;
preds += stride;
in += stride;
out += stride;
}
// Filter line-by-line.
while (row < last_row) {
int w;
// leftmost pixel: predict from above.
PredictLine(in, preds - stride, out, 1, inverse);
for (w = 1; w < width; ++w) {
const int pred = GradientPredictor(preds[w - 1],
preds[w - stride],
preds[w - stride - 1]);
out[w] = in[w] + (inverse ? pred : -pred);
}
++row;
preds += stride;
in += stride;
out += stride;
}
}
static void GradientFilter(const uint8_t* data, int width, int height,
int stride, uint8_t* filtered_data) {
DoGradientFilter(data, width, height, stride, 0, height, 0, filtered_data);
}
static void GradientUnfilter(int width, int height, int stride, int row,
int num_rows, uint8_t* data) {
DoGradientFilter(data, width, height, stride, row, num_rows, 1, data);
}
#undef SANITY_CHECK
// -----------------------------------------------------------------------------
// Quick estimate of a potentially interesting filter mode to try.
#define SMAX 16
#define SDIFF(a, b) (abs((a) - (b)) >> 4) // Scoring diff, in [0..SMAX)
WEBP_FILTER_TYPE EstimateBestFilter(const uint8_t* data,
int width, int height, int stride) {
int i, j;
int bins[WEBP_FILTER_LAST][SMAX];
memset(bins, 0, sizeof(bins));
// We only sample every other pixels. That's enough.
for (j = 2; j < height - 1; j += 2) {
const uint8_t* const p = data + j * stride;
int mean = p[0];
for (i = 2; i < width - 1; i += 2) {
const int diff0 = SDIFF(p[i], mean);
const int diff1 = SDIFF(p[i], p[i - 1]);
const int diff2 = SDIFF(p[i], p[i - width]);
const int grad_pred =
GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]);
const int diff3 = SDIFF(p[i], grad_pred);
bins[WEBP_FILTER_NONE][diff0] = 1;
bins[WEBP_FILTER_HORIZONTAL][diff1] = 1;
bins[WEBP_FILTER_VERTICAL][diff2] = 1;
bins[WEBP_FILTER_GRADIENT][diff3] = 1;
mean = (3 * mean + p[i] + 2) >> 2;
}
}
{
int filter;
WEBP_FILTER_TYPE best_filter = WEBP_FILTER_NONE;
int best_score = 0x7fffffff;
for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) {
int score = 0;
for (i = 0; i < SMAX; ++i) {
if (bins[filter][i] > 0) {
score += i;
}
}
if (score < best_score) {
best_score = score;
best_filter = (WEBP_FILTER_TYPE)filter;
}
}
return best_filter;
}
}
#undef SMAX
#undef SDIFF
//------------------------------------------------------------------------------
WebPFilterFunc WebPFilters[WEBP_FILTER_LAST] = {
NULL, // WEBP_FILTER_NONE
HorizontalFilter, // WEBP_FILTER_HORIZONTAL
VerticalFilter, // WEBP_FILTER_VERTICAL
GradientFilter // WEBP_FILTER_GRADIENT
};
WebPUnfilterFunc WebPUnfilters[WEBP_FILTER_LAST] = {
NULL, // WEBP_FILTER_NONE
HorizontalUnfilter, // WEBP_FILTER_HORIZONTAL
VerticalUnfilter, // WEBP_FILTER_VERTICAL
GradientUnfilter // WEBP_FILTER_GRADIENT
};
//------------------------------------------------------------------------------