// Copyright 2010 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Main decoding functions for WEBP images. // // Author: Skal (pascal.massimino@gmail.com) #include #include "./vp8i.h" #include "./webpi.h" #include "../mux/muxi.h" // For MAX_CHUNK_PAYLOAD. #include "../webp/mux.h" // For 'ALPHA_FLAG'. #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif //------------------------------------------------------------------------------ // RIFF layout is: // Offset tag // 0...3 "RIFF" 4-byte tag // 4...7 size of image data (including metadata) starting at offset 8 // 8...11 "WEBP" our form-type signature // The RIFF container (12 bytes) is followed by appropriate chunks: // 12..15 "VP8 ": 4-bytes tags, signaling the use of VP8 video format // 16..19 size of the raw VP8 image data, starting at offset 20 // 20.... the VP8 bytes // Or, // 12..15 "VP8X": 4-bytes tags, describing the extended-VP8 chunk. // 16..19 size of the VP8X chunk starting at offset 20. // 20..23 VP8X flags bit-map corresponding to the chunk-types present. // 24..27 Width of the Canvas Image. // 28..31 Height of the Canvas Image. // There can be extra chunks after the "VP8X" chunk (ICCP, TILE, FRM, VP8, // META ...) // All 32-bits sizes are in little-endian order. // Note: chunk data must be padded to multiple of 2 in size static WEBP_INLINE uint32_t get_le32(const uint8_t* const data) { return data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24); } VP8StatusCode WebPParseRIFF(const uint8_t** data, uint32_t* data_size, uint32_t* riff_size) { assert(data); assert(data_size); assert(riff_size); if (*data_size >= RIFF_HEADER_SIZE && !memcmp(*data, "RIFF", TAG_SIZE)) { if (memcmp(*data + 8, "WEBP", TAG_SIZE)) { return VP8_STATUS_BITSTREAM_ERROR; // Wrong image file signature. } else { *riff_size = get_le32(*data + TAG_SIZE); // Check that we have at least one chunk (i.e "WEBP" + "VP8?nnnn"). if (*riff_size < TAG_SIZE + CHUNK_HEADER_SIZE) { return VP8_STATUS_BITSTREAM_ERROR; } // We have a RIFF container. Skip it. *data += RIFF_HEADER_SIZE; *data_size -= RIFF_HEADER_SIZE; } } else { *riff_size = 0; // Did not get full RIFF header. } return VP8_STATUS_OK; } VP8StatusCode WebPParseVP8X(const uint8_t** data, uint32_t* data_size, uint32_t* bytes_skipped, int* width, int* height, uint32_t* flags) { assert(data); assert(data_size); assert(bytes_skipped); *bytes_skipped = 0; if (*data_size < CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data. } if (!memcmp(*data, "VP8X", TAG_SIZE)) { const uint32_t chunk_size = get_le32(*data + TAG_SIZE); if (chunk_size != VP8X_CHUNK_SIZE) { return VP8_STATUS_BITSTREAM_ERROR; // Wrong chunk size. } if (flags != NULL) { *flags = get_le32(*data + 8); } if (width != NULL) { *width = get_le32(*data + 12); } if (height != NULL) { *height = get_le32(*data + 16); } // Skip over VP8X header bytes. *bytes_skipped = CHUNK_HEADER_SIZE + VP8X_CHUNK_SIZE; *data += *bytes_skipped; *data_size -= *bytes_skipped; } return VP8_STATUS_OK; } VP8StatusCode WebPParseOptionalChunks(const uint8_t** data, uint32_t* data_size, uint32_t riff_size, uint32_t* bytes_skipped, const uint8_t** alpha_data, uint32_t* alpha_size) { const uint8_t* buf; uint32_t buf_size; assert(data); assert(data_size); assert(bytes_skipped); assert(alpha_data); assert(alpha_size); buf = *data; buf_size = *data_size; *bytes_skipped = 0; *alpha_data = NULL; *alpha_size = 0; while (1) { uint32_t chunk_size; uint32_t cur_skip_size; const uint32_t bytes_skipped_header = TAG_SIZE + // "WEBP". CHUNK_HEADER_SIZE + // "VP8Xnnnn". VP8X_CHUNK_SIZE; // data. *data = buf; *data_size = buf_size; if (buf_size < CHUNK_HEADER_SIZE) { // Insufficient data. return VP8_STATUS_NOT_ENOUGH_DATA; } chunk_size = get_le32(buf + TAG_SIZE); // For odd-sized chunk-payload, there's one byte padding at the end. cur_skip_size = (CHUNK_HEADER_SIZE + chunk_size + 1) & ~1; // Check that total bytes skipped along with current chunk size // does not exceed riff_size. if (riff_size > 0 && (bytes_skipped_header + *bytes_skipped + cur_skip_size > riff_size)) { return VP8_STATUS_BITSTREAM_ERROR; // Not a valid chunk size. } if (buf_size < cur_skip_size) { // Insufficient data. return VP8_STATUS_NOT_ENOUGH_DATA; } if (!memcmp(buf, "ALPH", TAG_SIZE)) { // A valid ALPH header. *alpha_data = buf + CHUNK_HEADER_SIZE; *alpha_size = chunk_size; } else if (!memcmp(buf, "VP8 ", TAG_SIZE)) { // A valid VP8 header. return VP8_STATUS_OK; // Found. } // We have a full and valid chunk; skip it. buf += cur_skip_size; buf_size -= cur_skip_size; *bytes_skipped += cur_skip_size; } } VP8StatusCode WebPParseVP8Header(const uint8_t** data, uint32_t* data_size, uint32_t riff_size, uint32_t* bytes_skipped, uint32_t* vp8_chunk_size) { assert(data); assert(data_size); assert(bytes_skipped); assert(vp8_chunk_size); *bytes_skipped = 0; *vp8_chunk_size = 0; if (*data_size < CHUNK_HEADER_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; // Insufficient data. } if (!memcmp(*data, "VP8 ", TAG_SIZE)) { *vp8_chunk_size = get_le32(*data + TAG_SIZE); if ((riff_size >= TAG_SIZE + CHUNK_HEADER_SIZE) && // "WEBP" + "VP8 nnnn". (*vp8_chunk_size > riff_size - (TAG_SIZE + CHUNK_HEADER_SIZE))) { return VP8_STATUS_BITSTREAM_ERROR; // Inconsistent size information. } // Skip over CHUNK_HEADER_SIZE bytes from VP8 Header. *bytes_skipped = CHUNK_HEADER_SIZE; *data += *bytes_skipped; *data_size -= *bytes_skipped; } return VP8_STATUS_OK; } VP8StatusCode WebPParseHeaders(const uint8_t** data, uint32_t* data_size, uint32_t* vp8_size, uint32_t* bytes_skipped, const uint8_t** alpha_data, uint32_t* alpha_size) { const uint8_t* buf; uint32_t buf_size; uint32_t riff_size; uint32_t vp8_size_tmp; uint32_t optional_data_size; uint32_t vp8x_skip_size; uint32_t vp8_skip_size; VP8StatusCode status; assert(data); assert(data_size); assert(vp8_size); assert(bytes_skipped); assert(alpha_data); assert(alpha_size); buf = *data; buf_size = *data_size; *vp8_size = 0; *bytes_skipped = 0; *alpha_data = NULL; *alpha_size = 0; if (buf == NULL || buf_size < RIFF_HEADER_SIZE) { return VP8_STATUS_NOT_ENOUGH_DATA; } // Skip over RIFF header. if (WebPParseRIFF(&buf, &buf_size, &riff_size) != VP8_STATUS_OK) { return VP8_STATUS_BITSTREAM_ERROR; // Wrong RIFF header. } // Skip over VP8X header. status = WebPParseVP8X(&buf, &buf_size, &vp8x_skip_size, NULL, NULL, NULL); if (status != VP8_STATUS_OK) { return status; // Wrong VP8X chunk / insufficient data. } if (vp8x_skip_size > 0) { // Skip over optional chunks. status = WebPParseOptionalChunks(&buf, &buf_size, riff_size, &optional_data_size, alpha_data, alpha_size); if (status != VP8_STATUS_OK) { return status; // Found an invalid chunk size / insufficient data. } } // Skip over VP8 chunk header. status = WebPParseVP8Header(&buf, &buf_size, riff_size, &vp8_skip_size, &vp8_size_tmp); if (status != VP8_STATUS_OK) { return status; // Invalid VP8 header / insufficient