mirror of
https://github.com/webmproject/libwebp.git
synced 2024-11-20 04:18:26 +01:00
266cbbc511
This allows increasing intermediate value precision from 10 bits to 14 bits. Change-Id: I0fc33400d200a849bcc2c677ab8346215a9dbc3b
599 lines
22 KiB
C
599 lines
22 KiB
C
// Copyright 2022 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Sharp RGB to YUV conversion.
|
|
//
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#include "sharpyuv/sharpyuv.h"
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "src/webp/types.h"
|
|
#include "src/dsp/cpu.h"
|
|
#include "sharpyuv/sharpyuv_dsp.h"
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Sharp RGB->YUV conversion
|
|
|
|
static const int kNumIterations = 4;
|
|
static const int kMinDimensionIterativeConversion = 4;
|
|
|
|
#define YUV_FIX 16 // fixed-point precision for RGB->YUV
|
|
static const int kYuvHalf = 1 << (YUV_FIX - 1);
|
|
|
|
// Max bit depth so that intermediate calculations fit in 16 bits.
|
|
static const int kMaxBitDepth = 14;
|
|
|
|
// Returns the precision shift to use based on the input rgb_bit_depth.
|
|
static int GetPrecisionShift(int rgb_bit_depth) {
|
|
// Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove
|
|
// bits if needed.
|
|
return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2
|
|
: (kMaxBitDepth - rgb_bit_depth);
|
|
}
|
|
|
|
typedef int16_t fixed_t; // signed type with extra precision for UV
|
|
typedef uint16_t fixed_y_t; // unsigned type with extra precision for W
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Code for gamma correction
|
|
|
|
// Gamma correction compensates loss of resolution during chroma subsampling.
|
|
// Size of pre-computed table for converting from gamma to linear.
|
|
#define GAMMA_TO_LINEAR_TAB_BITS 10
|
|
#define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS)
|
|
static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2];
|
|
// Size of pre-computed table for converting from linear to gamma.
|
|
#define LINEAR_TO_GAMMA_TAB_BITS 8
|
|
#define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS)
|
|
static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2];
|
|
|
|
static const double kGammaF = 1. / 0.45;
|
|
#define GAMMA_TO_LINEAR_BITS 14
|
|
|
|
static volatile int kGammaTablesSOk = 0;
|
|
static void InitGammaTablesS(void) {
|
|
assert(2 * GAMMA_TO_LINEAR_BITS < 32); // we use uint32_t intermediate values
|
|
if (!kGammaTablesSOk) {
|
|
int v;
|
|
const double a = 0.09929682680944;
|
|
const double thresh = 0.018053968510807;
|
|
// Precompute gamma to linear table.
|
|
{
|
|
const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE;
|
|
const double a_rec = 1. / (1. + a);
|
|
const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;
|
|
for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) {
|
|
const double g = norm * v;
|
|
double value;
|
|
if (g <= thresh * 4.5) {
|
|
value = g / 4.5;
|
|
} else {
|
|
value = pow(a_rec * (g + a), kGammaF);
|
|
}
|
|
kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);
|
|
}
|
|
// to prevent small rounding errors to cause read-overflow:
|
|
kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] =
|
|
kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE];
|
|
}
|
|
// Precompute linear to gamma table.
|
|
{
|
|
const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE;
|
|
for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) {
|
|
const double g = scale * v;
|
|
double value;
|
|
if (g <= thresh) {
|
|
value = 4.5 * g;
|
|
} else {
|
|
value = (1. + a) * pow(g, 1. / kGammaF) - a;
|
|
}
|
|
kLinearToGammaTabS[v] =
|
|
(uint32_t)(GAMMA_TO_LINEAR_TAB_SIZE * value + 0.5);
|
|
}
|
|
// to prevent small rounding errors to cause read-overflow:
|
|
kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] =
|
|
kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE];
|
|
}
|
|
kGammaTablesSOk = 1;
|
|
}
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab,
|
|
int tab_pos_shift,
|
|
int tab_value_shift) {
|
|
const uint32_t tab_pos = v >> tab_pos_shift;
|
|
// fractional part, in 'tab_pos_shift' fixed-point precision
|
|
const uint32_t x = v - (tab_pos << tab_pos_shift); // fractional part
|
|
// v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1])
|
|
const uint32_t v0 = tab[tab_pos + 0] << tab_value_shift;
|
|
const uint32_t v1 = tab[tab_pos + 1] << tab_value_shift;
|
|
// Final interpolation.
|
|
const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0.
|
|
const int half = (tab_pos_shift > 0) ? 1 << (tab_pos_shift - 1) : 0;
|
|
const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift);
|
|
return result;
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t GammaToLinear(int v, int bit_depth) {
|
|
const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth;
|
|
if (shift > 0) {
|
|
return kGammaToLinearTabS[v << shift];
|
|
}
|
|
return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t LinearToGamma(uint32_t value, int bit_depth) {
|
|
const uint32_t v = value << LINEAR_TO_GAMMA_TAB_BITS;
|
|
return FixedPointInterpolation(v, kLinearToGammaTabS, GAMMA_TO_LINEAR_BITS,
|
|
bit_depth - GAMMA_TO_LINEAR_TAB_BITS);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
static uint8_t clip_8b(fixed_t v) {
|
|
return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u;
|
|
}
|
|
|
|
static uint16_t clip(fixed_t v, int max) {
|
|
return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v;
|
|
}
|
|
|
|
static fixed_y_t clip_bit_depth(int y, int bit_depth) {
|
|
const int max = (1 << bit_depth) - 1;
|
|
return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
static int RGBToGray(int64_t r, int64_t g, int64_t b) {
|
|
const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf;
|
|
return (int)(luma >> YUV_FIX);
|
|
}
|
|
|
|
static uint32_t ScaleDown(int a, int b, int c, int d, int rgb_bit_depth) {
|
|
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
|
|
const uint32_t A = GammaToLinear(a, bit_depth);
|
|
const uint32_t B = GammaToLinear(b, bit_depth);
|
|
const uint32_t C = GammaToLinear(c, bit_depth);
|
|
const uint32_t D = GammaToLinear(d, bit_depth);
|
|
return LinearToGamma((A + B + C + D + 2) >> 2, bit_depth);
|
|
}
|
|
|
|
static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w,
|
|
int rgb_bit_depth) {
|
|
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
|
|
int i;
|
|
for (i = 0; i < w; ++i) {
|
|
const uint32_t R = GammaToLinear(src[0 * w + i], bit_depth);
|
|
const uint32_t G = GammaToLinear(src[1 * w + i], bit_depth);
|
|
const uint32_t B = GammaToLinear(src[2 * w + i], bit_depth);
|
|
const uint32_t Y = RGBToGray(R, G, B);
|
|
dst[i] = (fixed_y_t)LinearToGamma(Y, bit_depth);
|
|
}
|
|
}
|
|
|
|
static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2,
|
|
fixed_t* dst, int uv_w, int rgb_bit_depth) {
|
|
int i;
|
|
for (i = 0; i < uv_w; ++i) {
|
|
const int r =
|
|
ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0],
|
|
src2[0 * uv_w + 1], rgb_bit_depth);
|
|
const int g =
|
|
ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0],
|
|
src2[2 * uv_w + 1], rgb_bit_depth);
|
|
const int b =
|
|
ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0],
|
|
src2[4 * uv_w + 1], rgb_bit_depth);
|
|
const int W = RGBToGray(r, g, b);
|
|
dst[0 * uv_w] = (fixed_t)(r - W);
|
|
dst[1 * uv_w] = (fixed_t)(g - W);
|
|
dst[2 * uv_w] = (fixed_t)(b - W);
|
|
dst += 1;
|
|
src1 += 2;
|
|
src2 += 2;
|
|
}
|
|
}
|
|
|
|
static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) {
|
|
int i;
|
|
assert(w > 0);
|
|
for (i = 0; i < w; ++i) {
|
|
y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]);
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) {
|
|
const int v0 = (A * 3 + B + 2) >> 2;
|
|
return clip_bit_depth(v0 + W0, bit_depth);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
static WEBP_INLINE int Shift(int v, int shift) {
|
|
return (shift >= 0) ? (v << shift) : (v >> -shift);
|
|
}
|
|
|
|
static WEBP_INLINE fixed_y_t ChangePrecision(uint16_t a, int shift) {
|
|
if (shift == 0) return a;
|
|
if (shift < 0) {
|
|
const int rounding = 1 << (-shift - 1);
|
|
return (a + rounding) >> -shift;
|
|
}
|
|
return ((fixed_y_t)a << shift);
|
|
}
|
|
|
|
static void ImportOneRow(const uint8_t* const r_ptr,
|
|
const uint8_t* const g_ptr,
|
|
const uint8_t* const b_ptr,
|
|
int rgb_step,
|
|
int rgb_bit_depth,
|
|
int pic_width,
|
|
fixed_y_t* const dst) {
|
|
// Convert the rgb_step from a number of bytes to a number of uint8_t or
|
|
// uint16_t values depending the bit depth.
|
|
const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step;
|
|
int i;
|
|
const int w = (pic_width + 1) & ~1;
|
|
for (i = 0; i < pic_width; ++i) {
|
|
const int off = i * step;
|
|
const int shift = GetPrecisionShift(rgb_bit_depth);
|
|
if (rgb_bit_depth == 8) {
|
|
dst[i + 0 * w] = ChangePrecision(r_ptr[off], shift);
|
|
dst[i + 1 * w] = ChangePrecision(g_ptr[off], shift);
|
|
dst[i + 2 * w] = ChangePrecision(b_ptr[off], shift);
|
|
} else {
|
|
dst[i + 0 * w] = ChangePrecision(((uint16_t*)r_ptr)[off], shift);
|
|
dst[i + 1 * w] = ChangePrecision(((uint16_t*)g_ptr)[off], shift);
|
|
dst[i + 2 * w] = ChangePrecision(((uint16_t*)b_ptr)[off], shift);
|
|
}
|
|
}
|
|
if (pic_width & 1) { // replicate rightmost pixel
|
|
dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1];
|
|
dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1];
|
|
dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1];
|
|
}
|
|
}
|
|
|
|
static void InterpolateTwoRows(const fixed_y_t* const best_y,
|
|
const fixed_t* prev_uv,
|
|
const fixed_t* cur_uv,
|
|
const fixed_t* next_uv,
|
|
int w,
|
|
fixed_y_t* out1,
|
|
fixed_y_t* out2,
|
|
int rgb_bit_depth) {
|
|
const int uv_w = w >> 1;
|
|
const int len = (w - 1) >> 1; // length to filter
|
|
int k = 3;
|
|
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
|
|
while (k-- > 0) { // process each R/G/B segments in turn
|
|
// special boundary case for i==0
|
|
out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth);
|
|
out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth);
|
|
|
|
SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1,
|
|
bit_depth);
|
|
SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1,
|
|
bit_depth);
|
|
|
|
// special boundary case for i == w - 1 when w is even
|
|
if (!(w & 1)) {
|
|
out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1],
|
|
best_y[w - 1 + 0], bit_depth);
|
|
out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1],
|
|
best_y[w - 1 + w], bit_depth);
|
|
}
|
|
out1 += w;
|
|
out2 += w;
|
|
prev_uv += uv_w;
|
|
cur_uv += uv_w;
|
|
next_uv += uv_w;
|
|
}
|
|
}
|
|
|
|
static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b,
|
|
const int coeffs[4], int sfix) {
|
|
const int srounder = 1 << (YUV_FIX + sfix - 1);
|
|
const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b +
|
|
coeffs[3] + srounder;
|
|
return (luma >> (YUV_FIX + sfix));
|
|
}
|
|
|
|
static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv,
|
|
uint8_t* y_ptr, int y_stride, uint8_t* u_ptr,
|
|
int u_stride, uint8_t* v_ptr, int v_stride,
|
|
int rgb_bit_depth,
|
|
int yuv_bit_depth, int width, int height,
|
|
const SharpYuvConversionMatrix* yuv_matrix) {
|
|
int i, j;
|
|
const fixed_t* const best_uv_base = best_uv;
|
|
const int w = (width + 1) & ~1;
|
|
const int h = (height + 1) & ~1;
|
|
const int uv_w = w >> 1;
|
|
const int uv_h = h >> 1;
|
|
const int sfix = GetPrecisionShift(rgb_bit_depth);
|
|
const int yuv_max = (1 << yuv_bit_depth) - 1;
|
|
|
|
for (best_uv = best_uv_base, j = 0; j < height; ++j) {
|
|
for (i = 0; i < width; ++i) {
|
|
const int off = (i >> 1);
|
|
const int W = best_y[i];
|
|
const int r = best_uv[off + 0 * uv_w] + W;
|
|
const int g = best_uv[off + 1 * uv_w] + W;
|
|
const int b = best_uv[off + 2 * uv_w] + W;
|
|
const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix);
|
|
if (yuv_bit_depth <= 8) {
|
|
y_ptr[i] = clip_8b(y);
|
|
} else {
|
|
((uint16_t*)y_ptr)[i] = clip(y, yuv_max);
|
|
}
|
|
}
|
|
best_y += w;
|
|
best_uv += (j & 1) * 3 * uv_w;
|
|
y_ptr += y_stride;
|
|
}
|
|
for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) {
|
|
for (i = 0; i < uv_w; ++i) {
|
|
const int off = i;
|
|
// Note r, g and b values here are off by W, but a constant offset on all
|
|
// 3 components doesn't change the value of u and v with a YCbCr matrix.
|
|
const int r = best_uv[off + 0 * uv_w];
|
|
const int g = best_uv[off + 1 * uv_w];
|
|
const int b = best_uv[off + 2 * uv_w];
|
|
const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix);
|
|
const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix);
|
|
if (yuv_bit_depth <= 8) {
|
|
u_ptr[i] = clip_8b(u);
|
|
v_ptr[i] = clip_8b(v);
|
|
} else {
|
|
((uint16_t*)u_ptr)[i] = clip(u, yuv_max);
|
|
((uint16_t*)v_ptr)[i] = clip(v, yuv_max);
|
|
}
|
|
}
|
|
best_uv += 3 * uv_w;
|
|
u_ptr += u_stride;
|
|
v_ptr += v_stride;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Main function
|
|
|
|
static void* SafeMalloc(uint64_t nmemb, size_t size) {
|
|
const uint64_t total_size = nmemb * (uint64_t)size;
|
|
if (total_size != (size_t)total_size) return NULL;
|
|
return malloc((size_t)total_size);
|
|
}
|
|
|
|
#define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((W) * (H), sizeof(T)))
|
|
|
|
static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr,
|
|
const uint8_t* b_ptr, int rgb_step, int rgb_stride,
|
|
int rgb_bit_depth, uint8_t* y_ptr, int y_stride,
|
|
uint8_t* u_ptr, int u_stride, uint8_t* v_ptr,
|
|
int v_stride, int yuv_bit_depth, int width,
|
|
int height,
|
|
const SharpYuvConversionMatrix* yuv_matrix) {
|
|
// we expand the right/bottom border if needed
|
|
const int w = (width + 1) & ~1;
|
|
const int h = (height + 1) & ~1;
|
|
const int uv_w = w >> 1;
|
|
const int uv_h = h >> 1;
|
|
uint64_t prev_diff_y_sum = ~0;
|
|
int j, iter;
|
|
|
|
// TODO(skal): allocate one big memory chunk. But for now, it's easier
|
|
// for valgrind debugging to have several chunks.
|
|
fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch
|
|
fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t);
|
|
fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t);
|
|
fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t);
|
|
fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
|
|
fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
|
|
fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t);
|
|
fixed_y_t* best_y = best_y_base;
|
|
fixed_y_t* target_y = target_y_base;
|
|
fixed_t* best_uv = best_uv_base;
|
|
fixed_t* target_uv = target_uv_base;
|
|
const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h);
|
|
int ok;
|
|
|
|
if (best_y_base == NULL || best_uv_base == NULL ||
|
|
target_y_base == NULL || target_uv_base == NULL ||
|
|
best_rgb_y == NULL || best_rgb_uv == NULL ||
|
|
tmp_buffer == NULL) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
|
|
// Import RGB samples to W/RGB representation.
|
|
for (j = 0; j < height; j += 2) {
|
|
const int is_last_row = (j == height - 1);
|
|
fixed_y_t* const src1 = tmp_buffer + 0 * w;
|
|
fixed_y_t* const src2 = tmp_buffer + 3 * w;
|
|
|
|
// prepare two rows of input
|
|
ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width,
|
|
src1);
|
|
if (!is_last_row) {
|
|
ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride,
|
|
rgb_step, rgb_bit_depth, width, src2);
|
|
} else {
|
|
memcpy(src2, src1, 3 * w * sizeof(*src2));
|
|
}
|
|
StoreGray(src1, best_y + 0, w);
|
|
StoreGray(src2, best_y + w, w);
|
|
|
|
UpdateW(src1, target_y, w, rgb_bit_depth);
|
|
UpdateW(src2, target_y + w, w, rgb_bit_depth);
|
|
UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth);
|
|
memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv));
|
|
best_y += 2 * w;
|
|
best_uv += 3 * uv_w;
|
|
target_y += 2 * w;
|
|
target_uv += 3 * uv_w;
|
|
r_ptr += 2 * rgb_stride;
|
|
g_ptr += 2 * rgb_stride;
|
|
b_ptr += 2 * rgb_stride;
|
|
}
|
|
|
|
// Iterate and resolve clipping conflicts.
|
|
for (iter = 0; iter < kNumIterations; ++iter) {
|
|
const fixed_t* cur_uv = best_uv_base;
|
|
const fixed_t* prev_uv = best_uv_base;
|
|
uint64_t diff_y_sum = 0;
|
|
|
|
best_y = best_y_base;
|
|
best_uv = best_uv_base;
|
|
target_y = target_y_base;
|
|
target_uv = target_uv_base;
|
|
for (j = 0; j < h; j += 2) {
|
|
fixed_y_t* const src1 = tmp_buffer + 0 * w;
|
|
fixed_y_t* const src2 = tmp_buffer + 3 * w;
|
|
{
|
|
const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0);
|
|
InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w,
|
|
src1, src2, rgb_bit_depth);
|
|
prev_uv = cur_uv;
|
|
cur_uv = next_uv;
|
|
}
|
|
|
|
UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth);
|
|
UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth);
|
|
UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth);
|
|
|
|
// update two rows of Y and one row of RGB
|
|
diff_y_sum +=
|
|
SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w,
|
|
rgb_bit_depth + GetPrecisionShift(rgb_bit_depth));
|
|
SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w);
|
|
|
|
best_y += 2 * w;
|
|
best_uv += 3 * uv_w;
|
|
target_y += 2 * w;
|
|
target_uv += 3 * uv_w;
|
|
}
|
|
// test exit condition
|
|
if (iter > 0) {
|
|
if (diff_y_sum < diff_y_threshold) break;
|
|
if (diff_y_sum > prev_diff_y_sum) break;
|
|
}
|
|
prev_diff_y_sum = diff_y_sum;
|
|
}
|
|
|
|
// final reconstruction
|
|
ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr,
|
|
u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth,
|
|
width, height, yuv_matrix);
|
|
|
|
End:
|
|
free(best_y_base);
|
|
free(best_uv_base);
|
|
free(target_y_base);
|
|
free(target_uv_base);
|
|
free(best_rgb_y);
|
|
free(best_rgb_uv);
|
|
free(tmp_buffer);
|
|
return ok;
|
|
}
|
|
#undef SAFE_ALLOC
|
|
|
|
// Hidden exported init function.
|
|
// By default SharpYuvConvert calls it with NULL. If needed, users can declare
|
|
// it as extern and call it with a VP8CPUInfo function.
|
|
extern void SharpYuvInit(VP8CPUInfo cpu_info_func);
|
|
void SharpYuvInit(VP8CPUInfo cpu_info_func) {
|
|
static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used =
|
|
(VP8CPUInfo)&sharpyuv_last_cpuinfo_used;
|
|
const int initialized =
|
|
(sharpyuv_last_cpuinfo_used != (VP8CPUInfo)&sharpyuv_last_cpuinfo_used);
|
|
if (cpu_info_func == NULL && initialized) return;
|
|
if (sharpyuv_last_cpuinfo_used == cpu_info_func) return;
|
|
|
|
SharpYuvInitDsp(cpu_info_func);
|
|
if (!initialized) {
|
|
InitGammaTablesS();
|
|
}
|
|
|
|
sharpyuv_last_cpuinfo_used = cpu_info_func;
|
|
}
|
|
|
|
int SharpYuvConvert(const void* r_ptr, const void* g_ptr,
|
|
const void* b_ptr, int rgb_step, int rgb_stride,
|
|
int rgb_bit_depth, void* y_ptr, int y_stride,
|
|
void* u_ptr, int u_stride, void* v_ptr,
|
|
int v_stride, int yuv_bit_depth, int width,
|
|
int height, const SharpYuvConversionMatrix* yuv_matrix) {
|
|
SharpYuvConversionMatrix scaled_matrix;
|
|
const int rgb_max = (1 << rgb_bit_depth) - 1;
|
|
const int rgb_round = 1 << (rgb_bit_depth - 1);
|
|
const int yuv_max = (1 << yuv_bit_depth) - 1;
|
|
const int sfix = GetPrecisionShift(rgb_bit_depth);
|
|
|
|
if (width < kMinDimensionIterativeConversion ||
|
|
height < kMinDimensionIterativeConversion ||
|
|
r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL ||
|
|
u_ptr == NULL || v_ptr == NULL) {
|
|
return 0;
|
|
}
|
|
if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 &&
|
|
rgb_bit_depth != 16) {
|
|
return 0;
|
|
}
|
|
if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) {
|
|
return 0;
|
|
}
|
|
if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride %2 != 0)) {
|
|
// Step/stride should be even for uint16_t buffers.
|
|
return 0;
|
|
}
|
|
if (yuv_bit_depth > 8 &&
|
|
(y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) {
|
|
// Stride should be even for uint16_t buffers.
|
|
return 0;
|
|
}
|
|
SharpYuvInit(NULL);
|
|
|
|
// Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the
|
|
// rgb->yuv conversion matrix.
|
|
if (rgb_bit_depth == yuv_bit_depth) {
|
|
memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix));
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < 3; ++i) {
|
|
scaled_matrix.rgb_to_y[i] =
|
|
(yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max;
|
|
scaled_matrix.rgb_to_u[i] =
|
|
(yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max;
|
|
scaled_matrix.rgb_to_v[i] =
|
|
(yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max;
|
|
}
|
|
}
|
|
// Also incorporate precision change scaling.
|
|
scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix);
|
|
scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix);
|
|
scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix);
|
|
|
|
return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride,
|
|
rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride,
|
|
v_ptr, v_stride, yuv_bit_depth, width, height,
|
|
&scaled_matrix);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|