// Copyright 2011 Google Inc. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Macroblock analysis // // Author: Skal (pascal.massimino@gmail.com) #include #include #include #include "./vp8enci.h" #include "./cost.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif #define MAX_ITERS_K_MEANS 6 static int ClipAlpha(int alpha) { return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha; } //------------------------------------------------------------------------------ // Smooth the segment map by replacing isolated block by the majority of its // neighbours. static void SmoothSegmentMap(VP8Encoder* const enc) { int n, x, y; const int w = enc->mb_w_; const int h = enc->mb_h_; const int majority_cnt_3_x_3_grid = 5; uint8_t* tmp = (uint8_t*)malloc(w * h * sizeof(uint8_t)); if (tmp == NULL) return; for (y = 1; y < h - 1; ++y) { for (x = 1; x < w - 1; ++x) { int cnt[NUM_MB_SEGMENTS] = { 0 }; const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; int majority_seg = mb->segment_; // Check the 8 neighbouring segment values. cnt[mb[-w - 1].segment_]++; // top-left cnt[mb[-w + 0].segment_]++; // top cnt[mb[-w + 1].segment_]++; // top-right cnt[mb[ - 1].segment_]++; // left cnt[mb[ + 1].segment_]++; // right cnt[mb[ w - 1].segment_]++; // bottom-left cnt[mb[ w + 0].segment_]++; // bottom cnt[mb[ w + 1].segment_]++; // bottom-right for (n = 0; n < NUM_MB_SEGMENTS; ++n) { if (cnt[n] >= majority_cnt_3_x_3_grid) { majority_seg = n; } } tmp[x + y * w] = majority_seg; } } for (y = 1; y < h - 1; ++y) { for (x = 1; x < w - 1; ++x) { VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; mb->segment_ = tmp[x + y * w]; } } free(tmp); } //------------------------------------------------------------------------------ // Finalize Segment probability based on the coding tree static int GetProba(int a, int b) { int proba; const int total = a + b; if (total == 0) return 255; // that's the default probability. proba = (255 * a + total / 2) / total; return proba; } static void SetSegmentProbas(VP8Encoder* const enc) { int p[NUM_MB_SEGMENTS] = { 0 }; int n; for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { const VP8MBInfo* const mb = &enc->mb_info_[n]; p[mb->segment_]++; } if (enc->pic_->stats) { for (n = 0; n < NUM_MB_SEGMENTS; ++n) { enc->pic_->stats->segment_size[n] = p[n]; } } if (enc->segment_hdr_.num_segments_ > 1) { uint8_t* const probas = enc->proba_.segments_; probas[0] = GetProba(p[0] + p[1], p[2] + p[3]); probas[1] = GetProba(p[0], p[1]); probas[2] = GetProba(p[2], p[3]); enc->segment_hdr_.update_map_ = (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255); enc->segment_hdr_.size_ = p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) + p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) + p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) + p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2])); } else { enc->segment_hdr_.update_map_ = 0; enc->segment_hdr_.size_ = 0; } } static WEBP_INLINE int clip(int v, int m, int M) { return v < m ? m : v > M ? M : v; } static void SetSegmentAlphas(VP8Encoder* const enc, const int centers[NUM_MB_SEGMENTS], int mid) { const int nb = enc->segment_hdr_.num_segments_; int min = centers[0], max = centers[0]; int n; if (nb > 1) { for (n = 0; n < nb; ++n) { if (min > centers[n]) min = centers[n]; if (max < centers[n]) max = centers[n]; } } if (max == min) max = min + 1; assert(mid <= max && mid >= min); for (n = 0; n < nb; ++n) { const int alpha = 255 * (centers[n] - mid) / (max - min); const int beta = 255 * (centers[n] - min) / (max - min); enc->dqm_[n].alpha_ = clip(alpha, -127, 127); enc->dqm_[n].beta_ = clip(beta, 0, 255); } } //------------------------------------------------------------------------------ // Simplified k-Means, to assign Nb segments based on alpha-histogram static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { const int nb = enc->segment_hdr_.num_segments_; int centers[NUM_MB_SEGMENTS]; int weighted_average; int map[256]; int a, n, k; int min_a = 0, max_a = 255, range_a; // 'int' type is ok for histo, and won't overflow int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; // bracket the input for (n = 0; n < 256 && alphas[n] == 0; ++n) {} min_a = n; for (n = 255; n > min_a && alphas[n] == 0; --n) {} max_a = n; range_a = max_a - min_a; // Spread initial centers evenly for (n = 1, k = 0; n < 2 * nb; n += 2) { centers[k++] = min_a + (n * range_a) / (2 * nb); } for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough int total_weight; int displaced; // Reset stats for (n = 0; n < nb; ++n) { accum[n] = 0; dist_accum[n] = 0; } // Assign nearest center for each 'a' n = 0; // track the nearest center for current 'a' for (a = min_a; a <= max_a; ++a) { if (alphas[a]) { while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) { n++; } map[a] = n; // accumulate contribution into best centroid dist_accum[n] += a * alphas[a]; accum[n] += alphas[a]; } } // All point are classified. Move the centroids to the // center of their respective cloud. displaced = 0; weighted_average = 0; total_weight = 0; for (n = 0; n < nb; ++n) { if (accum[n]) { const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; displaced += abs(centers[n] - new_center); centers[n] = new_center; weighted_average += new_center * accum[n]; total_weight += accum[n]; } } weighted_average = (weighted_average + total_weight / 2) / total_weight; if (displaced < 5) break; // no need to keep on looping... } // Map each original value to the closest centroid for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { VP8MBInfo* const mb = &enc->mb_info_[n]; const int a = mb->alpha_; mb->segment_ = map[a]; mb->alpha_ = centers[map[a]]; // just for the record. } if (nb > 1) { const int smooth = (enc->config_->preprocessing & 1); if (smooth) SmoothSegmentMap(enc); } SetSegmentProbas(enc); // Assign final proba SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. } //------------------------------------------------------------------------------ // Macroblock analysis: collect histogram for each mode, deduce the maximal // susceptibility and set best modes for this macroblock. // Segment assignment is done later. // Number of modes to inspect for alpha_ evaluation. For high-quality settings, // we don't need to test all the possible modes during the analysis phase. #define MAX_INTRA16_MODE 2 #define MAX_INTRA4_MODE 2 #define MAX_UV_MODE 2 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4; int mode; int best_alpha = -1; int best_mode = 0; VP8MakeLuma16Preds(it); for (mode = 0; mode < max_mode; ++mode) { const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF, it->yuv_p_ + VP8I16ModeOffsets[mode], 0, 16); if (alpha > best_alpha) { best_alpha = alpha; best_mode = mode; } } VP8SetIntra16Mode(it, best_mode); return best_alpha; } static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, int best_alpha) { int modes[16]; const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES; int i4_alpha = 0; VP8IteratorStartI4(it); do { int mode; int best_mode_alpha = -1; const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; VP8MakeIntra4Preds(it); for (mode = 0; mode < max_mode; ++mode) { const int alpha = VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode], 0, 1); if (alpha > best_mode_alpha) { best_mode_alpha = alpha; modes[it->i4_] = mode; } } i4_alpha += best_mode_alpha; // Note: we reuse the original samples for predictors } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); if (i4_alpha > best_alpha) { VP8SetIntra4Mode(it, modes); best_alpha = ClipAlpha(i4_alpha); } return best_alpha; } static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { int best_alpha = -1; int best_mode = 0; const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4; int mode; VP8MakeChroma8Preds(it); for (mode = 0; mode < max_mode; ++mode) { const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF, it->yuv_p_ + VP8UVModeOffsets[mode], 16, 16 + 4 + 4); if (alpha > best_alpha) { best_alpha = alpha; best_mode = mode; } } VP8SetIntraUVMode(it, best_mode); return best_alpha; } static void MBAnalyze(VP8EncIterator* const it, int alphas[256], int* const uv_alpha) { const VP8Encoder* const enc = it->enc_; int best_alpha, best_uv_alpha; VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED VP8SetSkip(it, 0); // not skipped VP8SetSegment(it, 0); // default segment, spec-wise. best_alpha = MBAnalyzeBestIntra16Mode(it); if (enc->method_ != 3) { // We go and make a fast decision for intra4/intra16. // It's usually not a good and definitive pick, but helps seeding the stats // about level bit-cost. // TODO(skal): improve criterion. best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); } best_uv_alpha = MBAnalyzeBestUVMode(it); // Final susceptibility mix best_alpha = (best_alpha + best_uv_alpha + 1) / 2; alphas[best_alpha]++; *uv_alpha += best_uv_alpha; it->mb_->alpha_ = best_alpha; // Informative only. } //------------------------------------------------------------------------------ // Main analysis loop: // Collect all susceptibilities for each macroblock and record their // distribution in alphas[]. Segments is assigned a-posteriori, based on // this histogram. // We also pick an intra16 prediction mode, which shouldn't be considered // final except for fast-encode settings. We can also pick some intra4 modes // and decide intra4/intra16, but that's usually almost always a bad choice at // this stage. int VP8EncAnalyze(VP8Encoder* const enc) { int alphas[256] = { 0 }; VP8EncIterator it; VP8IteratorInit(enc, &it); enc->uv_alpha_ = 0; do { VP8IteratorImport(&it); MBAnalyze(&it, alphas, &enc->uv_alpha_); // Let's pretend we have perfect lossless reconstruction. } while (VP8IteratorNext(&it, it.yuv_in_)); enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_; AssignSegments(enc, alphas); return 1; } #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif