mirror of
https://github.com/webmproject/libwebp.git
synced 2025-04-04 07:56:49 +02:00
This is useful for a forward change that will improve compression. It splits the residual computation and the best predictor selection. The only downside is that more memory is allocated: we had 2 histograms before, we now have 14, but this is necessary for the later change. Still, this is nothing compared to what is done later in the pipeline in HistogramSetTotalSize where the number of histograms created is the number of pixels in the subsampled image. Change-Id: If03501a26f00462dd1809daa6e9314abd180945d
929 lines
37 KiB
C
929 lines
37 KiB
C
// Copyright 2016 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Image transform methods for lossless encoder.
|
|
//
|
|
// Authors: Vikas Arora (vikaas.arora@gmail.com)
|
|
// Jyrki Alakuijala (jyrki@google.com)
|
|
// Urvang Joshi (urvang@google.com)
|
|
// Vincent Rabaud (vrabaud@google.com)
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "src/dsp/lossless.h"
|
|
#include "src/dsp/lossless_common.h"
|
|
#include "src/enc/vp8i_enc.h"
|
|
#include "src/enc/vp8li_enc.h"
|
|
#include "src/utils/utils.h"
|
|
#include "src/webp/encode.h"
|
|
#include "src/webp/format_constants.h"
|
|
#include "src/webp/types.h"
|
|
|
|
#define HISTO_SIZE (4 * 256)
|
|
static const int64_t kSpatialPredictorBias = 15ll << LOG_2_PRECISION_BITS;
|
|
static const int kPredLowEffort = 11;
|
|
static const uint32_t kMaskAlpha = 0xff000000;
|
|
static const int kNumPredModes = 14;
|
|
|
|
// Mostly used to reduce code size + readability
|
|
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Methods to calculate Entropy (Shannon).
|
|
|
|
// Compute a bias for prediction entropy using a global heuristic to favor
|
|
// values closer to 0. Hence the final negative sign.
|
|
// 'exp_val' has a scaling factor of 1/100.
|
|
static int64_t PredictionCostBias(const uint32_t counts[256], uint64_t weight_0,
|
|
uint64_t exp_val) {
|
|
const int significant_symbols = 256 >> 4;
|
|
const uint64_t exp_decay_factor = 6; // has a scaling factor of 1/10
|
|
uint64_t bits = (weight_0 * counts[0]) << LOG_2_PRECISION_BITS;
|
|
int i;
|
|
exp_val <<= LOG_2_PRECISION_BITS;
|
|
for (i = 1; i < significant_symbols; ++i) {
|
|
bits += DivRound(exp_val * (counts[i] + counts[256 - i]), 100);
|
|
exp_val = DivRound(exp_decay_factor * exp_val, 10);
|
|
}
|
|
return -DivRound((int64_t)bits, 10);
|
|
}
|
|
|
|
static int64_t PredictionCostSpatialHistogram(
|
|
const uint32_t accumulated[HISTO_SIZE], const uint32_t tile[HISTO_SIZE],
|
|
int mode, int left_mode, int above_mode) {
|
|
int i;
|
|
int64_t retval = 0;
|
|
for (i = 0; i < 4; ++i) {
|
|
const uint64_t kExpValue = 94;
|
|
retval += PredictionCostBias(&tile[i * 256], 1, kExpValue);
|
|
// Compute the new cost if 'tile' is added to 'accumulate' but also add the
|
|
// cost of the current histogram to guide the spatial predictor selection.
|
|
// Basically, favor low entropy, locally and globally.
|
|
retval += (int64_t)VP8LCombinedShannonEntropy(&tile[i * 256],
|
|
&accumulated[i * 256]);
|
|
}
|
|
// Favor keeping the areas locally similar.
|
|
if (mode == left_mode) retval -= kSpatialPredictorBias;
|
|
if (mode == above_mode) retval -= kSpatialPredictorBias;
|
|
return retval;
|
|
}
|
|
|
|
static WEBP_INLINE void UpdateHisto(uint32_t histo_argb[HISTO_SIZE],
|
|
uint32_t argb) {
|
|
++histo_argb[0 * 256 + (argb >> 24)];
|
|
++histo_argb[1 * 256 + ((argb >> 16) & 0xff)];
|
|
++histo_argb[2 * 256 + ((argb >> 8) & 0xff)];
|
|
++histo_argb[3 * 256 + (argb & 0xff)];
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Spatial transform functions.
|
|
|
|
static WEBP_INLINE void PredictBatch(int mode, int x_start, int y,
|
|
int num_pixels, const uint32_t* current,
|
|
const uint32_t* upper, uint32_t* out) {
|
|
if (x_start == 0) {
|
|
if (y == 0) {
|
|
// ARGB_BLACK.
|
|
VP8LPredictorsSub[0](current, NULL, 1, out);
|
|
} else {
|
|
// Top one.
|
|
VP8LPredictorsSub[2](current, upper, 1, out);
|
|
}
|
|
++x_start;
|
|
++out;
|
|
--num_pixels;
|
|
}
|
|
if (y == 0) {
|
|
// Left one.
|
|
VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out);
|
|
} else {
|
|
VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels,
|
|
out);
|
|
}
|
|
}
|
|
|
|
#if (WEBP_NEAR_LOSSLESS == 1)
|
|
static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
|
|
|
|
static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
|
|
const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
|
|
const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
|
|
const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
|
|
const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
|
|
return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
|
|
}
|
|
|
|
static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
|
|
uint32_t left, uint32_t right) {
|
|
const int diff_up = MaxDiffBetweenPixels(current, up);
|
|
const int diff_down = MaxDiffBetweenPixels(current, down);
|
|
const int diff_left = MaxDiffBetweenPixels(current, left);
|
|
const int diff_right = MaxDiffBetweenPixels(current, right);
|
|
return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
|
|
}
|
|
|
|
static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
|
|
const uint32_t green = (argb >> 8) & 0xff;
|
|
uint32_t red_blue = argb & 0x00ff00ffu;
|
|
red_blue += (green << 16) | green;
|
|
red_blue &= 0x00ff00ffu;
|
|
return (argb & 0xff00ff00u) | red_blue;
|
|
}
|
|
|
|
static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
|
|
uint8_t* const max_diffs, int used_subtract_green) {
|
|
uint32_t current, up, down, left, right;
|
|
int x;
|
|
if (width <= 2) return;
|
|
current = argb[0];
|
|
right = argb[1];
|
|
if (used_subtract_green) {
|
|
current = AddGreenToBlueAndRed(current);
|
|
right = AddGreenToBlueAndRed(right);
|
|
}
|
|
// max_diffs[0] and max_diffs[width - 1] are never used.
|
|
for (x = 1; x < width - 1; ++x) {
|
|
up = argb[-stride + x];
|
|
down = argb[stride + x];
|
|
left = current;
|
|
current = right;
|
|
right = argb[x + 1];
|
|
if (used_subtract_green) {
|
|
up = AddGreenToBlueAndRed(up);
|
|
down = AddGreenToBlueAndRed(down);
|
|
right = AddGreenToBlueAndRed(right);
|
|
}
|
|
max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
|
|
}
|
|
}
|
|
|
|
// Quantize the difference between the actual component value and its prediction
|
|
// to a multiple of quantization, working modulo 256, taking care not to cross
|
|
// a boundary (inclusive upper limit).
|
|
static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
|
|
uint8_t boundary, int quantization) {
|
|
const int residual = (value - predict) & 0xff;
|
|
const int boundary_residual = (boundary - predict) & 0xff;
|
|
const int lower = residual & ~(quantization - 1);
|
|
const int upper = lower + quantization;
|
|
// Resolve ties towards a value closer to the prediction (i.e. towards lower
|
|
// if value comes after prediction and towards upper otherwise).
|
|
const int bias = ((boundary - value) & 0xff) < boundary_residual;
|
|
if (residual - lower < upper - residual + bias) {
|
|
// lower is closer to residual than upper.
|
|
if (residual > boundary_residual && lower <= boundary_residual) {
|
|
// Halve quantization step to avoid crossing boundary. This midpoint is
|
|
// on the same side of boundary as residual because midpoint >= residual
|
|
// (since lower is closer than upper) and residual is above the boundary.
|
|
return lower + (quantization >> 1);
|
|
}
|
|
return lower;
|
|
} else {
|
|
// upper is closer to residual than lower.
|
|
if (residual <= boundary_residual && upper > boundary_residual) {
|
|
// Halve quantization step to avoid crossing boundary. This midpoint is
|
|
// on the same side of boundary as residual because midpoint <= residual
|
|
// (since upper is closer than lower) and residual is below the boundary.
|
|
return lower + (quantization >> 1);
|
|
}
|
|
return upper & 0xff;
|
|
}
|
|
}
|
|
|
|
static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) {
|
|
return (uint8_t)((((int)(a) - (int)(b))) & 0xff);
|
|
}
|
|
|
|
// Quantize every component of the difference between the actual pixel value and
|
|
// its prediction to a multiple of a quantization (a power of 2, not larger than
|
|
// max_quantization which is a power of 2, smaller than max_diff). Take care if
|
|
// value and predict have undergone subtract green, which means that red and
|
|
// blue are represented as offsets from green.
|
|
static uint32_t NearLossless(uint32_t value, uint32_t predict,
|
|
int max_quantization, int max_diff,
|
|
int used_subtract_green) {
|
|
int quantization;
|
|
uint8_t new_green = 0;
|
|
uint8_t green_diff = 0;
|
|
uint8_t a, r, g, b;
|
|
if (max_diff <= 2) {
|
|
return VP8LSubPixels(value, predict);
|
|
}
|
|
quantization = max_quantization;
|
|
while (quantization >= max_diff) {
|
|
quantization >>= 1;
|
|
}
|
|
if ((value >> 24) == 0 || (value >> 24) == 0xff) {
|
|
// Preserve transparency of fully transparent or fully opaque pixels.
