mirror of
https://github.com/webmproject/libwebp.git
synced 2025-01-01 00:08:24 +01:00
e300c9d819
fix some indent/whitespace, remove a few duplicate includes, extra semi-colons Change-Id: If937182b40a21e0f2028496e7b4b06c6e8a41352
855 lines
27 KiB
C
855 lines
27 KiB
C
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// frame coding and analysis
|
|
//
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "./vp8enci.h"
|
|
#include "./cost.h"
|
|
#include "../webp/format_constants.h" // RIFF constants
|
|
|
|
#define SEGMENT_VISU 0
|
|
#define DEBUG_SEARCH 0 // useful to track search convergence
|
|
|
|
//------------------------------------------------------------------------------
|
|
// multi-pass convergence
|
|
|
|
#define HEADER_SIZE_ESTIMATE (RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + \
|
|
VP8_FRAME_HEADER_SIZE)
|
|
#define DQ_LIMIT 0.4 // convergence is considered reached if dq < DQ_LIMIT
|
|
// we allow 2k of extra head-room in PARTITION0 limit.
|
|
#define PARTITION0_SIZE_LIMIT ((VP8_MAX_PARTITION0_SIZE - 2048ULL) << 11)
|
|
|
|
typedef struct { // struct for organizing convergence in either size or PSNR
|
|
int is_first;
|
|
float dq;
|
|
float q, last_q;
|
|
double value, last_value; // PSNR or size
|
|
double target;
|
|
int do_size_search;
|
|
} PassStats;
|
|
|
|
static int InitPassStats(const VP8Encoder* const enc, PassStats* const s) {
|
|
const uint64_t target_size = (uint64_t)enc->config_->target_size;
|
|
const int do_size_search = (target_size != 0);
|
|
const float target_PSNR = enc->config_->target_PSNR;
|
|
|
|
s->is_first = 1;
|
|
s->dq = 10.f;
|
|
s->q = s->last_q = enc->config_->quality;
|
|
s->target = do_size_search ? (double)target_size
|
|
: (target_PSNR > 0.) ? target_PSNR
|
|
: 40.; // default, just in case
|
|
s->value = s->last_value = 0.;
|
|
s->do_size_search = do_size_search;
|
|
return do_size_search;
|
|
}
|
|
|
|
static float Clamp(float v, float min, float max) {
|
|
return (v < min) ? min : (v > max) ? max : v;
|
|
}
|
|
|
|
static float ComputeNextQ(PassStats* const s) {
|
|
float dq;
|
|
if (s->is_first) {
|
|
dq = (s->value > s->target) ? -s->dq : s->dq;
|
|
s->is_first = 0;
|
|
} else if (s->value != s->last_value) {
|
|
const double slope = (s->target - s->value) / (s->last_value - s->value);
|
|
dq = (float)(slope * (s->last_q - s->q));
|
|
} else {
|
|
dq = 0.; // we're done?!
|
|
}
|
|
// Limit variable to avoid large swings.
|
|
s->dq = Clamp(dq, -30.f, 30.f);
|
|
s->last_q = s->q;
|
|
s->last_value = s->value;
|
|
s->q = Clamp(s->q + s->dq, 0.f, 100.f);
|
|
return s->q;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Tables for level coding
|
|
|
|
const uint8_t VP8EncBands[16 + 1] = {
|
|
0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
|
|
0 // sentinel
|
|
};
|
|
|
|
const uint8_t VP8Cat3[] = { 173, 148, 140 };
|
|
const uint8_t VP8Cat4[] = { 176, 155, 140, 135 };
|
|
const uint8_t VP8Cat5[] = { 180, 157, 141, 134, 130 };
|
|
const uint8_t VP8Cat6[] =
|
|
{ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 };
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Reset the statistics about: number of skips, token proba, level cost,...
|
|
|
|
static void ResetStats(VP8Encoder* const enc) {
|
|
VP8Proba* const proba = &enc->proba_;
|
|
VP8CalculateLevelCosts(proba);
|
|
proba->nb_skip_ = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Skip decision probability
|
|
|
|
#define SKIP_PROBA_THRESHOLD 250 // value below which using skip_proba is OK.
|
|
|
|
static int CalcSkipProba(uint64_t nb, uint64_t total) {
|
|
return (int)(total ? (total - nb) * 255 / total : 255);
|
|
}
|
|
|
|
// Returns the bit-cost for coding the skip probability.
|
|
static int FinalizeSkipProba(VP8Encoder* const enc) {
|
|
VP8Proba* const proba = &enc->proba_;
|
|
const int nb_mbs = enc->mb_w_ * enc->mb_h_;
|
|
const int nb_events = proba->nb_skip_;
|
|
int size;
|
|
proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs);
|
|
proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD);
|
|
size = 256; // 'use_skip_proba' bit
|
|
if (proba->use_skip_proba_) {
|
|
size += nb_events * VP8BitCost(1, proba->skip_proba_)
|
|
+ (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_);
|
|
size += 8 * 256; // cost of signaling the skip_proba_ itself.
|
|
}
|
|
return size;
|
|
}
|
|
|
|
// Collect statistics and deduce probabilities for next coding pass.
|
|
// Return the total bit-cost for coding the probability updates.
|
|
static int CalcTokenProba(int nb, int total) {
|
|
assert(nb <= total);
|
|
return nb ? (255 - nb * 255 / total) : 255;
|
|
}
|
|
|
|
// Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability.
|
|
static int BranchCost(int nb, int total, int proba) {
|
|
return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba);
|
|
}
|
|
|
|
static void ResetTokenStats(VP8Encoder* const enc) {
|
|
VP8Proba* const proba = &enc->proba_;
|
|
memset(proba->stats_, 0, sizeof(proba->stats_));
|
|
}
|
|
|
|
static int FinalizeTokenProbas(VP8Proba* const proba) {
|
|
int has_changed = 0;
|
|
int size = 0;
|
|
int t, b, c, p;
|
|
for (t = 0; t < NUM_TYPES; ++t) {
|
|
for (b = 0; b < NUM_BANDS; ++b) {
|
|
for (c = 0; c < NUM_CTX; ++c) {
|
|
for (p = 0; p < NUM_PROBAS; ++p) {
|
|
const proba_t stats = proba->stats_[t][b][c][p];
|
|
const int nb = (stats >> 0) & 0xffff;
|
|
const int total = (stats >> 16) & 0xffff;
|
|
const int update_proba = VP8CoeffsUpdateProba[t][b][c][p];
|
|
const int old_p = VP8CoeffsProba0[t][b][c][p];
|
|
const int new_p = CalcTokenProba(nb, total);
|
|
const int old_cost = BranchCost(nb, total, old_p)
|
|
+ VP8BitCost(0, update_proba);
|
|
const int new_cost = BranchCost(nb, total, new_p)
|
|
+ VP8BitCost(1, update_proba)
|
|
+ 8 * 256;
|
|
const int use_new_p = (old_cost > new_cost);
|
|
size += VP8BitCost(use_new_p, update_proba);
|
|
if (use_new_p) { // only use proba that seem meaningful enough.
|
|
proba->coeffs_[t][b][c][p] = new_p;
|
|
has_changed |= (new_p != old_p);
|
|
size += 8 * 256;
|
|
} else {
|
|
proba->coeffs_[t][b][c][p] = old_p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
proba->dirty_ = has_changed;
|
|
return size;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Finalize Segment probability based on the coding tree
|
|
|
|
static int GetProba(int a, int b) {
|
|
const int total = a + b;
|
|
return (total == 0) ? 255 // that's the default probability.
|
|
: (255 * a + total / 2) / total; // rounded proba
|
|
}
|
|
|
|
static void SetSegmentProbas(VP8Encoder* const enc) {
|
|
int p[NUM_MB_SEGMENTS] = { 0 };
|
|
int n;
|
|
|
|
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
|
const VP8MBInfo* const mb = &enc->mb_info_[n];
|
|
p[mb->segment_]++;
|
|
}
|
|
if (enc->pic_->stats != NULL) {
|
|
for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
|
|
enc->pic_->stats->segment_size[n] = p[n];
|
|
}
|
|
}
|
|
if (enc->segment_hdr_.num_segments_ > 1) {
|
|
uint8_t* const probas = enc->proba_.segments_;
|
|
probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
|
|
probas[1] = GetProba(p[0], p[1]);
|
|
probas[2] = GetProba(p[2], p[3]);
|
|
|
|
enc->segment_hdr_.update_map_ =
|
|
(probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
|
|
enc->segment_hdr_.size_ =
|
|
p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
|
|
p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
|
|
p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
|
|
p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
|
|
} else {
|
|
enc->segment_hdr_.update_map_ = 0;
|
|
enc->segment_hdr_.size_ = 0;
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Coefficient coding
|
|
|
|
static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) {
|
|
int n = res->first;
|
|
// should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1
|
|
const uint8_t* p = res->prob[n][ctx];
|
|
if (!VP8PutBit(bw, res->last >= 0, p[0])) {
|
|
return 0;
|
|
}
|
|
|
|
while (n < 16) {
|
|
const int c = res->coeffs[n++];
|
|
const int sign = c < 0;
|
|
int v = sign ? -c : c;
|
|
if (!VP8PutBit(bw, v != 0, p[1])) {
|
|
p = res->prob[VP8EncBands[n]][0];
|
|
continue;
|
|
}
|
|
if (!VP8PutBit(bw, v > 1, p[2])) {
|
|
p = res->prob[VP8EncBands[n]][1];
|
|
} else {
|
|
if (!VP8PutBit(bw, v > 4, p[3])) {
|
|
if (VP8PutBit(bw, v != 2, p[4]))
|
|
VP8PutBit(bw, v == 4, p[5]);
|
|
} else if (!VP8PutBit(bw, v > 10, p[6])) {
|
|
if (!VP8PutBit(bw, v > 6, p[7])) {
|
|
VP8PutBit(bw, v == 6, 159);
|
|
} else {
|
|
VP8PutBit(bw, v >= 9, 165);
|
|
VP8PutBit(bw, !(v & 1), 145);
|
|
}
|
|
} else {
|
|
int mask;
|
|
const uint8_t* tab;
|
|
if (v < 3 + (8 << 1)) { // VP8Cat3 (3b)
|
|
VP8PutBit(bw, 0, p[8]);
|
|
VP8PutBit(bw, 0, p[9]);
|
|
v -= 3 + (8 << 0);
|
|
mask = 1 << 2;
|
|
tab = VP8Cat3;
|
|
} else if (v < 3 + (8 << 2)) { // VP8Cat4 (4b)
|
|
VP8PutBit(bw, 0, p[8]);
|
|
VP8PutBit(bw, 1, p[9]);
|
|
v -= 3 + (8 << 1);
|
|
mask = 1 << 3;
|
|
tab = VP8Cat4;
|
|
} else if (v < 3 + (8 << 3)) { // VP8Cat5 (5b)
|
|
VP8PutBit(bw, 1, p[8]);
|
|
VP8PutBit(bw, 0, p[10]);
|
|
v -= 3 + (8 << 2);
|
|
mask = 1 << 4;
|
|
tab = VP8Cat5;
|
|
} else { // VP8Cat6 (11b)
|
|
VP8PutBit(bw, 1, p[8]);
|
|
VP8PutBit(bw, 1, p[10]);
|
|
v -= 3 + (8 << 3);
|
|
mask = 1 << 10;
|
|
tab = VP8Cat6;
|
|
}
|
|
while (mask) {
|
|
VP8PutBit(bw, !!(v & mask), *tab++);
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
p = res->prob[VP8EncBands[n]][2];
|
|
}
|
|
VP8PutBitUniform(bw, sign);
|
|
if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) {
|
|
return 1; // EOB
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void CodeResiduals(VP8BitWriter* const bw, VP8EncIterator* const it,
|
|
const VP8ModeScore* const rd) {
|
|
int x, y, ch;
|
|
VP8Residual res;
|
|
uint64_t pos1, pos2, pos3;
|
|
const int i16 = (it->mb_->type_ == 1);
|
|
const int segment = it->mb_->segment_;
|
|
VP8Encoder* const enc = it->enc_;
|
|
|
|
VP8IteratorNzToBytes(it);
|
|
|
|
pos1 = VP8BitWriterPos(bw);
|
|
if (i16) {
|
|
VP8InitResidual(0, 1, enc, &res);
|
|
VP8SetResidualCoeffs(rd->y_dc_levels, &res);
|
|
it->top_nz_[8] = it->left_nz_[8] =
|
|
PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res);
|
|
VP8InitResidual(1, 0, enc, &res);
|
|
} else {
|
|
VP8InitResidual(0, 3, enc, &res);
|
|
}
|
|
|
|
// luma-AC
|
|
for (y = 0; y < 4; ++y) {
|
|
for (x = 0; x < 4; ++x) {
|
|
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
|
it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res);
|
|
}
|
|
}
|
|
pos2 = VP8BitWriterPos(bw);
|
|
|
|
// U/V
|
|
VP8InitResidual(0, 2, enc, &res);
|
|
for (ch = 0; ch <= 2; ch += 2) {
|
|
for (y = 0; y < 2; ++y) {
|
|
for (x = 0; x < 2; ++x) {
|
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
|
VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
|
PutCoeffs(bw, ctx, &res);
|
|
}
|
|
}
|
|
}
|
|
pos3 = VP8BitWriterPos(bw);
|
|
it->luma_bits_ = pos2 - pos1;
|
|
it->uv_bits_ = pos3 - pos2;
|
|
it->bit_count_[segment][i16] += it->luma_bits_;
|
|
it->bit_count_[segment][2] += it->uv_bits_;
|
|
VP8IteratorBytesToNz(it);
|
|
}
|
|
|
|
// Same as CodeResiduals, but doesn't actually write anything.
