// Copyright 2012 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Author: Jyrki Alakuijala (jyrki@google.com) // #include #include #include #include #include "./backward_references.h" #include "./histogram.h" #include "../utils/color_cache.h" #define VALUES_IN_BYTE 256 static const uint8_t plane_to_code_lut[128] = { 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117, }; static const int kMinLength = 2; int DistanceToPlaneCode(int xsize, int dist) { int yoffset = dist / xsize; int xoffset = dist - yoffset * xsize; if (xoffset <= 8 && yoffset < 8) { return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; } else if (xoffset > xsize - 8 && yoffset < 7) { return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; } return dist + 120; } static WEBP_INLINE int FindMatchLength(const uint32_t* array1, const uint32_t* array2, const int max_limit) { int matched = 0; while (matched < max_limit && array1[matched] == array2[matched]) { ++matched; } return matched; } #define HASH_BITS 18 #define HASH_SIZE (1 << HASH_BITS) static const uint64_t kHashMultiplier = 0xc6a4a7935bd1e995ULL; static const int kWindowSize = (1 << 20) - 120; // A window with 1M pixels // (4 megabytes) - 120 // special codes for short // distances. static WEBP_INLINE uint64_t GetHash64(uint64_t num) { num *= kHashMultiplier; num >>= 64 - HASH_BITS; return num; } static WEBP_INLINE uint64_t GetPixPair(const uint32_t* argb) { return ((uint64_t)(argb[1]) << 32) | argb[0]; } typedef struct { // Stores the most recently added position with the given hash value. int32_t hash_to_first_index_[HASH_SIZE]; // chain_[pos] stores the previous position with the same hash value // for every pixel in the image. int32_t* chain_; } VP8LHashChain; static int VP8LHashChain_Init(VP8LHashChain* p, int size) { int i; p->chain_ = (int*)malloc(size * sizeof(*p->chain_)); if (!p->chain_) { return 0; } for (i = 0; i < size; ++i) { p->chain_[i] = -1; } for (i = 0; i < HASH_SIZE; ++i) { p->hash_to_first_index_[i] = -1; } return 1; } static void VP8LHashChain_Delete(VP8LHashChain* p) { if (p != NULL) { free(p->chain_); } } static void VP8LHashChain_Insert(VP8LHashChain* p, const uint32_t* argb, int32_t ix) { // Insertion of two pixels at a time. const uint64_t key = GetPixPair(argb); const uint64_t hash_code = GetHash64(key); p->chain_[ix] = p->hash_to_first_index_[hash_code]; p->hash_to_first_index_[hash_code] = ix; } static int VP8LHashChain_FindCopy(VP8LHashChain* p, int quality, int index, int xsize, const uint32_t* argb, int maxlen, int* offset_out, int* len_out) { const uint64_t next_two_pixels = GetPixPair(&argb[index]); const uint64_t hash_code = GetHash64(next_two_pixels); int prev_length = 0; int64_t best_val = 0; int give_up = quality * 3 / 4 + 25; const int min_pos = (index > kWindowSize) ? index - kWindowSize : 0; int32_t pos; int64_t length; int64_t val; int x; int y; int len = 0; int offset = 0; for (pos = p->hash_to_first_index_[hash_code]; pos >= min_pos; pos = p->chain_[pos]) { if (give_up < 0) { if (give_up < -quality * 8 || best_val >= 0xff0000) { break; } } --give_up; if (len != 0 && argb[pos + len - 1] != argb[index + len - 1]) { continue; } length = FindMatchLength(argb + pos, argb + index, maxlen); if (length < prev_length) { continue; } val = 65536 * length; // Favoring 2d locality here gives savings for certain images. if (index - pos < 9 * xsize) { y = (index - pos) / xsize; x = (index - pos) % xsize; if (x > xsize / 2) { x = xsize - x; } if (x <= 7 && x >= -8) { val -= y * y + x * x; } else { val -= 9 * 9 + 9 * 9; } } else { val -= 9 * 9 + 9 * 9; } if (best_val < val) { prev_length = length; best_val = val; len = length; offset = index - pos; if (length >= kMaxLength) { break; } if ((offset == 1 || offset == xsize) && len >= 128) { break; } } } *offset_out = offset; *len_out = len; return len >= kMinLength; } static WEBP_INLINE void PushBackCopy(int length, PixOrCopy* stream, int* stream_size) { while (length >= kMaxLength) { stream[*stream_size] = PixOrCopyCreateCopy(1, kMaxLength); ++(*stream_size); length -= kMaxLength; } if (length > 0) { stream[*stream_size] = PixOrCopyCreateCopy(1, length); ++(*stream_size); } } void BackwardReferencesRle(int xsize, int ysize, const uint32_t* argb, PixOrCopy* stream, int* stream_size) { const int pix_count = xsize * ysize; int streak = 0; int i; *stream_size = 0; for (i = 0; i < pix_count; ++i) { if (i >= 1 && argb[i] == argb[i - 1]) { ++streak; } else { PushBackCopy(streak, stream, stream_size); streak = 0; stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]); ++(*stream_size); } } PushBackCopy(streak, stream, stream_size); } // Returns 1 when successful. int BackwardReferencesHashChain(int xsize, int ysize, int use_palette, const uint32_t* argb, int palette_bits, int quality, PixOrCopy* stream, int* stream_size) { const int pix_count = xsize * ysize; int i; int ok = 0; VP8LHashChain* hash_chain = (VP8LHashChain*)malloc(sizeof(*hash_chain)); VP8LColorCache hashers; if (!hash_chain || !VP8LColorCacheInit(&hashers, palette_bits) || !VP8LHashChain_Init(hash_chain, pix_count)) { goto Error; } *stream_size = 0; for (i = 0; i < pix_count; ) { // Alternative#1: Code the pixels starting at 'i' using backward reference. int offset = 0; int len = 0; if (i < pix_count - 1) { // FindCopy(i,..) reads pixels at [i] and [i + 1]. int maxlen = pix_count - i; if (maxlen > kMaxLength) { maxlen = kMaxLength; } VP8LHashChain_FindCopy(hash_chain, quality, i, xsize, argb, maxlen, &offset, &len); } if (len >= kMinLength) { // Alternative#2: Insert the pixel at 'i' as literal, and code the // pixels starting at 'i + 1' using backward reference. int offset2 = 0; int len2 = 0; int k; VP8LHashChain_Insert(hash_chain, &argb[i], i); if (i < pix_count - 2) { // FindCopy(i+1,..) reads [i + 1] and [i + 2]. int maxlen = pix_count - (i + 1); if (maxlen > kMaxLength) { maxlen = kMaxLength; } VP8LHashChain_FindCopy(hash_chain, quality, i + 1, xsize, argb, maxlen, &offset2, &len2); if (len2 > len + 1) { // Alternative#2 is a better match. So push pixel at 'i' as literal. if (use_palette && VP8LColorCacheContains(&hashers, argb[i])) { const int ix = VP8LColorCacheGetIndex(&hashers, argb[i]); stream[*stream_size] = PixOrCopyCreatePaletteIx(ix); } else { stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]); } ++(*stream_size); VP8LColorCacheInsert(&hashers, argb[i]); i++; // Backward reference to be done for next pixel. len = len2; offset = offset2; } } if (len >= kMaxLength) { len = kMaxLength - 1; } stream[*stream_size] = PixOrCopyCreateCopy(offset, len); ++(*stream_size); for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); if (k != 0 && i + k + 1 < pix_count) { // Add to the hash_chain (but cannot add the last pixel). VP8LHashChain_Insert(hash_chain, &argb[i + k], i + k); } } i += len; } else { if (use_palette && VP8LColorCacheContains(&hashers, argb[i])) { // push pixel as a palette pixel int ix = VP8LColorCacheGetIndex(&hashers, argb[i]); stream[*stream_size] = PixOrCopyCreatePaletteIx(ix); } else { stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]); } ++(*stream_size); VP8LColorCacheInsert(&hashers, argb[i]); if (i + 1 < pix_count) { VP8LHashChain_Insert(hash_chain, &argb[i], i); } ++i; } } ok = 1; Error: VP8LHashChain_Delete(hash_chain); free(hash_chain); VP8LColorCacheDelete(&hashers); return ok; } typedef struct { double alpha_[VALUES_IN_BYTE]; double red_[VALUES_IN_BYTE]; double literal_[PIX_OR_COPY_CODES_MAX]; double blue_[VALUES_IN_BYTE]; double distance_[DISTANCE_CODES_MAX]; int palette_bits_; } CostModel; static int CostModel_Build(CostModel* p, int xsize, int ysize, int recursion_level, int use_palette, const uint32_t* argb, int palette_bits) { int ok = 0; int stream_size; Histogram histo; int i; PixOrCopy* stream = (PixOrCopy*)malloc(xsize * ysize * sizeof(*stream)); if (stream == NULL) { goto Error; } p->palette_bits_ = palette_bits; if (recursion_level > 0) { if (!BackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1, use_palette, argb, palette_bits, &stream[0], &stream_size)) { goto Error; } } else { const int quality = 100; if (!BackwardReferencesHashChain(xsize, ysize, use_palette, argb, palette_bits, quality, &stream[0], &stream_size)) { goto Error; } } HistogramInit(&histo, palette_bits); for (i = 0; i < stream_size; ++i) { HistogramAddSinglePixOrCopy(&histo, stream[i]); } ConvertPopulationCountTableToBitEstimates( HistogramNumPixOrCopyCodes(&histo), &histo.literal_[0], &p->literal_[0]); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, &histo.red_[0], &p->red_[0]); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, &histo.blue_[0], &p->blue_[0]); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, &histo.alpha_[0], &p->alpha_[0]); ConvertPopulationCountTableToBitEstimates( DISTANCE_CODES_MAX, &histo.distance_[0], &p->distance_[0]); ok = 1; Error: free(stream); return ok; } static WEBP_INLINE double CostModel_LiteralCost(const CostModel* p, uint32_t v) { return p->alpha_[v >> 24] + p->red_[(v >> 16) & 0xff] + p->literal_[(v >> 8) & 0xff] + p->blue_[v & 0xff]; } static WEBP_INLINE double CostModel_PaletteCost(const CostModel* p, uint32_t ix) { int literal_ix = VALUES_IN_BYTE + kLengthCodes + ix; return p->literal_[literal_ix]; } static WEBP_INLINE double CostModel_LengthCost(const CostModel* p, uint32_t len) { int code, extra_bits_count, extra_bits_value; PrefixEncode(len, &code, &extra_bits_count, &extra_bits_value); return p->literal_[VALUES_IN_BYTE + code] + extra_bits_count; } static WEBP_INLINE double CostModel_DistanceCost(const CostModel* p, uint32_t distance) { int code, extra_bits_count, extra_bits_value; PrefixEncode(distance, &code, &extra_bits_count, &extra_bits_value); return p->distance_[code] + extra_bits_count; } static int BackwardReferencesHashChainDistanceOnly( int xsize, int ysize, int recursive_cost_model, int use_palette, const uint32_t* argb, int palette_bits, uint32_t* dist_array) { const int quality = 100; const int pix_count = xsize * ysize; double* cost = (double*)malloc(pix_count * sizeof(*cost)); int i; CostModel* cost_model = (CostModel*)malloc(sizeof(*cost_model)); VP8LColorCache hashers; VP8LHashChain* hash_chain = (VP8LHashChain*)malloc(sizeof(*hash_chain)); int ok = 0; if (cost == NULL || cost_model == NULL || hash_chain == NULL || !VP8LColorCacheInit(&hashers, palette_bits)) { goto Error; } VP8LHashChain_Init(hash_chain, pix_count); CostModel_Build(cost_model, xsize, ysize, recursive_cost_model, use_palette, argb, palette_bits); for (i = 0; i < pix_count; ++i) { cost[i] = 1e100; } // We loop one pixel at a time, but store all currently best points to // non-processed locations from this point. dist_array[0] = 0; for (i = 0; i < pix_count; ++i) { double prev_cost = 0.0; int shortmax; if (i > 0) { prev_cost = cost[i - 1]; } for (shortmax = 0; shortmax < 2; ++shortmax) { int offset = 0; int len = 0; if (i < pix_count - 1) { // FindCopy reads pixels at [i] and [i + 1]. int maxlen = shortmax ? 2 : kMaxLength; if (maxlen > pix_count - i) { maxlen = pix_count - i; } VP8LHashChain_FindCopy(hash_chain, quality, i, xsize, argb, maxlen, &offset, &len); } if (len >= kMinLength) { const int code = DistanceToPlaneCode(xsize, offset); const double distance_cost = prev_cost + CostModel_DistanceCost(cost_model, code); int k; for (k = 1; k < len; ++k) { const double cost_val = distance_cost + CostModel_LengthCost(cost_model, k); if (cost[i + k] > cost_val) { cost[i + k] = cost_val; dist_array[i + k] = k + 1; } } // This if is for speedup only. It roughly doubles the speed, and // makes compression worse by .1 %. if (len >= 128 && code < 2) { // Long copy for short distances, let's skip the middle // lookups for better copies. // 1) insert the hashes. for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); if (i + k + 1 < pix_count) { // Add to the hash_chain (but cannot add the last pixel). VP8LHashChain_Insert(hash_chain, &argb[i + k], i + k); } } // 2) jump. i += len - 1; // for loop does ++i, thus -1 here. goto next_symbol; } } } if (i < pix_count - 1) { VP8LHashChain_Insert(hash_chain, &argb[i], i); } { // inserting a literal pixel double cost_val = prev_cost; double mul0 = 1.0; double mul1 = 1.0; if (recursive_cost_model == 0) { mul0 = 0.68; mul1 = 0.82; } if (use_palette && VP8LColorCacheContains(&hashers, argb[i])) { int ix = VP8LColorCacheGetIndex(&hashers, argb[i]); cost_val += CostModel_PaletteCost(cost_model, ix) * mul0; } else { cost_val += CostModel_LiteralCost(cost_model, argb[i]) * mul1; } if (cost[i] > cost_val) { cost[i] = cost_val; dist_array[i] = 1; // only one is inserted. } VP8LColorCacheInsert(&hashers, argb[i]); } next_symbol: ; } // Last pixel still to do, it can only be a single step if not reached // through cheaper means already. ok = 1; Error: if (hash_chain) VP8LHashChain_Delete(hash_chain); free(hash_chain); free(cost_model); free(cost); VP8LColorCacheDelete(&hashers); return ok; } static void TraceBackwards(const uint32_t* dist_array, int dist_array_size, uint32_t** chosen_path, int* chosen_path_size) { int i; // Count how many. int count = 0; for (i = dist_array_size - 1; i >= 0; ) { int k = dist_array[i]; assert(k >= 1); ++count; i -= k; } // Allocate. *chosen_path_size = count; *chosen_path = (uint32_t*)malloc(count * sizeof(*chosen_path)); // Write in reverse order. for (i = dist_array_size - 1; i >= 0; ) { int k = dist_array[i]; assert(k >= 1); (*chosen_path)[--count] = k; i -= k; } } static int BackwardReferencesHashChainFollowChosenPath( int xsize, int ysize, int use_palette, const uint32_t* argb, int palette_bits, uint32_t* chosen_path, int chosen_path_size, PixOrCopy* stream, int* stream_size) { const int quality = 100; const int pix_count = xsize * ysize; int i = 0; int k; int ix; int ok = 0; VP8LColorCache hashers; VP8LHashChain* hash_chain = (VP8LHashChain*)malloc(sizeof(*hash_chain)); VP8LHashChain_Init(hash_chain, pix_count); if (hash_chain == NULL || !VP8LColorCacheInit(&hashers, palette_bits)) { goto Error; } *stream_size = 0; for (ix = 0; ix < chosen_path_size; ++ix) { int offset = 0; int len = 0; int maxlen = chosen_path[ix]; if (maxlen != 1) { VP8LHashChain_FindCopy(hash_chain, quality, i, xsize, argb, maxlen, &offset, &len); assert(len == maxlen); stream[*stream_size] = PixOrCopyCreateCopy(offset, len); ++(*stream_size); for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); if (i + k + 1 < pix_count) { // Add to the hash_chain (but cannot add the last pixel). VP8LHashChain_Insert(hash_chain, &argb[i + k], i + k); } } i += len; } else { if (use_palette && VP8LColorCacheContains(&hashers, argb[i])) { // push pixel as a palette pixel int ix = VP8LColorCacheGetIndex(&hashers, argb[i]); stream[*stream_size] = PixOrCopyCreatePaletteIx(ix); } else { stream[*stream_size] = PixOrCopyCreateLiteral(argb[i]); } ++(*stream_size); VP8LColorCacheInsert(&hashers, argb[i]); if (i + 1 < pix_count) { VP8LHashChain_Insert(hash_chain, &argb[i], i); } ++i; } } ok = 1; Error: VP8LHashChain_Delete(hash_chain); if (hash_chain) { free(hash_chain); } VP8LColorCacheDelete(&hashers); return ok; } // Returns 1 on success. int BackwardReferencesTraceBackwards(int xsize, int ysize, int recursive_cost_model, int use_palette, const uint32_t* argb, int palette_bits, PixOrCopy* stream, int* stream_size) { int ok = 0; const int dist_array_size = xsize * ysize; uint32_t* chosen_path = NULL; int chosen_path_size = 0; uint32_t* const dist_array = (uint32_t*) malloc(dist_array_size * sizeof(*dist_array)); if (dist_array == NULL) { goto Error; } *stream_size = 0; if (!BackwardReferencesHashChainDistanceOnly( xsize, ysize, recursive_cost_model, use_palette, argb, palette_bits, dist_array)) { free(dist_array); goto Error; } TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); free(dist_array); if (!BackwardReferencesHashChainFollowChosenPath( xsize, ysize, use_palette, argb, palette_bits, chosen_path, chosen_path_size, stream, stream_size)) { goto Error; } ok = 1; Error: free(chosen_path); return ok; } void BackwardReferences2DLocality(int xsize, int data_size, PixOrCopy* data) { int i; for (i = 0; i < data_size; ++i) { if (PixOrCopyIsCopy(&data[i])) { int dist = data[i].argb_or_offset; int transformed_dist = DistanceToPlaneCode(xsize, dist); data[i].argb_or_offset = transformed_dist; } } } int VerifyBackwardReferences(const uint32_t* argb, int xsize, int ysize, int palette_bits, const PixOrCopy* lit, int lit_size) { int num_pixels = 0; int i; VP8LColorCache hashers; VP8LColorCacheInit(&hashers, palette_bits); for (i = 0; i < lit_size; ++i) { if (PixOrCopyIsLiteral(&lit[i])) { if (argb[num_pixels] != PixOrCopyArgb(&lit[i])) { printf("i %d, pixel %d, original: 0x%08x, literal: 0x%08x\n", i, num_pixels, argb[num_pixels], PixOrCopyArgb(&lit[i])); VP8LColorCacheDelete(&hashers); return 0; } VP8LColorCacheInsert(&hashers, argb[num_pixels]); ++num_pixels; } else if (PixOrCopyIsPaletteIx(&lit[i])) { uint32_t palette_entry = VP8LColorCacheLookup(&hashers, PixOrCopyPaletteIx(&lit[i])); if (argb[num_pixels] != palette_entry) { printf("i %d, pixel %d, original: 0x%08x, palette_ix: %d, " "palette_entry: 0x%08x\n", i, num_pixels, argb[num_pixels], PixOrCopyPaletteIx(&lit[i]), palette_entry); VP8LColorCacheDelete(&hashers); return 0; } VP8LColorCacheInsert(&hashers, argb[num_pixels]); ++num_pixels; } else if (PixOrCopyIsCopy(&lit[i])) { int k; if (PixOrCopyDistance(&lit[i]) == 0) { printf("Bw reference with zero distance.\n"); VP8LColorCacheDelete(&hashers); return 0; } for (k = 0; k < lit[i].len; ++k) { if (argb[num_pixels] != argb[num_pixels - PixOrCopyDistance(&lit[i])]) { printf("i %d, pixel %d, original: 0x%08x, copied: 0x%08x, dist: %d\n", i, num_pixels, argb[num_pixels], argb[num_pixels - PixOrCopyDistance(&lit[i])], PixOrCopyDistance(&lit[i])); VP8LColorCacheDelete(&hashers); return 0; } VP8LColorCacheInsert(&hashers, argb[num_pixels]); ++num_pixels; } } } { const int pix_count = xsize * ysize; if (num_pixels != pix_count) { printf("verify failure: %d != %d\n", num_pixels, pix_count); VP8LColorCacheDelete(&hashers); return 0; } } VP8LColorCacheDelete(&hashers); return 1; } // Returns 1 on success. static int ComputePaletteHistogram(const uint32_t* argb, int xsize, int ysize, PixOrCopy* stream, int stream_size, int palette_bits, Histogram* histo) { int pixel_index = 0; int i; uint32_t k; VP8LColorCache hashers; if (!VP8LColorCacheInit(&hashers, palette_bits)) { return 0; } for (i = 0; i < stream_size; ++i) { const PixOrCopy v = stream[i]; if (PixOrCopyIsLiteral(&v)) { if (palette_bits != 0 && VP8LColorCacheContains(&hashers, argb[pixel_index])) { // push pixel as a palette pixel const int ix = VP8LColorCacheGetIndex(&hashers, argb[pixel_index]); HistogramAddSinglePixOrCopy(histo, PixOrCopyCreatePaletteIx(ix)); } else { HistogramAddSinglePixOrCopy(histo, v); } } else { HistogramAddSinglePixOrCopy(histo, v); } for (k = 0; k < PixOrCopyLength(&v); ++k) { VP8LColorCacheInsert(&hashers, argb[pixel_index]); ++pixel_index; } } assert(pixel_index == xsize * ysize); (void)xsize; // xsize is not used in non-debug compilations otherwise. (void)ysize; // ysize is not used in non-debug compilations otherwise. VP8LColorCacheDelete(&hashers); return 1; } // Returns how many bits are to be used for a palette. int CalculateEstimateForPaletteSize(const uint32_t* argb, int xsize, int ysize, int* best_palette_bits) { int ok = 0; int palette_bits; double lowest_entropy = 1e99; PixOrCopy* stream = (PixOrCopy*)malloc(xsize * ysize * sizeof(*stream)); int stream_size; static const double kSmallPenaltyForLargePalette = 4.0; static const int quality = 30; if (stream == NULL || !BackwardReferencesHashChain(xsize, ysize, 0, argb, 0, quality, stream, &stream_size)) { goto Error; } for (palette_bits = 0; palette_bits < 12; ++palette_bits) { double cur_entropy; Histogram histo; HistogramInit(&histo, palette_bits); ComputePaletteHistogram(argb, xsize, ysize, &stream[0], stream_size, palette_bits, &histo); cur_entropy = HistogramEstimateBits(&histo) + kSmallPenaltyForLargePalette * palette_bits; if (palette_bits == 0 || cur_entropy < lowest_entropy) { *best_palette_bits = palette_bits; lowest_entropy = cur_entropy; } } ok = 1; Error: free(stream); return ok; }