// Copyright 2016 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // VP8EstimateQuality(): rough encoding quality estimate // // Author: Skal (pascal.massimino@gmail.com) #include "./extras.h" #include //------------------------------------------------------------------------------ #define INVALID_BIT_POS (1ull << 63) // In most cases, we don't need to use a full arithmetic decoder, since // all the header's bits are written using a uniform probability of 128. // We can just parse the header as if it was bits (works in 99.999% cases). static WEBP_INLINE uint32_t GetBit(const uint8_t* const data, size_t nb, uint64_t max_size, uint64_t* const bit_pos) { uint32_t val = 0; if (*bit_pos + nb <= 8 * max_size) { while (nb-- > 0) { const uint64_t p = (*bit_pos)++; const int bit = !!(data[p >> 3] & (128 >> ((p & 7)))); val = (val << 1) | bit; } } else { *bit_pos = INVALID_BIT_POS; } return val; } #define GET_BIT(n) GetBit(data, (n), size, &bit_pos) #define CONDITIONAL_SKIP(n) (GET_BIT(1) ? GET_BIT((n)) : 0) int VP8EstimateQuality(const uint8_t* const data, size_t size) { size_t pos = 0; uint64_t bit_pos; uint64_t sig = 0x00; int ok = 0; int Q = -1; if (data == NULL) return -1; while (pos < size) { sig = (sig >> 8) | ((uint64_t)data[pos++] << 40); if ((sig >> 24) == 0x2a019dull) { ok = 1; break; } } if (!ok) return -1; if (pos + 4 > size) return -1; // Skip main Header // width = (data[pos + 0] | (data[pos + 1] << 8)) & 0x3fff; // height = (data[pos + 2] | (data[pos + 3] << 8)) & 0x3fff; pos += 4; bit_pos = pos * 8; GET_BIT(2); // color_space + clamp type // Segment header if (GET_BIT(1)) { // use_segment_ int s; const int update_map = GET_BIT(1); if (GET_BIT(1)) { // update data const int absolute_delta = GET_BIT(1); int q[4] = { 0, 0, 0, 0 }; for (s = 0; s < 4; ++s) { if (GET_BIT(1)) { q[s] = GET_BIT(7); if (GET_BIT(1)) q[s] = -q[s]; // sign } } if (absolute_delta) Q = q[0]; // just use the first segment's quantizer for (s = 0; s < 4; ++s) CONDITIONAL_SKIP(7); // filter strength } if (update_map) { for (s = 0; s < 3; ++s) CONDITIONAL_SKIP(8); } } // Filter header GET_BIT(1 + 6 + 3); // simple + level + sharpness if (GET_BIT(1)) { // use_lf_delta if (GET_BIT(1)) { // update lf_delta? int n; for (n = 0; n < 4 + 4; ++n) CONDITIONAL_SKIP(6); } } // num partitions GET_BIT(2); // ParseQuant { const int base_q = GET_BIT(7); /* dqy1_dc = */ CONDITIONAL_SKIP(5); /* dqy2_dc = */ CONDITIONAL_SKIP(5); /* dqy2_ac = */ CONDITIONAL_SKIP(5); /* dquv_dc = */ CONDITIONAL_SKIP(5); /* dquv_ac = */ CONDITIONAL_SKIP(5); if (Q < 0) Q = base_q; } if (bit_pos == INVALID_BIT_POS) return -1; // base mapping Q = (127 - Q) * 100 / 127; // correction for power-law behavior in low range if (Q < 80) { Q = (int)(pow(Q / 80., 1. / 0.38) * 80); } return Q; }