|
|
a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff);
|
|
} else {
|
|
a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
|
|
}
|
|
g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
|
|
quantization);
|
|
if (used_subtract_green) {
|
|
// The green offset will be added to red and blue components during decoding
|
|
// to obtain the actual red and blue values.
|
|
new_green = ((predict >> 8) + g) & 0xff;
|
|
// The amount by which green has been adjusted during quantization. It is
|
|
// subtracted from red and blue for compensation, to avoid accumulating two
|
|
// quantization errors in them.
|
|
green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff);
|
|
}
|
|
r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff),
|
|
(predict >> 16) & 0xff, 0xff - new_green,
|
|
quantization);
|
|
b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff),
|
|
predict & 0xff, 0xff - new_green, quantization);
|
|
return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
|
}
|
|
#endif // (WEBP_NEAR_LOSSLESS == 1)
|
|
|
|
// Stores the difference between the pixel and its prediction in "out".
|
|
// In case of a lossy encoding, updates the source image to avoid propagating
|
|
// the deviation further to pixels which depend on the current pixel for their
|
|
// predictions.
|
|
static WEBP_INLINE void GetResidual(
|
|
int width, int height, uint32_t* const upper_row,
|
|
uint32_t* const current_row, const uint8_t* const max_diffs, int mode,
|
|
int x_start, int x_end, int y, int max_quantization, int exact,
|
|
int used_subtract_green, uint32_t* const out) {
|
|
if (exact) {
|
|
PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row,
|
|
out);
|
|
} else {
|
|
const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
|
|
int x;
|
|
for (x = x_start; x < x_end; ++x) {
|
|
uint32_t predict;
|
|
uint32_t residual;
|
|
if (y == 0) {
|
|
predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
|
|
} else if (x == 0) {
|
|
predict = upper_row[x]; // Top.
|
|
} else {
|
|
predict = pred_func(¤t_row[x - 1], upper_row + x);
|
|
}
|
|
#if (WEBP_NEAR_LOSSLESS == 1)
|
|
if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
|
|
x == 0 || x == width - 1) {
|
|
residual = VP8LSubPixels(current_row[x], predict);
|
|
} else {
|
|
residual = NearLossless(current_row[x], predict, max_quantization,
|
|
max_diffs[x], used_subtract_green);
|
|
// Update the source image.
|
|
current_row[x] = VP8LAddPixels(predict, residual);
|
|
// x is never 0 here so we do not need to update upper_row like below.
|
|
}
|
|
#else
|
|
(void)max_diffs;
|
|
(void)height;
|
|
(void)max_quantization;
|
|
(void)used_subtract_green;
|
|
residual = VP8LSubPixels(current_row[x], predict);
|
|
#endif
|
|
if ((current_row[x] & kMaskAlpha) == 0) {
|
|
// If alpha is 0, cleanup RGB. We can choose the RGB values of the
|
|
// residual for best compression. The prediction of alpha itself can be
|
|
// non-zero and must be kept though. We choose RGB of the residual to be
|
|
// 0.
|
|
residual &= kMaskAlpha;
|
|
// Update the source image.
|
|
current_row[x] = predict & ~kMaskAlpha;
|
|
// The prediction for the rightmost pixel in a row uses the leftmost
|
|
// pixel
|
|
// in that row as its top-right context pixel. Hence if we change the
|
|
// leftmost pixel of current_row, the corresponding change must be
|
|
// applied
|
|
// to upper_row as well where top-right context is being read from.
|
|
if (x == 0 && y != 0) upper_row[width] = current_row[0];
|
|
}
|
|
out[x - x_start] = residual;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Accessors to residual histograms.
|
|
static WEBP_INLINE uint32_t* GetHistoArgb(uint32_t* const all_histos,
|
|
int mode) {
|
|
return &all_histos[mode * HISTO_SIZE];
|
|
}
|
|
|
|
static WEBP_INLINE const uint32_t* GetHistoArgbConst(
|
|
const uint32_t* const all_histos, int mode) {
|
|
return &all_histos[mode * HISTO_SIZE];
|
|
}
|
|
|
|
// Find and store the best predictor.
|
|
static void GetBestPredictorForTile(const uint32_t* const all_argb, int tile_x,
|
|
int tile_y, int tiles_per_row,
|
|
uint32_t* accumulated_argb,
|
|
uint32_t* const modes) {
|
|
// Prediction modes of the left and above neighbor tiles.
|
|
const int left_mode =
|
|
(tile_x > 0) ? (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff
|
|
: 0xff;
|
|
const int above_mode =
|
|
(tile_y > 0) ? (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff
|
|
: 0xff;
|
|
int mode;
|
|
int64_t best_diff = WEBP_INT64_MAX;
|
|
uint32_t best_mode = 0;
|
|
const uint32_t* best_histo = GetHistoArgbConst(all_argb, best_mode);
|
|
for (mode = 0; mode < kNumPredModes; ++mode) {
|
|
const uint32_t* const histo_argb = GetHistoArgbConst(all_argb, mode);
|
|
const int64_t cur_diff = PredictionCostSpatialHistogram(
|
|
accumulated_argb, histo_argb, mode, left_mode, above_mode);
|
|
|
|
if (cur_diff < best_diff) {
|
|
best_histo = histo_argb;
|
|
best_diff = cur_diff;
|
|
best_mode = mode;
|
|
}
|
|
}
|
|
// Update the accumulated histogram.
|
|
VP8LAddVectorEq(best_histo, accumulated_argb, HISTO_SIZE);
|
|
modes[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (best_mode << 8);
|
|
}
|
|
|
|
// Computes the residuals for the different predictors.
|
|
// If max_quantization > 1, assumes that near lossless processing will be
|
|
// applied, quantizing residuals to multiples of quantization levels up to
|
|
// max_quantization (the actual quantization level depends on smoothness near
|
|
// the given pixel).
|
|
static void ComputeResidualsForTile(int width, int height, int tile_x,
|
|
int tile_y, int bits,
|
|
uint32_t* const all_argb,
|
|
uint32_t* const argb_scratch,
|
|
const uint32_t* const argb,
|
|
int max_quantization, int exact,
|
|
int used_subtract_green) {
|
|
const int start_x = tile_x << bits;
|
|
const int start_y = tile_y << bits;
|
|
const int tile_size = 1 << bits;
|
|
const int max_y = GetMin(tile_size, height - start_y);
|
|
const int max_x = GetMin(tile_size, width - start_x);
|
|
// Whether there exist columns just outside the tile.
|
|
const int have_left = (start_x > 0);
|
|
// Position and size of the strip covering the tile and adjacent columns if
|
|
// they exist.
|
|
const int context_start_x = start_x - have_left;
|
|
#if (WEBP_NEAR_LOSSLESS == 1)
|
|
const int context_width = max_x + have_left + (max_x < width - start_x);
|
|
#endif
|
|
// The width of upper_row and current_row is one pixel larger than image width
|
|
// to allow the top right pixel to point to the leftmost pixel of the next row
|
|
// when at the right edge.
|
|
uint32_t* upper_row = argb_scratch;
|
|
uint32_t* current_row = upper_row + width + 1;
|
|
uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
|
|
int mode;
|
|
// Need pointers to be able to swap arrays.
|
|
uint32_t residuals[1 << MAX_TRANSFORM_BITS];
|
|
assert(max_x <= (1 << MAX_TRANSFORM_BITS));
|
|
for (mode = 0; mode < kNumPredModes; ++mode) {
|
|
int relative_y;
|
|
uint32_t* const histo_argb = GetHistoArgb(all_argb, mode);
|
|
if (start_y > 0) {
|
|
// Read the row above the tile which will become the first upper_row.
|
|
// Include a pixel to the left if it exists; include a pixel to the right
|
|
// in all cases (wrapping to the leftmost pixel of the next row if it does
|
|
// not exist).
|
|
memcpy(current_row + context_start_x,
|
|
argb + (start_y - 1) * width + context_start_x,
|
|
sizeof(*argb) * (max_x + have_left + 1));
|
|
}
|
|
for (relative_y = 0; relative_y < max_y; ++relative_y) {
|
|
const int y = start_y + relative_y;
|
|
int relative_x;
|
|
uint32_t* tmp = upper_row;
|
|
upper_row = current_row;
|
|
current_row = tmp;
|
|
// Read current_row. Include a pixel to the left if it exists; include a
|
|
// pixel to the right in all cases except at the bottom right corner of
|
|
// the image (wrapping to the leftmost pixel of the next row if it does
|
|
// not exist in the current row).
|
|
memcpy(current_row + context_start_x,
|
|
argb + y * width + context_start_x,
|
|
sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
|
|
#if (WEBP_NEAR_LOSSLESS == 1)
|
|
if (max_quantization > 1 && y >= 1 && y + 1 < height) {
|
|
MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
|
|
max_diffs + context_start_x, used_subtract_green);
|
|
}
|
|
#endif
|
|
|
|
GetResidual(width, height, upper_row, current_row, max_diffs, mode,
|
|
start_x, start_x + max_x, y, max_quantization, exact,
|
|
used_subtract_green, residuals);
|
|
for (relative_x = 0; relative_x < max_x; ++relative_x) {
|
|
UpdateHisto(histo_argb, residuals[relative_x]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Converts pixels of the image to residuals with respect to predictions.
|
|
// If max_quantization > 1, applies near lossless processing, quantizing
|
|
// residuals to multiples of quantization levels up to max_quantization
|
|
// (the actual quantization level depends on smoothness near the given pixel).
|
|
static void CopyImageWithPrediction(int width, int height, int bits,
|
|
const uint32_t* const modes,
|
|
uint32_t* const argb_scratch,
|
|
uint32_t* const argb, int low_effort,
|
|
int max_quantization, int exact,
|
|
int used_subtract_green) {
|
|
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
|
// The width of upper_row and current_row is one pixel larger than image width
|
|
// to allow the top right pixel to point to the leftmost pixel of the next row
|
|
// when at the right edge.
|
|
uint32_t* upper_row = argb_scratch;
|
|
uint32_t* current_row = upper_row + width + 1;
|
|
uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
|
|
#if (WEBP_NEAR_LOSSLESS == 1)
|
|
uint8_t* lower_max_diffs = current_max_diffs + width;
|
|
#endif
|
|
int y;
|
|
|
|
for (y = 0; y < height; ++y) {
|
|
int x;
|
|
uint32_t* const tmp32 = upper_row;
|
|
upper_row = current_row;
|
|
current_row = tmp32;
|
|
memcpy(current_row, argb + y * width,
|
|
sizeof(*argb) * (width + (y + 1 < height)));
|
|
|
|
if (low_effort) {
|
|
PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row,
|
|
argb + y * width);
|
|
} else {
|
|
#if (WEBP_NEAR_LOSSLESS == 1)
|
|
if (max_quantization > 1) {
|
|
// Compute max_diffs for the lower row now, because that needs the
|
|
// contents of argb for the current row, which we will overwrite with
|
|
// residuals before proceeding with the next row.
|
|
uint8_t* const tmp8 = current_max_diffs;
|
|
current_max_diffs = lower_max_diffs;
|
|
lower_max_diffs = tmp8;
|
|
if (y + 2 < height) {
|
|
MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
|
|
used_subtract_green);
|
|
}
|
|
}
|
|
#endif
|
|
for (x = 0; x < width;) {
|
|
const int mode =
|
|
(modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
|
|
int x_end = x + (1 << bits);
|
|
if (x_end > width) x_end = width;
|
|
GetResidual(width, height, upper_row, current_row, current_max_diffs,
|
|
mode, x, x_end, y, max_quantization, exact,
|
|
used_subtract_green, argb + y * width + x);
|
|
x = x_end;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Checks whether 'image' can be subsampled by finding the biggest power of 2
|
|
// squares (defined by 'best_bits') of uniform value it is made out of.
|
|
static void OptimizeSampling(uint32_t* const image, int full_width,
|
|
int full_height, int bits, int* best_bits_out) {
|
|
int width = VP8LSubSampleSize(full_width, bits);
|
|
int height = VP8LSubSampleSize(full_height, bits);
|
|
int old_width, x, y, square_size;
|
|
int best_bits = bits;
|
|
*best_bits_out = bits;
|
|
// Check rows first.
|
|
while (best_bits < MAX_TRANSFORM_BITS) {
|
|
const int new_square_size = 1 << (best_bits + 1 - bits);
|
|
int is_good = 1;
|
|
square_size = 1 << (best_bits - bits);
|
|
for (y = 0; y + square_size < height; y += new_square_size) {
|
|
// Check the first lines of consecutive line groups.
|
|
if (memcmp(&image[y * width], &image[(y + square_size) * width],
|
|
width * sizeof(*image)) != 0) {
|
|
is_good = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (is_good) {
|
|
++best_bits;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (best_bits == bits) return;
|
|
|
|
// Check columns.
|
|
while (best_bits > bits) {
|
|
int is_good = 1;
|
|
square_size = 1 << (best_bits - bits);
|
|
for (y = 0; is_good && y < height; ++y) {
|
|
for (x = 0; is_good && x < width; x += square_size) {
|
|
int i;
|
|
for (i = x + 1; i < GetMin(x + square_size, width); ++i) {
|
|
if (image[y * width + i] != image[y * width + x]) {
|
|
is_good = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (is_good) {
|
|
break;
|
|
}
|
|
--best_bits;
|
|
}
|
|
if (best_bits == bits) return;
|
|
|
|
// Subsample the image.
|
|
old_width = width;
|
|
square_size = 1 << (best_bits - bits);
|
|
width = VP8LSubSampleSize(full_width, best_bits);
|
|
height = VP8LSubSampleSize(full_height, best_bits);
|
|
for (y = 0; y < height; ++y) {
|
|
for (x = 0; x < width; ++x) {
|
|
image[y * width + x] = image[square_size * (y * old_width + x)];
|
|
}
|
|
}
|
|
*best_bits_out = best_bits;
|
|
}
|
|
|
|
// Computes the best predictor image.
|
|
// Finds the best predictors per tile. Once done, finds the best predictor image
|
|
// sampling.
|
|
// best_bits is set to 0 in case of error.
|
|
static void GetBestPredictorsAndSampling(
|
|
int width, int height, const int bits, uint32_t* const argb_scratch,
|
|
const uint32_t* const argb, int max_quantization, int exact,
|
|
int used_subtract_green, const WebPPicture* const pic, int percent_range,
|
|
int* const percent, uint32_t* const all_modes, int* best_bits) {
|
|
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
|
const int tiles_per_col = VP8LSubSampleSize(height, bits);
|
|
// Compute the needed memory size for residual histograms and accumulated
|
|
// residual histograms.
|
|
const int num_argb = kNumPredModes * HISTO_SIZE;
|
|
const int num_accumulated_argb = HISTO_SIZE;
|
|
uint32_t* const raw_data = (uint32_t*)WebPSafeCalloc(
|
|
num_argb + num_accumulated_argb, sizeof(*raw_data));
|
|
uint32_t* const all_argb = raw_data;
|
|
uint32_t* const all_accumulated_argb = all_argb + num_argb;
|
|
const int percent_start = *percent;
|
|
int tile_x = 0, tile_y = 0;
|
|
|
|
*best_bits = 0;
|
|
if (raw_data == NULL) return;
|
|
|
|
while (tile_y < tiles_per_col) {
|
|
ComputeResidualsForTile(width, height, tile_x, tile_y, bits, all_argb,
|
|
argb_scratch, argb, max_quantization, exact,
|
|
used_subtract_green);
|
|
GetBestPredictorForTile(all_argb, tile_x, tile_y, tiles_per_row,
|
|
all_accumulated_argb, all_modes);
|
|
// Reset the residuals.
|
|
memset(all_argb, 0, HISTO_SIZE * kNumPredModes * sizeof(*all_argb));
|
|
|
|
if (tile_x == (tiles_per_row - 1)) {
|
|
tile_x = 0;
|
|
++tile_y;
|
|
} else {
|
|
++tile_x;
|
|
}
|
|
if (tile_x == 0 &&
|
|
!WebPReportProgress(
|
|
pic, percent_start + percent_range * tile_y / tiles_per_col,
|
|
percent)) {
|
|
WebPSafeFree(raw_data);
|
|
return;
|
|
}
|
|
}
|
|
WebPSafeFree(raw_data);
|
|
|
|
OptimizeSampling(all_modes, width, height, bits, best_bits);
|
|
}
|
|
|
|
// Finds the best predictor for each tile, and converts the image to residuals
|
|
// with respect to predictions. If near_lossless_quality < 100, applies
|
|
// near lossless processing, shaving off more bits of residuals for lower
|
|
// qualities.
|
|
int VP8LResidualImage(int width, int height, int bits, int low_effort,
|
|
uint32_t* const argb, uint32_t* const argb_scratch,
|
|
uint32_t* const image, int near_lossless_quality,
|
|
int exact, int used_subtract_green,
|
|
const WebPPicture* const pic, int percent_range,
|
|
int* const percent, int* const best_bits) {
|
|
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
|
const int tiles_per_col = VP8LSubSampleSize(height, bits);
|
|
int percent_start = *percent;
|
|
const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
|
|
if (low_effort) {
|
|
int i;
|
|
for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
|
|
image[i] = ARGB_BLACK | (kPredLowEffort << 8);
|
|
}
|
|
*best_bits = bits;
|
|
} else {
|
|
GetBestPredictorsAndSampling(width, height, bits, argb_scratch, argb,
|
|
max_quantization, exact, used_subtract_green,
|
|
pic, percent_range, percent, image, best_bits);
|
|
if (*best_bits == 0) return 0;
|
|
}
|
|
|
|
CopyImageWithPrediction(width, height, *best_bits, image, argb_scratch, argb,
|
|
low_effort, max_quantization, exact,
|
|
used_subtract_green);
|
|
return WebPReportProgress(pic, percent_start + percent_range, percent);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Color transform functions.
|
|
|
|
static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
|
|
m->green_to_red_ = 0;
|
|
m->green_to_blue_ = 0;
|
|
m->red_to_blue_ = 0;
|
|
}
|
|
|
|
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
|
|
VP8LMultipliers* const m) {
|
|
m->green_to_red_ = (color_code >> 0) & 0xff;
|
|
m->green_to_blue_ = (color_code >> 8) & 0xff;
|
|
m->red_to_blue_ = (color_code >> 16) & 0xff;
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t MultipliersToColorCode(
|
|
const VP8LMultipliers* const m) {
|
|
return 0xff000000u |
|
|
((uint32_t)(m->red_to_blue_) << 16) |
|
|
((uint32_t)(m->green_to_blue_) << 8) |
|
|
m->green_to_red_;
|
|
}
|
|
|
|
static int64_t PredictionCostCrossColor(const uint32_t accumulated[256],
|
|
const uint32_t counts[256]) {
|
|
// Favor low entropy, locally and globally.
|
|
// Favor small absolute values for PredictionCostSpatial
|
|
static const uint64_t kExpValue = 240;
|
|
return (int64_t)VP8LCombinedShannonEntropy(counts, accumulated) +
|
|
PredictionCostBias(counts, 3, kExpValue);
|
|
}
|
|
|
|
static int64_t GetPredictionCostCrossColorRed(
|
|
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
|
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
|
|
const uint32_t accumulated_red_histo[256]) {
|
|
uint32_t histo[256] = { 0 };
|
|
int64_t cur_diff;
|
|
|
|
VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
|
|
green_to_red, histo);
|
|
|
|
cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
|
|
if ((uint8_t)green_to_red == prev_x.green_to_red_) {
|
|
// favor keeping the areas locally similar
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
if ((uint8_t)green_to_red == prev_y.green_to_red_) {
|
|
// favor keeping the areas locally similar
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
if (green_to_red == 0) {
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
return cur_diff;
|
|
}
|
|
|
|
static void GetBestGreenToRed(const uint32_t* argb, int stride, int tile_width,
|
|
int tile_height, VP8LMultipliers prev_x,
|
|
VP8LMultipliers prev_y, int quality,
|
|
const uint32_t accumulated_red_histo[256],
|
|
VP8LMultipliers* const best_tx) {
|
|
const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
|
|
int green_to_red_best = 0;
|
|
int iter, offset;
|
|
int64_t best_diff = GetPredictionCostCrossColorRed(
|
|
argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_red_best,
|
|
accumulated_red_histo);
|
|
for (iter = 0; iter < kMaxIters; ++iter) {
|
|
// ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
|
|
// one in color computation. Having initial delta here as 1 is sufficient
|
|
// to explore the range of (-2, 2).
|
|
const int delta = 32 >> iter;
|
|
// Try a negative and a positive delta from the best known value.
|
|
for (offset = -delta; offset <= delta; offset += 2 * delta) {
|
|
const int green_to_red_cur = offset + green_to_red_best;
|
|
const int64_t cur_diff = GetPredictionCostCrossColorRed(
|
|
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
|
green_to_red_cur, accumulated_red_histo);
|
|
if (cur_diff < best_diff) {
|
|
best_diff = cur_diff;
|
|
green_to_red_best = green_to_red_cur;
|
|
}
|
|
}
|
|
}
|
|
best_tx->green_to_red_ = (green_to_red_best & 0xff);
|
|
}
|
|
|
|
static int64_t GetPredictionCostCrossColorBlue(
|
|
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
|
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_blue,
|
|
int red_to_blue, const uint32_t accumulated_blue_histo[256]) {
|
|
uint32_t histo[256] = { 0 };
|
|
int64_t cur_diff;
|
|
|
|
VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
|
|
green_to_blue, red_to_blue, histo);
|
|
|
|
cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
|
|
if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
|
|
// favor keeping the areas locally similar
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
|
|
// favor keeping the areas locally similar
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
|
|
// favor keeping the areas locally similar
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
|
|
// favor keeping the areas locally similar
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
if (green_to_blue == 0) {
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
if (red_to_blue == 0) {
|
|
cur_diff -= 3ll << LOG_2_PRECISION_BITS;
|
|
}
|
|
return cur_diff;
|
|
}
|
|
|
|
#define kGreenRedToBlueNumAxis 8
|
|
#define kGreenRedToBlueMaxIters 7
|
|
static void GetBestGreenRedToBlue(const uint32_t* argb, int stride,
|
|
int tile_width, int tile_height,
|
|
VP8LMultipliers prev_x,
|
|
VP8LMultipliers prev_y, int quality,
|
|
const uint32_t accumulated_blue_histo[256],
|
|
VP8LMultipliers* const best_tx) {
|
|
const int8_t offset[kGreenRedToBlueNumAxis][2] =
|
|
{{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
|
|
const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
|
|
const int iters =
|
|
(quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
|
|
int green_to_blue_best = 0;
|
|
int red_to_blue_best = 0;
|
|
int iter;
|
|
// Initial value at origin:
|
|
int64_t best_diff = GetPredictionCostCrossColorBlue(
|
|
argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_blue_best,
|
|
red_to_blue_best, accumulated_blue_histo);
|
|
for (iter = 0; iter < iters; ++iter) {
|
|
const int delta = delta_lut[iter];
|
|
int axis;
|
|
for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
|
|
const int green_to_blue_cur =
|
|
offset[axis][0] * delta + green_to_blue_best;
|
|
const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
|
|
const int64_t cur_diff = GetPredictionCostCrossColorBlue(
|
|
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
|
green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
|
|
if (cur_diff < best_diff) {
|
|
best_diff = cur_diff;
|
|
green_to_blue_best = green_to_blue_cur;
|
|
red_to_blue_best = red_to_blue_cur;
|
|
}
|
|
if (quality < 25 && iter == 4) {
|
|
// Only axis aligned diffs for lower quality.
|
|
break; // next iter.
|
|
}
|
|
}
|
|
if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
|
|
// Further iterations would not help.
|
|
break; // out of iter-loop.
|
|
}
|
|
}
|
|
best_tx->green_to_blue_ = green_to_blue_best & 0xff;
|
|
best_tx->red_to_blue_ = red_to_blue_best & 0xff;
|
|
}
|
|
#undef kGreenRedToBlueMaxIters
|
|
#undef kGreenRedToBlueNumAxis
|
|
|
|
static VP8LMultipliers GetBestColorTransformForTile(
|
|
int tile_x, int tile_y, int bits, VP8LMultipliers prev_x,
|
|
VP8LMultipliers prev_y, int quality, int xsize, int ysize,
|
|
const uint32_t accumulated_red_histo[256],
|
|
const uint32_t accumulated_blue_histo[256], const uint32_t* const argb) {
|
|
const int max_tile_size = 1 << bits;
|
|
const int tile_y_offset = tile_y * max_tile_size;
|
|
const int tile_x_offset = tile_x * max_tile_size;
|
|
const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
|
|
const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
|
|
const int tile_width = all_x_max - tile_x_offset;
|
|
const int tile_height = all_y_max - tile_y_offset;
|
|
const uint32_t* const tile_argb = argb + tile_y_offset * xsize
|
|
+ tile_x_offset;
|
|
VP8LMultipliers best_tx;
|
|
MultipliersClear(&best_tx);
|
|
|
|
GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
|
|
prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
|
|
GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
|
|
prev_x, prev_y, quality, accumulated_blue_histo,
|
|
&best_tx);
|
|
return best_tx;
|
|
}
|
|
|
|
static void CopyTileWithColorTransform(int xsize, int ysize,
|
|
int tile_x, int tile_y,
|
|
int max_tile_size,
|
|
VP8LMultipliers color_transform,
|
|
uint32_t* argb) {
|
|
const int xscan = GetMin(max_tile_size, xsize - tile_x);
|
|
int yscan = GetMin(max_tile_size, ysize - tile_y);
|
|
argb += tile_y * xsize + tile_x;
|
|
while (yscan-- > 0) {
|
|
VP8LTransformColor(&color_transform, argb, xscan);
|
|
argb += xsize;
|
|
}
|
|
}
|
|
|
|
int VP8LColorSpaceTransform(int width, int height, int bits, int quality,
|
|
uint32_t* const argb, uint32_t* image,
|
|
const WebPPicture* const pic, int percent_range,
|
|
int* const percent, int* const best_bits) {
|
|
const int max_tile_size = 1 << bits;
|
|
const int tile_xsize = VP8LSubSampleSize(width, bits);
|
|
const int tile_ysize = VP8LSubSampleSize(height, bits);
|
|
int percent_start = *percent;
|
|
uint32_t accumulated_red_histo[256] = { 0 };
|
|
uint32_t accumulated_blue_histo[256] = { 0 };
|
|
int tile_x, tile_y;
|
|
VP8LMultipliers prev_x, prev_y;
|
|
MultipliersClear(&prev_y);
|
|
MultipliersClear(&prev_x);
|
|
for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
|
|
for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
|
|
int y;
|
|
const int tile_x_offset = tile_x * max_tile_size;
|
|
const int tile_y_offset = tile_y * max_tile_size;
|
|
const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
|
|
const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
|
|
const int offset = tile_y * tile_xsize + tile_x;
|
|
if (tile_y != 0) {
|
|
ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
|
|
}
|
|
prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
|
|
prev_x, prev_y,
|
|
quality, width, height,
|
|
accumulated_red_histo,
|
|
accumulated_blue_histo,
|
|
argb);
|
|
image[offset] = MultipliersToColorCode(&prev_x);
|
|
CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
|
|
max_tile_size, prev_x, argb);
|
|
|
|
// Gather accumulated histogram data.
|
|
for (y = tile_y_offset; y < all_y_max; ++y) {
|
|
int ix = y * width + tile_x_offset;
|
|
const int ix_end = ix + all_x_max - tile_x_offset;
|
|
for (; ix < ix_end; ++ix) {
|
|
const uint32_t pix = argb[ix];
|
|
if (ix >= 2 &&
|
|
pix == argb[ix - 2] &&
|
|
pix == argb[ix - 1]) {
|
|
continue; // repeated pixels are handled by backward references
|
|
}
|
|
if (ix >= width + 2 &&
|
|
argb[ix - 2] == argb[ix - width - 2] &&
|
|
argb[ix - 1] == argb[ix - width - 1] &&
|
|
pix == argb[ix - width]) {
|
|
continue; // repeated pixels are handled by backward references
|
|
}
|
|
++accumulated_red_histo[(pix >> 16) & 0xff];
|
|
++accumulated_blue_histo[(pix >> 0) & 0xff];
|
|
}
|
|
}
|
|
}
|
|
if (!WebPReportProgress(
|
|
pic, percent_start + percent_range * tile_y / tile_ysize,
|
|
percent)) {
|
|
return 0;
|
|
}
|
|
}
|
|
OptimizeSampling(image, width, height, bits, best_bits);
|
|
return 1;
|
|
}
|