data. } if (vp8_skip_size > 0) { *vp8_size = vp8_size_tmp; } *bytes_skipped = (uint32_t)(buf - *data); assert(buf - *data < MAX_CHUNK_PAYLOAD); assert(*bytes_skipped == *data_size - buf_size); *data = buf; *data_size = buf_size; return VP8_STATUS_OK; } //------------------------------------------------------------------------------ // WebPDecParams void WebPResetDecParams(WebPDecParams* const params) { if (params) { memset(params, 0, sizeof(*params)); } } //------------------------------------------------------------------------------ // "Into" decoding variants // Main flow static VP8StatusCode DecodeInto(const uint8_t* data, uint32_t data_size, WebPDecParams* const params) { VP8Decoder* dec = VP8New(); VP8StatusCode status = VP8_STATUS_OK; VP8Io io; assert(params); if (dec == NULL) { return VP8_STATUS_INVALID_PARAM; } VP8InitIo(&io); io.data = data; io.data_size = data_size; WebPInitCustomIo(params, &io); // Plug the I/O functions. #ifdef WEBP_USE_THREAD dec->use_threads_ = params->options && (params->options->use_threads > 0); #else dec->use_threads_ = 0; #endif // Decode bitstream header, update io->width/io->height. if (!VP8GetHeaders(dec, &io)) { status = VP8_STATUS_BITSTREAM_ERROR; } else { // Allocate/check output buffers. status = WebPAllocateDecBuffer(io.width, io.height, params->options, params->output); if (status == VP8_STATUS_OK) { // Decode if (!VP8Decode(dec, &io)) { status = dec->status_; } } } VP8Delete(dec); if (status != VP8_STATUS_OK) { WebPFreeDecBuffer(params->output); } return status; } // Helpers static uint8_t* DecodeIntoRGBABuffer(WEBP_CSP_MODE colorspace, const uint8_t* data, uint32_t data_size, uint8_t* rgba, int stride, int size) { WebPDecParams params; WebPDecBuffer buf; if (rgba == NULL) { return NULL; } WebPInitDecBuffer(&buf); WebPResetDecParams(¶ms); params.output = &buf; buf.colorspace = colorspace; buf.u.RGBA.rgba = rgba; buf.u.RGBA.stride = stride; buf.u.RGBA.size = size; buf.is_external_memory = 1; if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) { return NULL; } return rgba; } uint8_t* WebPDecodeRGBInto(const uint8_t* data, uint32_t data_size, uint8_t* output, int size, int stride) { return DecodeIntoRGBABuffer(MODE_RGB, data, data_size, output, stride, size); } uint8_t* WebPDecodeRGBAInto(const uint8_t* data, uint32_t data_size, uint8_t* output, int size, int stride) { return DecodeIntoRGBABuffer(MODE_RGBA, data, data_size, output, stride, size); } uint8_t* WebPDecodeARGBInto(const uint8_t* data, uint32_t data_size, uint8_t* output, int size, int stride) { return DecodeIntoRGBABuffer(MODE_ARGB, data, data_size, output, stride, size); } uint8_t* WebPDecodeBGRInto(const uint8_t* data, uint32_t data_size, uint8_t* output, int size, int stride) { return DecodeIntoRGBABuffer(MODE_BGR, data, data_size, output, stride, size); } uint8_t* WebPDecodeBGRAInto(const uint8_t* data, uint32_t data_size, uint8_t* output, int size, int stride) { return DecodeIntoRGBABuffer(MODE_BGRA, data, data_size, output, stride, size); } uint8_t* WebPDecodeYUVInto(const uint8_t* data, uint32_t data_size, uint8_t* luma, int luma_size, int luma_stride, uint8_t* u, int u_size, int u_stride, uint8_t* v, int v_size, int v_stride) { WebPDecParams params; WebPDecBuffer output; if (luma == NULL) return NULL; WebPInitDecBuffer(&output); WebPResetDecParams(¶ms); params.output = &output; output.colorspace = MODE_YUV; output.u.YUVA.y = luma; output.u.YUVA.y_stride = luma_stride; output.u.YUVA.y_size = luma_size; output.u.YUVA.u = u; output.u.YUVA.u_stride = u_stride; output.u.YUVA.u_size = u_size; output.u.YUVA.v = v; output.u.YUVA.v_stride = v_stride; output.u.YUVA.v_size = v_size; output.is_external_memory = 1; if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) { return NULL; } return luma; } //------------------------------------------------------------------------------ static uint8_t* Decode(WEBP_CSP_MODE mode, const uint8_t* data, uint32_t data_size, int* width, int* height, WebPDecBuffer* keep_info) { WebPDecParams params; WebPDecBuffer output; WebPInitDecBuffer(&output); WebPResetDecParams(¶ms); params.output = &output; output.colorspace = mode; // Retrieve (and report back) the required dimensions from bitstream. if (!WebPGetInfo(data, data_size, &output.width, &output.height)) { return NULL; } if (width != NULL) *width = output.width; if (height != NULL) *height = output.height; // Decode if (DecodeInto(data, data_size, ¶ms) != VP8_STATUS_OK) { return NULL; } if (keep_info != NULL) { // keep track of the side-info WebPCopyDecBuffer(&output, keep_info); } // return decoded samples (don't clear 'output'!) return (mode >= MODE_YUV) ? output.u.YUVA.y : output.u.RGBA.rgba; } uint8_t* WebPDecodeRGB(const uint8_t* data, uint32_t data_size, int* width, int* height) { return Decode(MODE_RGB, data, data_size, width, height, NULL); } uint8_t* WebPDecodeRGBA(const uint8_t* data, uint32_t data_size, int* width, int* height) { return Decode(MODE_RGBA, data, data_size, width, height, NULL); } uint8_t* WebPDecodeARGB(const uint8_t* data, uint32_t data_size, int* width, int* height) { return Decode(MODE_ARGB, data, data_size, width, height, NULL); } uint8_t* WebPDecodeBGR(const uint8_t* data, uint32_t data_size, int* width, int* height) { return Decode(MODE_BGR, data, data_size, width, height, NULL); } uint8_t* WebPDecodeBGRA(const uint8_t* data, uint32_t data_size, int* width, int* height) { return Decode(MODE_BGRA, data, data_size, width, height, NULL); } uint8_t* WebPDecodeYUV(const uint8_t* data, uint32_t data_size, int* width, int* height, uint8_t** u, uint8_t** v, int* stride, int* uv_stride) { WebPDecBuffer output; // only to preserve the side-infos uint8_t* const out = Decode(MODE_YUV, data, data_size, width, height, &output); if (out != NULL) { const WebPYUVABuffer* const buf = &output.u.YUVA; *u = buf->u; *v = buf->v; *stride = buf->y_stride; *uv_stride = buf->u_stride; assert(buf->u_stride == buf->v_stride); } return out; } static void DefaultFeatures(WebPBitstreamFeatures* const features) { assert(features); memset(features, 0, sizeof(*features)); features->bitstream_version = 0; } static VP8StatusCode GetFeatures(const uint8_t* data, uint32_t data_size, WebPBitstreamFeatures* const features) { uint32_t vp8_chunk_size = 0; uint32_t riff_size = 0; uint32_t flags = 0; uint32_t vp8x_skip_size = 0; uint32_t vp8_skip_size = 0; int* const width = &features->width; int* const height = &features->height; VP8StatusCode status; if (features == NULL || data == NULL) { return VP8_STATUS_INVALID_PARAM; } DefaultFeatures(features); // Skip over RIFF header. status = WebPParseRIFF(&data, &data_size, &riff_size); if (status != VP8_STATUS_OK) { return status; // Wrong RIFF header / insufficient data. } // Skip over VP8X. status = WebPParseVP8X(&data, &data_size, &vp8x_skip_size, width, height, &flags); if (status != VP8_STATUS_OK) { return status; // Wrong VP8X / insufficient data. } features->has_alpha = !!(flags & ALPHA_FLAG); if (vp8x_skip_size > 0) { return VP8_STATUS_OK; // Return features from VP8X header. } // Skip over VP8 header. status = WebPParseVP8Header(&data, &data_size, riff_size, &vp8_skip_size, &vp8_chunk_size); if (status != VP8_STATUS_OK) { return status; // Wrong VP8 chunk-header / insufficient data. } if (vp8_skip_size == 0) { vp8_chunk_size = data_size; // No VP8 chunk wrapper over raw VP8 data. } // Validates raw VP8 data. if (!VP8GetInfo(data, data_size, vp8_chunk_size, width, height)) { return VP8_STATUS_BITSTREAM_ERROR; } return VP8_STATUS_OK; // Return features from VP8 header. } //------------------------------------------------------------------------------ // WebPGetInfo() int WebPGetInfo(const uint8_t* data, uint32_t data_size, int* width, int* height) { WebPBitstreamFeatures features; if (GetFeatures(data, data_size, &features) != VP8_STATUS_OK) { return 0; } if (width != NULL) { *width = features.width; } if (height != NULL) { *height = features.height; } return 1; } //------------------------------------------------------------------------------ // Advance decoding API int WebPInitDecoderConfigInternal(WebPDecoderConfig* const config, int version) { if (version != WEBP_DECODER_ABI_VERSION) { return 0; // version mismatch } if (config == NULL) { return 0; } memset(config, 0, sizeof(*config)); DefaultFeatures(&config->input); WebPInitDecBuffer(&config->output); return 1; } VP8StatusCode WebPGetFeaturesInternal(const uint8_t* data, uint32_t data_size, WebPBitstreamFeatures* const features, int version) { VP8StatusCode status; if (version != WEBP_DECODER_ABI_VERSION) { return VP8_STATUS_INVALID_PARAM; // version mismatch } if (features == NULL) { return VP8_STATUS_INVALID_PARAM; } status = GetFeatures(data, data_size, features); if (status == VP8_STATUS_NOT_ENOUGH_DATA) { return VP8_STATUS_BITSTREAM_ERROR; // Not-enough-data treated as error. } return status; } VP8StatusCode WebPDecode(const uint8_t* data, uint32_t data_size, WebPDecoderConfig* const config) { WebPDecParams params; VP8StatusCode status; if (config == NULL) { return VP8_STATUS_INVALID_PARAM; } status = GetFeatures(data, data_size, &config->input); if (status != VP8_STATUS_OK) { if (status == VP8_STATUS_NOT_ENOUGH_DATA) { return VP8_STATUS_BITSTREAM_ERROR; // Not-enough-data treated as error. } return status; } WebPResetDecParams(¶ms); params.output = &config->output; params.options = &config->options; status = DecodeInto(data, data_size, ¶ms); return status; } //------------------------------------------------------------------------------ // Cropping & rescaling. int WebPIoInitFromOptions(const WebPDecoderOptions* const options, VP8Io* const io) { const int W = io->width; const int H = io->height; int x = 0, y = 0, w = W, h = H; // Cropping io->use_cropping = (options != NULL) && (options->use_cropping > 0); if (io->use_cropping) { w = options->crop_width; h = options->crop_height; // TODO(skal): take colorspace into account. Don't assume YUV420. x = options->crop_left & ~1; y = options->crop_top & ~1; if (x < 0 || y < 0 || w <= 0 || h <= 0 || x + w > W || y + h > H) { return 0; // out of frame boundary error } } io->crop_left = x; io->crop_top = y; io->crop_right = x + w; io->crop_bottom = y + h; io->mb_w = w; io->mb_h = h; // Scaling io->use_scaling = (options != NULL) && (options->use_scaling > 0); if (io->use_scaling) { if (options->scaled_width <= 0 || options->scaled_height <= 0) { return 0; } io->scaled_width = options->scaled_width; io->scaled_height = options->scaled_height; } // Filter io->bypass_filtering = options && options->bypass_filtering; // Fancy upsampler #ifdef FANCY_UPSAMPLING io->fancy_upsampling = (options == NULL) || (!options->no_fancy_upsampling); #endif if (io->use_scaling) { // disable filter (only for large downscaling ratio). io->bypass_filtering = (io->scaled_width < W * 3 / 4) && (io->scaled_height < H * 3 / 4); io->fancy_upsampling = 0; } return 1; } #define RFIX 30 #define MULT_FIX(x,y) (((int64_t)(x) * (y) + (1 << (RFIX - 1))) >> RFIX) void WebPRescalerInit(WebPRescaler* const wrk, int src_width, int src_height, uint8_t* const dst, int dst_width, int dst_height, int dst_stride, int num_channels, int x_add, int x_sub, int y_add, int y_sub, int32_t* const work) { wrk->x_expand = (src_width < dst_width); wrk->src_width = src_width; wrk->src_height = src_height; wrk->dst_width = dst_width; wrk->dst_height = dst_height; wrk->dst = dst; wrk->dst_stride = dst_stride; wrk->num_channels = num_channels; // for 'x_expand', we use bilinear interpolation wrk->x_add = wrk->x_expand ? (x_sub - 1) : x_add - x_sub; wrk->x_sub = wrk->x_expand ? (x_add - 1) : x_sub; wrk->y_accum = y_add; wrk->y_add = y_add; wrk->y_sub = y_sub; wrk->fx_scale = (1 << RFIX) / x_sub; wrk->fy_scale = (1 << RFIX) / y_sub; wrk->fxy_scale = wrk->x_expand ? ((int64_t)dst_height << RFIX) / (x_sub * src_height) : ((int64_t)dst_height << RFIX) / (x_add * src_height); wrk->irow = work; wrk->frow = work + num_channels * dst_width; } void WebPRescalerImportRow(const uint8_t* const src, int channel, WebPRescaler* const wrk) { const int x_stride = wrk->num_channels; const int x_out_max = wrk->dst_width * wrk->num_channels; int x_in = channel; int x_out; int accum = 0; if (!wrk->x_expand) { int sum = 0; for (x_out = channel; x_out < x_out_max; x_out += x_stride) { accum += wrk->x_add; for (; accum > 0; accum -= wrk->x_sub) { sum += src[x_in]; x_in += x_stride; } { // Emit next horizontal pixel. const int32_t base = src[x_in]; const int32_t frac = base * (-accum); x_in += x_stride; wrk->frow[x_out] = (sum + base) * wrk->x_sub - frac; // fresh fractional start for next pixel sum = (int)MULT_FIX(frac, wrk->fx_scale); } } } else { // simple bilinear interpolation int left = src[channel], right = src[channel]; for (x_out = channel; x_out < x_out_max; x_out += x_stride) { if (accum < 0) { left = right; x_in += x_stride; right = src[x_in]; accum += wrk->x_add; } wrk->frow[x_out] = right * wrk->x_add + (left - right) * accum; accum -= wrk->x_sub; } } // Accumulate the new row's contribution for (x_out = channel; x_out < x_out_max; x_out += x_stride) { wrk->irow[x_out] += wrk->frow[x_out]; } } void WebPRescalerExportRow(WebPRescaler* const wrk) { int x_out; const int yscale = wrk->fy_scale * (-wrk->y_accum); const int x_out_max = wrk->dst_width * wrk->num_channels; assert(wrk->y_accum <= 0); for (x_out = 0; x_out < x_out_max; ++x_out) { const int frac = (int)MULT_FIX(wrk->frow[x_out], yscale); const int v = (int)MULT_FIX(wrk->irow[x_out] - frac, wrk->fxy_scale); wrk->dst[x_out] = (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255; wrk->irow[x_out] = frac; // new fractional start } wrk->y_accum += wrk->y_add; wrk->dst += wrk->dst_stride; } #undef MULT_FIX #undef RFIX //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif