// Copyright 2015 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Additional WebP utilities. // #include "extras/extras.h" #include #include #include #include "extras/sharpyuv_risk_table.h" #include "sharpyuv/sharpyuv.h" #include "src/dsp/dsp.h" #include "src/utils/utils.h" #include "webp/format_constants.h" #include "webp/types.h" #define XTRA_MAJ_VERSION 1 #define XTRA_MIN_VERSION 3 #define XTRA_REV_VERSION 2 //------------------------------------------------------------------------------ int WebPGetExtrasVersion(void) { return (XTRA_MAJ_VERSION << 16) | (XTRA_MIN_VERSION << 8) | XTRA_REV_VERSION; } //------------------------------------------------------------------------------ int WebPImportGray(const uint8_t* gray_data, WebPPicture* pic) { int y, width, uv_width; if (pic == NULL || gray_data == NULL) return 0; pic->colorspace = WEBP_YUV420; if (!WebPPictureAlloc(pic)) return 0; width = pic->width; uv_width = (width + 1) >> 1; for (y = 0; y < pic->height; ++y) { memcpy(pic->y + y * pic->y_stride, gray_data, width); gray_data += width; // <- we could use some 'data_stride' here if needed if ((y & 1) == 0) { memset(pic->u + (y >> 1) * pic->uv_stride, 128, uv_width); memset(pic->v + (y >> 1) * pic->uv_stride, 128, uv_width); } } return 1; } int WebPImportRGB565(const uint8_t* rgb565, WebPPicture* pic) { int x, y; uint32_t* dst; if (pic == NULL || rgb565 == NULL) return 0; pic->colorspace = WEBP_YUV420; pic->use_argb = 1; if (!WebPPictureAlloc(pic)) return 0; dst = pic->argb; for (y = 0; y < pic->height; ++y) { const int width = pic->width; for (x = 0; x < width; ++x) { #if defined(WEBP_SWAP_16BIT_CSP) && (WEBP_SWAP_16BIT_CSP == 1) const uint32_t rg = rgb565[2 * x + 1]; const uint32_t gb = rgb565[2 * x + 0]; #else const uint32_t rg = rgb565[2 * x + 0]; const uint32_t gb = rgb565[2 * x + 1]; #endif uint32_t r = rg & 0xf8; uint32_t g = ((rg << 5) | (gb >> 3)) & 0xfc; uint32_t b = (gb << 5); // dithering r = r | (r >> 5); g = g | (g >> 6); b = b | (b >> 5); dst[x] = (0xffu << 24) | (r << 16) | (g << 8) | b; } rgb565 += 2 * width; dst += pic->argb_stride; } return 1; } int WebPImportRGB4444(const uint8_t* rgb4444, WebPPicture* pic) { int x, y; uint32_t* dst; if (pic == NULL || rgb4444 == NULL) return 0; pic->colorspace = WEBP_YUV420; pic->use_argb = 1; if (!WebPPictureAlloc(pic)) return 0; dst = pic->argb; for (y = 0; y < pic->height; ++y) { const int width = pic->width; for (x = 0; x < width; ++x) { #if defined(WEBP_SWAP_16BIT_CSP) && (WEBP_SWAP_16BIT_CSP == 1) const uint32_t rg = rgb4444[2 * x + 1]; const uint32_t ba = rgb4444[2 * x + 0]; #else const uint32_t rg = rgb4444[2 * x + 0]; const uint32_t ba = rgb4444[2 * x + 1]; #endif uint32_t r = rg & 0xf0; uint32_t g = (rg << 4); uint32_t b = (ba & 0xf0); uint32_t a = (ba << 4); // dithering r = r | (r >> 4); g = g | (g >> 4); b = b | (b >> 4); a = a | (a >> 4); dst[x] = (a << 24) | (r << 16) | (g << 8) | b; } rgb4444 += 2 * width; dst += pic->argb_stride; } return 1; } int WebPImportColorMappedARGB(const uint8_t* indexed, int indexed_stride, const uint32_t palette[], int palette_size, WebPPicture* pic) { int x, y; uint32_t* dst; // 256 as the input buffer is uint8_t. assert(MAX_PALETTE_SIZE <= 256); if (pic == NULL || indexed == NULL || indexed_stride < pic->width || palette == NULL || palette_size > MAX_PALETTE_SIZE || palette_size <= 0) { return 0; } pic->use_argb = 1; if (!WebPPictureAlloc(pic)) return 0; dst = pic->argb; for (y = 0; y < pic->height; ++y) { for (x = 0; x < pic->width; ++x) { // Make sure we are within the palette. if (indexed[x] >= palette_size) { WebPPictureFree(pic); return 0; } dst[x] = palette[indexed[x]]; } indexed += indexed_stride; dst += pic->argb_stride; } return 1; } //------------------------------------------------------------------------------ int WebPUnmultiplyARGB(WebPPicture* pic) { int y; uint32_t* dst; if (pic == NULL || pic->use_argb != 1 || pic->argb == NULL) return 0; WebPInitAlphaProcessing(); dst = pic->argb; for (y = 0; y < pic->height; ++y) { WebPMultARGBRow(dst, pic->width, /*inverse=*/1); dst += pic->argb_stride; } return 1; } //------------------------------------------------------------------------------ // 420 risk metric #define YUV_FIX 16 // fixed-point precision for RGB->YUV static const int kYuvHalf = 1 << (YUV_FIX - 1); // Maps a value in [0, (256 << YUV_FIX) - 1] to [0, // precomputed_scores_table_sampling - 1]. It is important that the extremal // values are preserved and 1:1 mapped: // ConvertValue(0) = 0 // ConvertValue((256 << 16) - 1) = rgb_sampling_size - 1 static int SharpYuvConvertValueToSampledIdx(int v, int rgb_sampling_size) { v = (v + kYuvHalf) >> YUV_FIX; v = (v < 0) ? 0 : (v > 255) ? 255 : v; return (v * (rgb_sampling_size - 1)) / 255; } #undef YUV_FIX // For each pixel, computes the index to look up that color in a precomputed // risk score table where the YUV space is subsampled to a size of // precomputed_scores_table_sampling^3 (see sharpyuv_risk_table.h) static int SharpYuvConvertToYuvSharpnessIndex( int r, int g, int b, const SharpYuvConversionMatrix* matrix, int precomputed_scores_table_sampling) { const int y = SharpYuvConvertValueToSampledIdx( matrix->rgb_to_y[0] * r + matrix->rgb_to_y[1] * g + matrix->rgb_to_y[2] * b + matrix->rgb_to_y[3], precomputed_scores_table_sampling); const int u = SharpYuvConvertValueToSampledIdx( matrix->rgb_to_u[0] * r + matrix->rgb_to_u[1] * g + matrix->rgb_to_u[2] * b + matrix->rgb_to_u[3], precomputed_scores_table_sampling); const int v = SharpYuvConvertValueToSampledIdx( matrix->rgb_to_v[0] * r + matrix->rgb_to_v[1] * g + matrix->rgb_to_v[2] * b + matrix->rgb_to_v[3], precomputed_scores_table_sampling); return y + u * precomputed_scores_table_sampling + v * precomputed_scores_table_sampling * precomputed_scores_table_sampling; } static void SharpYuvRowToYuvSharpnessIndex( const uint8_t* r_ptr, const uint8_t* g_ptr, const uint8_t* b_ptr, int rgb_step, int rgb_bit_depth, int width, uint16_t* dst, const SharpYuvConversionMatrix* matrix, int precomputed_scores_table_sampling) { int i; assert(rgb_bit_depth == 8); (void)rgb_bit_depth; // Unused for now. for (i = 0; i < width; ++i, r_ptr += rgb_step, g_ptr += rgb_step, b_ptr += rgb_step) { dst[i] = SharpYuvConvertToYuvSharpnessIndex(r_ptr[0], g_ptr[0], b_ptr[0], matrix, precomputed_scores_table_sampling); } } #define SAFE_ALLOC(W, H, T) ((T*)WebPSafeMalloc((uint64_t)(W) * (H), sizeof(T))) static int DoEstimateRisk(const uint8_t* r_ptr, const uint8_t* g_ptr, const uint8_t* b_ptr, int rgb_step, int rgb_stride, int rgb_bit_depth, int width, int height, const SharpYuvOptions* options, const uint8_t precomputed_scores_table[], int precomputed_scores_table_sampling, float* score_out) { const int sampling3 = precomputed_scores_table_sampling * precomputed_scores_table_sampling * precomputed_scores_table_sampling; const int kNoiseLevel = 4; double total_score = 0; double count = 0; // Rows of indices in uint16_t* row1 = SAFE_ALLOC(width, 1, uint16_t); uint16_t* row2 = SAFE_ALLOC(width, 1, uint16_t); uint16_t* tmp; int i, j; if (row1 == NULL || row2 == NULL) { WebPFree(row1); WebPFree(row2); return 0; } // Convert the first row ahead. SharpYuvRowToYuvSharpnessIndex(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width, row2, options->yuv_matrix, precomputed_scores_table_sampling); for (j = 1; j < height; ++j) { r_ptr += rgb_stride; g_ptr += rgb_stride; b_ptr += rgb_stride; // Swap row 1 and row 2. tmp = row1; row1 = row2; row2 = tmp; // Convert the row below. SharpYuvRowToYuvSharpnessIndex(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width, row2, options->yuv_matrix, precomputed_scores_table_sampling); for (i = 0; i < width - 1; ++i) { const int idx0 = row1[i + 0]; const int idx1 = row1[i + 1]; const int idx2 = row2[i + 0]; const int score = precomputed_scores_table[idx0 + sampling3 * idx1] + precomputed_scores_table[idx0 + sampling3 * idx2] + precomputed_scores_table[idx1 + sampling3 * idx2]; if (score > kNoiseLevel) { total_score += score; count += 1.0; } } } if (count > 0.) total_score /= count; // If less than 1% of pixels were evaluated -> below noise level. if (100. * count / (width * height) < 1.) total_score = 0.; // Rescale to [0:100] total_score = (total_score > 25.) ? 100. : total_score * 100. / 25.; WebPFree(row1); WebPFree(row2); *score_out = (float)total_score; return 1; } #undef SAFE_ALLOC int SharpYuvEstimate420Risk(const void* r_ptr, const void* g_ptr, const void* b_ptr, int rgb_step, int rgb_stride, int rgb_bit_depth, int width, int height, const SharpYuvOptions* options, float* score) { if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX || r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || options == NULL || score == NULL) { return 0; } if (rgb_bit_depth != 8) { return 0; } if (width <= 4 || height <= 4) { *score = 0.0f; // too small, no real risk. return 1; } return DoEstimateRisk( (const uint8_t*)r_ptr, (const uint8_t*)g_ptr, (const uint8_t*)b_ptr, rgb_step, rgb_stride, rgb_bit_depth, width, height, options, kSharpYuvPrecomputedRisk, kSharpYuvPrecomputedRiskYuvSampling, score); } //------------------------------------------------------------------------------