|
|
// Instead, it just records the event distribution.
|
|
static void RecordResiduals(VP8EncIterator* const it,
|
|
const VP8ModeScore* const rd) {
|
|
int x, y, ch;
|
|
VP8Residual res;
|
|
VP8Encoder* const enc = it->enc_;
|
|
|
|
VP8IteratorNzToBytes(it);
|
|
|
|
if (it->mb_->type_ == 1) { // i16x16
|
|
VP8InitResidual(0, 1, enc, &res);
|
|
VP8SetResidualCoeffs(rd->y_dc_levels, &res);
|
|
it->top_nz_[8] = it->left_nz_[8] =
|
|
VP8RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res);
|
|
VP8InitResidual(1, 0, enc, &res);
|
|
} else {
|
|
VP8InitResidual(0, 3, enc, &res);
|
|
}
|
|
|
|
// luma-AC
|
|
for (y = 0; y < 4; ++y) {
|
|
for (x = 0; x < 4; ++x) {
|
|
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
|
it->top_nz_[x] = it->left_nz_[y] = VP8RecordCoeffs(ctx, &res);
|
|
}
|
|
}
|
|
|
|
// U/V
|
|
VP8InitResidual(0, 2, enc, &res);
|
|
for (ch = 0; ch <= 2; ch += 2) {
|
|
for (y = 0; y < 2; ++y) {
|
|
for (x = 0; x < 2; ++x) {
|
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
|
VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
|
VP8RecordCoeffs(ctx, &res);
|
|
}
|
|
}
|
|
}
|
|
|
|
VP8IteratorBytesToNz(it);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Token buffer
|
|
|
|
#if !defined(DISABLE_TOKEN_BUFFER)
|
|
|
|
static int RecordTokens(VP8EncIterator* const it, const VP8ModeScore* const rd,
|
|
VP8TBuffer* const tokens) {
|
|
int x, y, ch;
|
|
VP8Residual res;
|
|
VP8Encoder* const enc = it->enc_;
|
|
|
|
VP8IteratorNzToBytes(it);
|
|
if (it->mb_->type_ == 1) { // i16x16
|
|
const int ctx = it->top_nz_[8] + it->left_nz_[8];
|
|
VP8InitResidual(0, 1, enc, &res);
|
|
VP8SetResidualCoeffs(rd->y_dc_levels, &res);
|
|
it->top_nz_[8] = it->left_nz_[8] =
|
|
VP8RecordCoeffTokens(ctx, 1,
|
|
res.first, res.last, res.coeffs, tokens);
|
|
VP8RecordCoeffs(ctx, &res);
|
|
VP8InitResidual(1, 0, enc, &res);
|
|
} else {
|
|
VP8InitResidual(0, 3, enc, &res);
|
|
}
|
|
|
|
// luma-AC
|
|
for (y = 0; y < 4; ++y) {
|
|
for (x = 0; x < 4; ++x) {
|
|
const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
|
VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
|
|
it->top_nz_[x] = it->left_nz_[y] =
|
|
VP8RecordCoeffTokens(ctx, res.coeff_type,
|
|
res.first, res.last, res.coeffs, tokens);
|
|
VP8RecordCoeffs(ctx, &res);
|
|
}
|
|
}
|
|
|
|
// U/V
|
|
VP8InitResidual(0, 2, enc, &res);
|
|
for (ch = 0; ch <= 2; ch += 2) {
|
|
for (y = 0; y < 2; ++y) {
|
|
for (x = 0; x < 2; ++x) {
|
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
|
VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
|
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
|
|
VP8RecordCoeffTokens(ctx, 2,
|
|
res.first, res.last, res.coeffs, tokens);
|
|
VP8RecordCoeffs(ctx, &res);
|
|
}
|
|
}
|
|
}
|
|
VP8IteratorBytesToNz(it);
|
|
return !tokens->error_;
|
|
}
|
|
|
|
#endif // !DISABLE_TOKEN_BUFFER
|
|
|
|
//------------------------------------------------------------------------------
|
|
// ExtraInfo map / Debug function
|
|
|
|
#if SEGMENT_VISU
|
|
static void SetBlock(uint8_t* p, int value, int size) {
|
|
int y;
|
|
for (y = 0; y < size; ++y) {
|
|
memset(p, value, size);
|
|
p += BPS;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void ResetSSE(VP8Encoder* const enc) {
|
|
enc->sse_[0] = 0;
|
|
enc->sse_[1] = 0;
|
|
enc->sse_[2] = 0;
|
|
// Note: enc->sse_[3] is managed by alpha.c
|
|
enc->sse_count_ = 0;
|
|
}
|
|
|
|
static void StoreSSE(const VP8EncIterator* const it) {
|
|
VP8Encoder* const enc = it->enc_;
|
|
const uint8_t* const in = it->yuv_in_;
|
|
const uint8_t* const out = it->yuv_out_;
|
|
// Note: not totally accurate at boundary. And doesn't include in-loop filter.
|
|
enc->sse_[0] += VP8SSE16x16(in + Y_OFF, out + Y_OFF);
|
|
enc->sse_[1] += VP8SSE8x8(in + U_OFF, out + U_OFF);
|
|
enc->sse_[2] += VP8SSE8x8(in + V_OFF, out + V_OFF);
|
|
enc->sse_count_ += 16 * 16;
|
|
}
|
|
|
|
static void StoreSideInfo(const VP8EncIterator* const it) {
|
|
VP8Encoder* const enc = it->enc_;
|
|
const VP8MBInfo* const mb = it->mb_;
|
|
WebPPicture* const pic = enc->pic_;
|
|
|
|
if (pic->stats != NULL) {
|
|
StoreSSE(it);
|
|
enc->block_count_[0] += (mb->type_ == 0);
|
|
enc->block_count_[1] += (mb->type_ == 1);
|
|
enc->block_count_[2] += (mb->skip_ != 0);
|
|
}
|
|
|
|
if (pic->extra_info != NULL) {
|
|
uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_];
|
|
switch (pic->extra_info_type) {
|
|
case 1: *info = mb->type_; break;
|
|
case 2: *info = mb->segment_; break;
|
|
case 3: *info = enc->dqm_[mb->segment_].quant_; break;
|
|
case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break;
|
|
case 5: *info = mb->uv_mode_; break;
|
|
case 6: {
|
|
const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3);
|
|
*info = (b > 255) ? 255 : b; break;
|
|
}
|
|
case 7: *info = mb->alpha_; break;
|
|
default: *info = 0; break;
|
|
}
|
|
}
|
|
#if SEGMENT_VISU // visualize segments and prediction modes
|
|
SetBlock(it->yuv_out_ + Y_OFF, mb->segment_ * 64, 16);
|
|
SetBlock(it->yuv_out_ + U_OFF, it->preds_[0] * 64, 8);
|
|
SetBlock(it->yuv_out_ + V_OFF, mb->uv_mode_ * 64, 8);
|
|
#endif
|
|
}
|
|
|
|
static double GetPSNR(uint64_t mse, uint64_t size) {
|
|
return (mse > 0 && size > 0) ? 10. * log10(255. * 255. * size / mse) : 99;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// StatLoop(): only collect statistics (number of skips, token usage, ...).
|
|
// This is used for deciding optimal probabilities. It also modifies the
|
|
// quantizer value if some target (size, PSNR) was specified.
|
|
|
|
static void SetLoopParams(VP8Encoder* const enc, float q) {
|
|
// Make sure the quality parameter is inside valid bounds
|
|
q = Clamp(q, 0.f, 100.f);
|
|
|
|
VP8SetSegmentParams(enc, q); // setup segment quantizations and filters
|
|
SetSegmentProbas(enc); // compute segment probabilities
|
|
|
|
ResetStats(enc);
|
|
ResetSSE(enc);
|
|
}
|
|
|
|
static uint64_t OneStatPass(VP8Encoder* const enc, VP8RDLevel rd_opt,
|
|
int nb_mbs, int percent_delta,
|
|
PassStats* const s) {
|
|
VP8EncIterator it;
|
|
uint64_t size = 0;
|
|
uint64_t size_p0 = 0;
|
|
uint64_t distortion = 0;
|
|
const uint64_t pixel_count = nb_mbs * 384;
|
|
|
|
VP8IteratorInit(enc, &it);
|
|
SetLoopParams(enc, s->q);
|
|
do {
|
|
VP8ModeScore info;
|
|
VP8IteratorImport(&it, NULL);
|
|
if (VP8Decimate(&it, &info, rd_opt)) {
|
|
// Just record the number of skips and act like skip_proba is not used.
