// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE2 variant of methods for lossless decoder // // Author: Skal (pascal.massimino@gmail.com) #include "./dsp.h" #include #if defined(WEBP_USE_SSE2) #include #include "./lossless.h" //------------------------------------------------------------------------------ // Predictor Transform static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, uint32_t c2) { const __m128i zero = _mm_setzero_si128(); const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); const __m128i V1 = _mm_add_epi16(C0, C1); const __m128i V2 = _mm_sub_epi16(V1, C2); const __m128i b = _mm_packus_epi16(V2, V2); const uint32_t output = _mm_cvtsi128_si32(b); return output; } static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, uint32_t c2) { const __m128i zero = _mm_setzero_si128(); const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); const __m128i avg = _mm_add_epi16(C1, C0); const __m128i A0 = _mm_srli_epi16(avg, 1); const __m128i A1 = _mm_sub_epi16(A0, B0); const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); const __m128i A2 = _mm_sub_epi16(A1, BgtA); const __m128i A3 = _mm_srai_epi16(A2, 1); const __m128i A4 = _mm_add_epi16(A0, A3); const __m128i A5 = _mm_packus_epi16(A4, A4); const uint32_t output = _mm_cvtsi128_si32(A5); return output; } static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { int pa_minus_pb; const __m128i zero = _mm_setzero_si128(); const __m128i A0 = _mm_cvtsi32_si128(a); const __m128i B0 = _mm_cvtsi32_si128(b); const __m128i C0 = _mm_cvtsi32_si128(c); const __m128i AC0 = _mm_subs_epu8(A0, C0); const __m128i CA0 = _mm_subs_epu8(C0, A0); const __m128i BC0 = _mm_subs_epu8(B0, C0); const __m128i CB0 = _mm_subs_epu8(C0, B0); const __m128i AC = _mm_or_si128(AC0, CA0); const __m128i BC = _mm_or_si128(BC0, CB0); const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| const __m128i diff = _mm_sub_epi16(pb, pa); { int16_t out[8]; _mm_storeu_si128((__m128i*)out, diff); pa_minus_pb = out[0] + out[1] + out[2] + out[3]; } return (pa_minus_pb <= 0) ? a : b; } static WEBP_INLINE __m128i Average2_128i(uint32_t a0, uint32_t a1) { const __m128i zero = _mm_setzero_si128(); const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero); const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); const __m128i sum = _mm_add_epi16(A1, A0); const __m128i avg = _mm_srli_epi16(sum, 1); return avg; } static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { const __m128i avg = Average2_128i(a0, a1); const __m128i A2 = _mm_packus_epi16(avg, avg); const uint32_t output = _mm_cvtsi128_si32(A2); return output; } static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { const __m128i zero = _mm_setzero_si128(); const __m128i avg1 = Average2_128i(a0, a2); const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); const __m128i sum = _mm_add_epi16(avg1, A1); const __m128i avg2 = _mm_srli_epi16(sum, 1); const __m128i A2 = _mm_packus_epi16(avg2, avg2); const uint32_t output = _mm_cvtsi128_si32(A2); return output; } static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) { const __m128i avg1 = Average2_128i(a0, a1); const __m128i avg2 = Average2_128i(a2, a3); const __m128i sum = _mm_add_epi16(avg2, avg1); const __m128i avg3 = _mm_srli_epi16(sum, 1); const __m128i A0 = _mm_packus_epi16(avg3, avg3); const uint32_t output = _mm_cvtsi128_si32(A0); return output; } static uint32_t Predictor5(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average3(left, top[0], top[1]); return pred; } static uint32_t Predictor6(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(left, top[-1]); return pred; } static uint32_t Predictor7(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(left, top[0]); return pred; } static uint32_t Predictor8(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(top[-1], top[0]); (void)left; return pred; } static uint32_t Predictor9(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(top[0], top[1]); (void)left; return pred; } static uint32_t Predictor10(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average4(left, top[-1], top[0], top[1]); return pred; } static uint32_t Predictor11(uint32_t left, const uint32_t* const top) { const uint32_t pred = Select(top[0], left, top[-1]); return pred; } static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); return pred; } static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); return pred; } //------------------------------------------------------------------------------ // Subtract-Green Transform static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) { const __m128i mask = _mm_set1_epi32(0x0000ff00); int i; for (i = 0; i + 4 <= num_pixels; i += 4) { const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|... const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|... const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|... const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g); const __m128i out = _mm_sub_epi8(in, in_0g0g); _mm_storeu_si128((__m128i*)&argb_data[i], out); } // fallthrough and finish off with plain-C VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); } static void AddGreenToBlueAndRed(uint32_t* argb_data, int num_pixels) { const __m128i mask = _mm_set1_epi32(0x0000ff00); int i; for (i = 0; i + 4 <= num_pixels; i += 4) { const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|... const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|... const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|... const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g); const __m128i out = _mm_add_epi8(in, in_0g0g); _mm_storeu_si128((__m128i*)&argb_data[i], out); } // fallthrough and finish off with plain-C VP8LAddGreenToBlueAndRed_C(argb_data + i, num_pixels - i); } //------------------------------------------------------------------------------ // Color Transform static WEBP_INLINE __m128i ColorTransformDelta(__m128i color_pred, __m128i color) { // We simulate signed 8-bit multiplication as: // * Left shift the two (8-bit) numbers by 8 bits, // * Perform a 16-bit signed multiplication and retain the higher 16-bits. const __m128i color_pred_shifted = _mm_slli_epi32(color_pred, 8); const __m128i color_shifted = _mm_slli_epi32(color, 8); // Note: This performs multiplication on 8 packed 16-bit numbers, 4 of which // happen to be zeroes. const __m128i signed_mult = _mm_mulhi_epi16(color_pred_shifted, color_shifted); return _mm_srli_epi32(signed_mult, 5); } static WEBP_INLINE void TransformColor(const VP8LMultipliers* const m, uint32_t* argb_data, int num_pixels) { const __m128i g_to_r = _mm_set1_epi32(m->green_to_red_); // multipliers const __m128i g_to_b = _mm_set1_epi32(m->green_to_blue_); const __m128i r_to_b = _mm_set1_epi32(m->red_to_blue_); int i; for (i = 0; i + 4 <= num_pixels; i += 4) { const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); const __m128i alpha_green_mask = _mm_set1_epi32(0xff00ff00); // masks const __m128i red_mask = _mm_set1_epi32(0x00ff0000); const __m128i green_mask = _mm_set1_epi32(0x0000ff00); const __m128i lower_8bit_mask = _mm_set1_epi32(0x000000ff); const __m128i ag = _mm_and_si128(in, alpha_green_mask); // alpha, green const __m128i r = _mm_srli_epi32(_mm_and_si128(in, red_mask), 16); const __m128i g = _mm_srli_epi32(_mm_and_si128(in, green_mask), 8); const __m128i b = in; const __m128i r_delta = ColorTransformDelta(g_to_r, g); // red const __m128i r_new = _mm_and_si128(_mm_sub_epi32(r, r_delta), lower_8bit_mask); const __m128i r_new_shifted = _mm_slli_epi32(r_new, 16); const __m128i b_delta_1 = ColorTransformDelta(g_to_b, g); // blue const __m128i b_delta_2 = ColorTransformDelta(r_to_b, r); const __m128i b_delta = _mm_add_epi32(b_delta_1, b_delta_2); const __m128i b_new = _mm_and_si128(_mm_sub_epi32(b, b_delta), lower_8bit_mask); const __m128i out = _mm_or_si128(_mm_or_si128(ag, r_new_shifted), b_new); _mm_storeu_si128((__m128i*)&argb_data[i], out); } // Fall-back to C-version for left-overs. VP8LTransformColor_C(m, argb_data + i, num_pixels - i); } static WEBP_INLINE void TransformColorInverse(const VP8LMultipliers* const m, uint32_t* argb_data, int num_pixels) { const __m128i g_to_r = _mm_set1_epi32(m->green_to_red_); // multipliers const __m128i g_to_b = _mm_set1_epi32(m->green_to_blue_); const __m128i r_to_b = _mm_set1_epi32(m->red_to_blue_); int i; for (i = 0; i + 4 <= num_pixels; i += 4) { const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); const __m128i alpha_green_mask = _mm_set1_epi32(0xff00ff00); // masks const __m128i red_mask = _mm_set1_epi32(0x00ff0000); const __m128i green_mask = _mm_set1_epi32(0x0000ff00); const __m128i lower_8bit_mask = _mm_set1_epi32(0x000000ff); const __m128i ag = _mm_and_si128(in, alpha_green_mask); // alpha, green const __m128i r = _mm_srli_epi32(_mm_and_si128(in, red_mask), 16); const __m128i g = _mm_srli_epi32(_mm_and_si128(in, green_mask), 8); const __m128i b = in; const __m128i r_delta = ColorTransformDelta(g_to_r, g); // red const __m128i r_new = _mm_and_si128(_mm_add_epi32(r, r_delta), lower_8bit_mask); const __m128i r_new_shifted = _mm_slli_epi32(r_new, 16); const __m128i b_delta_1 = ColorTransformDelta(g_to_b, g); // blue const __m128i b_delta_2 = ColorTransformDelta(r_to_b, r_new); const __m128i b_delta = _mm_add_epi32(b_delta_1, b_delta_2); const __m128i b_new = _mm_and_si128(_mm_add_epi32(b, b_delta), lower_8bit_mask); const __m128i out = _mm_or_si128(_mm_or_si128(ag, r_new_shifted), b_new); _mm_storeu_si128((__m128i*)&argb_data[i], out); } // Fall-back to C-version for left-overs. VP8LTransformColorInverse_C(m, argb_data + i, num_pixels - i); } //------------------------------------------------------------------------------ // Color-space conversion functions static void ConvertBGRAToRGBA(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i* in = (const __m128i*)src; __m128i* out = (__m128i*)dst; while (num_pixels >= 8) { const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 const __m128i rg0 = _mm_unpacklo_epi8(rb0, ga0); // r0g0r1g1 ... r6g6r7g7 const __m128i ba0 = _mm_unpackhi_epi8(rb0, ga0); // b0a0b1a1 ... b6a6b7a7 const __m128i rgba0 = _mm_unpacklo_epi16(rg0, ba0); // rgba0|rgba1... const __m128i rgba4 = _mm_unpackhi_epi16(rg0, ba0); // rgba4|rgba5... _mm_storeu_si128(out++, rgba0); _mm_storeu_si128(out++, rgba4); num_pixels -= 8; } // left-overs VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); } static void ConvertBGRAToRGBA4444(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i mask_0x0f = _mm_set1_epi8(0x0f); const __m128i mask_0xf0 = _mm_set1_epi8(0xf0); const __m128i* in = (const __m128i*)src; __m128i* out = (__m128i*)dst; while (num_pixels >= 8) { const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 #ifdef WEBP_SWAP_16BIT_CSP const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 #else const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 #endif _mm_storeu_si128(out++, rgba); num_pixels -= 8; } // left-overs VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); } static void ConvertBGRAToRGB565(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i mask_0xe0 = _mm_set1_epi8(0xe0); const __m128i mask_0xf8 = _mm_set1_epi8(0xf8); const __m128i mask_0x07 = _mm_set1_epi8(0x07); const __m128i* in = (const __m128i*)src; __m128i* out = (__m128i*)dst; while (num_pixels >= 8) { const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx const __m128i b1 = _mm_srli_epi16(b0, 3); const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx #ifdef WEBP_SWAP_16BIT_CSP const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 #else const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 #endif _mm_storeu_si128(out++, rgba); num_pixels -= 8; } // left-overs VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); } static void ConvertBGRAToBGR(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); const __m128i* in = (const __m128i*)src; const uint8_t* const end = dst + num_pixels * 3; // the last storel_epi64 below writes 8 bytes starting at offset 18 while (dst + 26 <= end) { const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 const __m128i c2 = _mm_srli_si128(c0, 8); const __m128i c6 = _mm_srli_si128(c4, 8); _mm_storel_epi64((__m128i*)(dst + 0), c0); _mm_storel_epi64((__m128i*)(dst + 6), c2); _mm_storel_epi64((__m128i*)(dst + 12), c4); _mm_storel_epi64((__m128i*)(dst + 18), c6); dst += 24; num_pixels -= 8; } // left-overs VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); } //------------------------------------------------------------------------------ #define LINE_SIZE 16 // 8 or 16 static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out, int size) { int i; assert(size % LINE_SIZE == 0); for (i = 0; i < size; i += LINE_SIZE) { const __m128i a0 = _mm_loadu_si128((__m128i*)&a[i + 0]); const __m128i a1 = _mm_loadu_si128((__m128i*)&a[i + 4]); #if (LINE_SIZE == 16) const __m128i a2 = _mm_loadu_si128((__m128i*)&a[i + 8]); const __m128i a3 = _mm_loadu_si128((__m128i*)&a[i + 12]); #endif const __m128i b0 = _mm_loadu_si128((__m128i*)&b[i + 0]); const __m128i b1 = _mm_loadu_si128((__m128i*)&b[i + 4]); #if (LINE_SIZE == 16) const __m128i b2 = _mm_loadu_si128((__m128i*)&b[i + 8]); const __m128i b3 = _mm_loadu_si128((__m128i*)&b[i + 12]); #endif _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); #if (LINE_SIZE == 16) _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); #endif } } static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) { int i; assert(size % LINE_SIZE == 0); for (i = 0; i < size; i += LINE_SIZE) { const __m128i a0 = _mm_loadu_si128((__m128i*)&a[i + 0]); const __m128i a1 = _mm_loadu_si128((__m128i*)&a[i + 4]); #if (LINE_SIZE == 16) const __m128i a2 = _mm_loadu_si128((__m128i*)&a[i + 8]); const __m128i a3 = _mm_loadu_si128((__m128i*)&a[i + 12]); #endif const __m128i b0 = _mm_loadu_si128((__m128i*)&out[i + 0]); const __m128i b1 = _mm_loadu_si128((__m128i*)&out[i + 4]); #if (LINE_SIZE == 16) const __m128i b2 = _mm_loadu_si128((__m128i*)&out[i + 8]); const __m128i b3 = _mm_loadu_si128((__m128i*)&out[i + 12]); #endif _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); #if (LINE_SIZE == 16) _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); #endif } } #undef LINE_SIZE // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But // that's ok since the histogram values are less than 1<<28 (max picture size). static void HistogramAdd(const VP8LHistogram* const a, const VP8LHistogram* const b, VP8LHistogram* const out) { int i; const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); assert(a->palette_code_bits_ == b->palette_code_bits_); if (b != out) { AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES); AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES); AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES); AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES); } else { AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES); AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES); AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES); AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES); } for (i = NUM_LITERAL_CODES; i < literal_size; ++i) { out->literal_[i] = a->literal_[i] + b->literal_[i]; } for (i = 0; i < NUM_DISTANCE_CODES; ++i) { out->distance_[i] = a->distance_[i] + b->distance_[i]; } } #endif // WEBP_USE_SSE2 //------------------------------------------------------------------------------ extern void VP8LDspInitSSE2(void) WEBP_TSAN_IGNORE_FUNCTION; void VP8LDspInitSSE2(void) WEBP_TSAN_IGNORE_FUNCTION { #if defined(WEBP_USE_SSE2) VP8LPredictors[5] = Predictor5; VP8LPredictors[6] = Predictor6; VP8LPredictors[7] = Predictor7; VP8LPredictors[8] = Predictor8; VP8LPredictors[9] = Predictor9; VP8LPredictors[10] = Predictor10; VP8LPredictors[11] = Predictor11; VP8LPredictors[12] = Predictor12; VP8LPredictors[13] = Predictor13; VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed; VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed; VP8LTransformColor = TransformColor; VP8LTransformColorInverse = TransformColorInverse; VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA; VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444; VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565; VP8LConvertBGRAToBGR = ConvertBGRAToBGR; VP8LHistogramAdd = HistogramAdd; #endif // WEBP_USE_SSE2 } //------------------------------------------------------------------------------