|
|
enc->proba_.nb_skip_++;
|
|
}
|
|
RecordResiduals(&it, &info);
|
|
size += info.R + info.H;
|
|
size_p0 += info.H;
|
|
distortion += info.D;
|
|
if (percent_delta && !VP8IteratorProgress(&it, percent_delta))
|
|
return 0;
|
|
VP8IteratorSaveBoundary(&it);
|
|
} while (VP8IteratorNext(&it) && --nb_mbs > 0);
|
|
|
|
size_p0 += enc->segment_hdr_.size_;
|
|
if (s->do_size_search) {
|
|
size += FinalizeSkipProba(enc);
|
|
size += FinalizeTokenProbas(&enc->proba_);
|
|
size = ((size + size_p0 + 1024) >> 11) + HEADER_SIZE_ESTIMATE;
|
|
s->value = (double)size;
|
|
} else {
|
|
s->value = GetPSNR(distortion, pixel_count);
|
|
}
|
|
return size_p0;
|
|
}
|
|
|
|
static int StatLoop(VP8Encoder* const enc) {
|
|
const int method = enc->method_;
|
|
const int do_search = enc->do_search_;
|
|
const int fast_probe = ((method == 0 || method == 3) && !do_search);
|
|
int num_pass_left = enc->config_->pass;
|
|
const int task_percent = 20;
|
|
const int percent_per_pass =
|
|
(task_percent + num_pass_left / 2) / num_pass_left;
|
|
const int final_percent = enc->percent_ + task_percent;
|
|
const VP8RDLevel rd_opt =
|
|
(method >= 3 || do_search) ? RD_OPT_BASIC : RD_OPT_NONE;
|
|
int nb_mbs = enc->mb_w_ * enc->mb_h_;
|
|
PassStats stats;
|
|
|
|
InitPassStats(enc, &stats);
|
|
ResetTokenStats(enc);
|
|
|
|
// Fast mode: quick analysis pass over few mbs. Better than nothing.
|
|
if (fast_probe) {
|
|
if (method == 3) { // we need more stats for method 3 to be reliable.
|
|
nb_mbs = (nb_mbs > 200) ? nb_mbs >> 1 : 100;
|
|
} else {
|
|
nb_mbs = (nb_mbs > 200) ? nb_mbs >> 2 : 50;
|
|
}
|
|
}
|
|
|
|
while (num_pass_left-- > 0) {
|
|
const int is_last_pass = (fabs(stats.dq) <= DQ_LIMIT) ||
|
|
(num_pass_left == 0) ||
|
|
(enc->max_i4_header_bits_ == 0);
|
|
const uint64_t size_p0 =
|
|
OneStatPass(enc, rd_opt, nb_mbs, percent_per_pass, &stats);
|
|
if (size_p0 == 0) return 0;
|
|
#if (DEBUG_SEARCH > 0)
|
|
printf("#%d value:%.1lf -> %.1lf q:%.2f -> %.2f\n",
|
|
num_pass_left, stats.last_value, stats.value, stats.last_q, stats.q);
|
|
#endif
|
|
if (enc->max_i4_header_bits_ > 0 && size_p0 > PARTITION0_SIZE_LIMIT) {
|
|
++num_pass_left;
|
|
enc->max_i4_header_bits_ >>= 1; // strengthen header bit limitation...
|
|
continue; // ...and start over
|
|
}
|
|
if (is_last_pass) {
|
|
break;
|
|
}
|
|
// If no target size: just do several pass without changing 'q'
|
|
if (do_search) {
|
|
ComputeNextQ(&stats);
|
|
if (fabs(stats.dq) <= DQ_LIMIT) break;
|
|
}
|
|
}
|
|
if (!do_search || !stats.do_size_search) {
|
|
// Need to finalize probas now, since it wasn't done during the search.
|
|
FinalizeSkipProba(enc);
|
|
FinalizeTokenProbas(&enc->proba_);
|
|
}
|
|
VP8CalculateLevelCosts(&enc->proba_); // finalize costs
|
|
return WebPReportProgress(enc->pic_, final_percent, &enc->percent_);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Main loops
|
|
//
|
|
|
|
static const int kAverageBytesPerMB[8] = { 50, 24, 16, 9, 7, 5, 3, 2 };
|
|
|
|
static int PreLoopInitialize(VP8Encoder* const enc) {
|
|
int p;
|
|
int ok = 1;
|
|
const int average_bytes_per_MB = kAverageBytesPerMB[enc->base_quant_ >> 4];
|
|
const int bytes_per_parts =
|
|
enc->mb_w_ * enc->mb_h_ * average_bytes_per_MB / enc->num_parts_;
|
|
// Initialize the bit-writers
|
|
for (p = 0; ok && p < enc->num_parts_; ++p) {
|
|
ok = VP8BitWriterInit(enc->parts_ + p, bytes_per_parts);
|
|
}
|
|
if (!ok) {
|
|
VP8EncFreeBitWriters(enc); // malloc error occurred
|
|
WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static int PostLoopFinalize(VP8EncIterator* const it, int ok) {
|
|
VP8Encoder* const enc = it->enc_;
|
|
if (ok) { // Finalize the partitions, check for extra errors.
|
|
int p;
|
|
for (p = 0; p < enc->num_parts_; ++p) {
|
|
VP8BitWriterFinish(enc->parts_ + p);
|
|
ok &= !enc->parts_[p].error_;
|
|
}
|
|
}
|
|
|
|
if (ok) { // All good. Finish up.
|
|
if (enc->pic_->stats != NULL) { // finalize byte counters...
|
|
int i, s;
|
|
for (i = 0; i <= 2; ++i) {
|
|
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
|
enc->residual_bytes_[i][s] = (int)((it->bit_count_[s][i] + 7) >> 3);
|
|
}
|
|
}
|
|
}
|
|
VP8AdjustFilterStrength(it); // ...and store filter stats.
|
|
} else {
|
|
// Something bad happened -> need to do some memory cleanup.
|
|
VP8EncFreeBitWriters(enc);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// VP8EncLoop(): does the final bitstream coding.
|
|
|
|
static void ResetAfterSkip(VP8EncIterator* const it) {
|
|
if (it->mb_->type_ == 1) {
|
|
*it->nz_ = 0; // reset all predictors
|
|
it->left_nz_[8] = 0;
|
|
} else {
|
|
*it->nz_ &= (1 << 24); // preserve the dc_nz bit
|
|
}
|
|
}
|
|
|
|
int VP8EncLoop(VP8Encoder* const enc) {
|
|
VP8EncIterator it;
|
|
int ok = PreLoopInitialize(enc);
|
|
if (!ok) return 0;
|
|
|
|
StatLoop(enc); // stats-collection loop
|
|
|
|
VP8IteratorInit(enc, &it);
|
|
VP8InitFilter(&it);
|
|
do {
|
|
VP8ModeScore info;
|
|
const int dont_use_skip = !enc->proba_.use_skip_proba_;
|
|
const VP8RDLevel rd_opt = enc->rd_opt_level_;
|
|
|
|
VP8IteratorImport(&it, NULL);
|
|
// Warning! order is important: first call VP8Decimate() and
|
|
// *then* decide how to code the skip decision if there's one.
|
|
if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) {
|
|
CodeResiduals(it.bw_, &it, &info);
|
|
} else { // reset predictors after a skip
|
|
ResetAfterSkip(&it);
|
|
}
|
|
StoreSideInfo(&it);
|
|
VP8StoreFilterStats(&it);
|
|
VP8IteratorExport(&it);
|
|
ok = VP8IteratorProgress(&it, 20);
|
|
VP8IteratorSaveBoundary(&it);
|
|
} while (ok && VP8IteratorNext(&it));
|
|
|
|
return PostLoopFinalize(&it, ok);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Single pass using Token Buffer.
|
|
|
|
#if !defined(DISABLE_TOKEN_BUFFER)
|
|
|
|
#define MIN_COUNT 96 // minimum number of macroblocks before updating stats
|
|
|
|
int VP8EncTokenLoop(VP8Encoder* const enc) {
|
|
// Roughly refresh the proba eight times per pass
|
|
int max_count = (enc->mb_w_ * enc->mb_h_) >> 3;
|
|
int num_pass_left = enc->config_->pass;
|
|
const int do_search = enc->do_search_;
|
|
VP8EncIterator it;
|
|
VP8Proba* const proba = &enc->proba_;
|
|
const VP8RDLevel rd_opt = enc->rd_opt_level_;
|
|
const uint64_t pixel_count = enc->mb_w_ * enc->mb_h_ * 384;
|
|
PassStats stats;
|
|
int ok;
|
|
|
|
InitPassStats(enc, &stats);
|
|
ok = PreLoopInitialize(enc);
|
|
if (!ok) return 0;
|
|
|
|
if (max_count < MIN_COUNT) max_count = MIN_COUNT;
|
|
|
|
assert(enc->num_parts_ == 1);
|
|
assert(enc->use_tokens_);
|
|
assert(proba->use_skip_proba_ == 0);
|
|
assert(rd_opt >= RD_OPT_BASIC); // otherwise, token-buffer won't be useful
|
|
assert(num_pass_left > 0);
|
|
|
|
while (ok && num_pass_left-- > 0) {
|
|
const int is_last_pass = (fabs(stats.dq) <= DQ_LIMIT) ||
|
|
(num_pass_left == 0) ||
|
|
(enc->max_i4_header_bits_ == 0);
|
|
uint64_t size_p0 = 0;
|
|
uint64_t distortion = 0;
|
|
int cnt = max_count;
|
|
VP8IteratorInit(enc, &it);
|
|
SetLoopParams(enc, stats.q);
|
|
if (is_last_pass) {
|
|
ResetTokenStats(enc);
|
|
VP8InitFilter(&it); // don't collect stats until last pass (too costly)
|
|
}
|
|
VP8TBufferClear(&enc->tokens_);
|
|
do {
|
|
VP8ModeScore info;
|
|
VP8IteratorImport(&it, NULL);
|
|
if (--cnt < 0) {
|
|
FinalizeTokenProbas(proba);
|
|
VP8CalculateLevelCosts(proba); // refresh cost tables for rd-opt
|
|
cnt = max_count;
|
|
}
|
|
VP8Decimate(&it, &info, rd_opt);
|
|
ok = RecordTokens(&it, &info, &enc->tokens_);
|
|
if (!ok) {
|
|
WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
|
|
break;
|
|
}
|
|
size_p0 += info.H;
|
|
distortion += info.D;
|
|
if (is_last_pass) {
|
|
StoreSideInfo(&it);
|
|
VP8StoreFilterStats(&it);
|
|
VP8IteratorExport(&it);
|
|
ok = VP8IteratorProgress(&it, 20);
|
|
}
|
|
VP8IteratorSaveBoundary(&it);
|
|
} while (ok && VP8IteratorNext(&it));
|
|
if (!ok) break;
|
|
|
|
size_p0 += enc->segment_hdr_.size_;
|
|
if (stats.do_size_search) {
|
|
uint64_t size = FinalizeTokenProbas(&enc->proba_);
|
|
size += VP8EstimateTokenSize(&enc->tokens_,
|
|
(const uint8_t*)proba->coeffs_);
|
|
size = (size + size_p0 + 1024) >> 11; // -> size in bytes
|
|
size += HEADER_SIZE_ESTIMATE;
|
|
stats.value = (double)size;
|
|
} else { // compute and store PSNR
|
|
stats.value = GetPSNR(distortion, pixel_count);
|
|
}
|
|
|
|
#if (DEBUG_SEARCH > 0)
|
|
printf("#%2d metric:%.1lf -> %.1lf last_q=%.2lf q=%.2lf dq=%.2lf\n",
|
|
num_pass_left, stats.last_value, stats.value,
|
|
stats.last_q, stats.q, stats.dq);
|
|
#endif
|
|
if (size_p0 > PARTITION0_SIZE_LIMIT) {
|
|
++num_pass_left;
|
|
enc->max_i4_header_bits_ >>= 1; // strengthen header bit limitation...
|
|
continue; // ...and start over
|
|
}
|
|
if (is_last_pass) {
|
|
break; // done
|
|
}
|
|
if (do_search) {
|
|
ComputeNextQ(&stats); // Adjust q
|
|
}
|
|
}
|
|
if (ok) {
|
|
if (!stats.do_size_search) {
|
|
FinalizeTokenProbas(&enc->proba_);
|
|
}
|
|
ok = VP8EmitTokens(&enc->tokens_, enc->parts_ + 0,
|
|
(const uint8_t*)proba->coeffs_, 1);
|
|
}
|
|
ok = ok && WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
|
|
return PostLoopFinalize(&it, ok);
|
|
}
|
|
|
|
#else
|
|
|
|
int VP8EncTokenLoop(VP8Encoder* const enc) {
|
|
(void)enc;
|
|
return 0; // we shouldn't be here.
|
|
}
|
|
|
|
#endif // DISABLE_TOKEN_BUFFER
|
|
|
|
//------------------------------------------------------------------------------
|
|
|