// Copyright 2010 Google Inc. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Frame-reconstruction function. Memory allocation. // // Author: Skal (pascal.massimino@gmail.com) #include #include "./vp8i.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif #define ALIGN_MASK (32 - 1) //----------------------------------------------------------------------------- // Memory setup // kFilterExtraRows[] = How many extra lines are needed on the MB boundary // for caching, given a filtering level. // Simple filter: up to 2 luma samples are read and 1 is written. // Complex filter: up to 4 luma samples are read and 3 are written. Same for // U/V, so it's 8 samples total (because of the 2x upsampling). static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { const int mb_w = dec->mb_w_; const int intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); const int top_size = (16 + 8 + 8) * mb_w; const int info_size = (mb_w + 1) * sizeof(VP8MB); const int yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); const int coeffs_size = 384 * sizeof(*dec->coeffs_); const int cache_height = (16 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; const int cache_size = top_size * cache_height; const int alpha_size = dec->alpha_data_ ? (dec->pic_hdr_.width_ * dec->pic_hdr_.height_) : 0; const int needed = intra_pred_mode_size + top_size + info_size + yuv_size + coeffs_size + cache_size + alpha_size + ALIGN_MASK; uint8_t* mem; if (needed > dec->mem_size_) { free(dec->mem_); dec->mem_size_ = 0; dec->mem_ = (uint8_t*)malloc(needed); if (dec->mem_ == NULL) { return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, "no memory during frame initialization."); } dec->mem_size_ = needed; } mem = (uint8_t*)dec->mem_; dec->intra_t_ = (uint8_t*)mem; mem += intra_pred_mode_size; dec->y_t_ = (uint8_t*)mem; mem += 16 * mb_w; dec->u_t_ = (uint8_t*)mem; mem += 8 * mb_w; dec->v_t_ = (uint8_t*)mem; mem += 8 * mb_w; dec->mb_info_ = ((VP8MB*)mem) + 1; mem += info_size; mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); assert((yuv_size & ALIGN_MASK) == 0); dec->yuv_b_ = (uint8_t*)mem; mem += yuv_size; dec->coeffs_ = (int16_t*)mem; mem += coeffs_size; dec->cache_y_stride_ = 16 * mb_w; dec->cache_uv_stride_ = 8 * mb_w; { const int extra_rows = kFilterExtraRows[dec->filter_type_]; const int extra_y = extra_rows * dec->cache_y_stride_; const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; dec->cache_y_ = ((uint8_t*)mem) + extra_y; dec->cache_u_ = dec->cache_y_ + 16 * dec->cache_y_stride_ + extra_uv; dec->cache_v_ = dec->cache_u_ + 8 * dec->cache_uv_stride_ + extra_uv; } mem += cache_size; // alpha plane dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; mem += alpha_size; // note: left-info is initialized once for all. memset(dec->mb_info_ - 1, 0, (mb_w + 1) * sizeof(*dec->mb_info_)); // initialize top memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); // prepare 'io' io->width = dec->pic_hdr_.width_; io->height = dec->pic_hdr_.height_; io->mb_y = 0; io->y = dec->cache_y_; io->u = dec->cache_u_; io->v = dec->cache_v_; io->y_stride = dec->cache_y_stride_; io->uv_stride = dec->cache_uv_stride_; io->fancy_upscaling = 0; // default io->a = NULL; // Init critical function pointers and look-up tables. VP8DspInitTables(); VP8DspInit(); return 1; } //----------------------------------------------------------------------------- // Filtering static inline int hev_thresh_from_level(int level, int keyframe) { if (keyframe) { return (level >= 40) ? 2 : (level >= 15) ? 1 : 0; } else { return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0; } } static void DoFilter(VP8Decoder* const dec, int mb_x, int mb_y) { VP8MB* const mb = dec->mb_info_ + mb_x; uint8_t* const y_dst = dec->cache_y_ + mb_x * 16; const int y_bps = dec->cache_y_stride_; const int level = mb->f_level_; const int ilevel = mb->f_ilevel_; const int limit = 2 * level + ilevel; if (level == 0) { return; } if (dec->filter_type_ == 1) { // simple if (mb_x > 0) { VP8SimpleHFilter16(y_dst, y_bps, limit + 4); } if (mb->f_inner_) { VP8SimpleHFilter16i(y_dst, y_bps, limit); } if (mb_y > 0) { VP8SimpleVFilter16(y_dst, y_bps, limit + 4); } if (mb->f_inner_) { VP8SimpleVFilter16i(y_dst, y_bps, limit); } } else { // complex uint8_t* const u_dst = dec->cache_u_ + mb_x * 8; uint8_t* const v_dst = dec->cache_v_ + mb_x * 8; const int uv_bps = dec->cache_uv_stride_; const int hev_thresh = hev_thresh_from_level(level, dec->frm_hdr_.key_frame_); if (mb_x > 0) { VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); } if (mb->f_inner_) { VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); } if (mb_y > 0) { VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); } if (mb->f_inner_) { VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); } } } void VP8StoreBlock(VP8Decoder* const dec) { if (dec->filter_type_ > 0) { VP8MB* const info = dec->mb_info_ + dec->mb_x_; int level = dec->filter_levels_[dec->segment_]; if (dec->filter_hdr_.use_lf_delta_) { // TODO(skal): only CURRENT is handled for now. level += dec->filter_hdr_.ref_lf_delta_[0]; if (dec->is_i4x4_) { level += dec->filter_hdr_.mode_lf_delta_[0]; } } level = (level < 0) ? 0 : (level > 63) ? 63 : level; info->f_level_ = level; if (dec->filter_hdr_.sharpness_ > 0) { if (dec->filter_hdr_.sharpness_ > 4) { level >>= 2; } else { level >>= 1; } if (level > 9 - dec->filter_hdr_.sharpness_) { level = 9 - dec->filter_hdr_.sharpness_; } } info->f_ilevel_ = (level < 1) ? 1 : level; info->f_inner_ = (!info->skip_ || dec->is_i4x4_); } { // Transfer samples to row cache int y; uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16; uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8; uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8; for (y = 0; y < 16; ++y) { memcpy(ydst + y * dec->cache_y_stride_, dec->yuv_b_ + Y_OFF + y * BPS, 16); } for (y = 0; y < 8; ++y) { memcpy(udst + y * dec->cache_uv_stride_, dec->yuv_b_ + U_OFF + y * BPS, 8); memcpy(vdst + y * dec->cache_uv_stride_, dec->yuv_b_ + V_OFF + y * BPS, 8); } } } int VP8FinishRow(VP8Decoder* const dec, VP8Io* io) { const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; const int ysize = extra_y_rows * dec->cache_y_stride_; const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; const int first_row = (dec->mb_y_ == 0); const int last_row = (dec->mb_y_ >= dec->mb_h_ - 1); uint8_t* const ydst = dec->cache_y_ - ysize; uint8_t* const udst = dec->cache_u_ - uvsize; uint8_t* const vdst = dec->cache_v_ - uvsize; if (dec->filter_type_ > 0) { int mb_x; for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { DoFilter(dec, mb_x, dec->mb_y_); } } if (io->put) { int y_start = dec->mb_y_ * 16; int y_end = y_start + 16; if (!first_row) { y_start -= extra_y_rows; io->y = ydst; io->u = udst; io->v = vdst; } else { io->y = dec->cache_y_; io->u = dec->cache_u_; io->v = dec->cache_v_; } if (!last_row) { y_end -= extra_y_rows; } if (y_end > io->height) { y_end = io->height; } io->mb_y = y_start; io->mb_h = y_end - y_start; io->a = NULL; #ifdef WEBP_EXPERIMENTAL_FEATURES if (dec->alpha_data_) { io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); if (io->a == NULL) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "Could not decode alpha data."); } } #endif if (!io->put(io)) { return 0; } } // rotate top samples if (!last_row) { memcpy(ydst, ydst + 16 * dec->cache_y_stride_, ysize); memcpy(udst, udst + 8 * dec->cache_uv_stride_, uvsize); memcpy(vdst, vdst + 8 * dec->cache_uv_stride_, uvsize); } return 1; } //----------------------------------------------------------------------------- // Main reconstruction function. static const int kScan[16] = { 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS }; static inline int CheckMode(VP8Decoder* const dec, int mode) { if (mode == B_DC_PRED) { if (dec->mb_x_ == 0) { return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; } else { return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; } } return mode; } static inline void Copy32b(uint8_t* dst, uint8_t* src) { *(uint32_t*)dst = *(uint32_t*)src; } void VP8ReconstructBlock(VP8Decoder* const dec) { uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; uint8_t* const u_dst = dec->yuv_b_ + U_OFF; uint8_t* const v_dst = dec->yuv_b_ + V_OFF; // Rotate in the left samples from previously decoded block. We move four // pixels at a time for alignment reason, and because of in-loop filter. if (dec->mb_x_ > 0) { int j; for (j = -1; j < 16; ++j) { Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); } for (j = -1; j < 8; ++j) { Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); } } else { int j; for (j = 0; j < 16; ++j) { y_dst[j * BPS - 1] = 129; } for (j = 0; j < 8; ++j) { u_dst[j * BPS - 1] = 129; v_dst[j * BPS - 1] = 129; } // Init top-left sample on left column too if (dec->mb_y_ > 0) { y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; } } { // bring top samples into the cache uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16; uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8; uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8; const int16_t* coeffs = dec->coeffs_; int n; if (dec->mb_y_ > 0) { memcpy(y_dst - BPS, top_y, 16); memcpy(u_dst - BPS, top_u, 8); memcpy(v_dst - BPS, top_v, 8); } else if (dec->mb_x_ == 0) { // we only need to do this init once at block (0,0). // Afterward, it remains valid for the whole topmost row. memset(y_dst - BPS - 1, 127, 16 + 4 + 1); memset(u_dst - BPS - 1, 127, 8 + 1); memset(v_dst - BPS - 1, 127, 8 + 1); } // predict and add residuals if (dec->is_i4x4_) { // 4x4 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); if (dec->mb_y_ > 0) { if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border top_right[0] = top_y[15] * 0x01010101u; } else { memcpy(top_right, top_y + 16, sizeof(*top_right)); } } // replicate the top-right pixels below top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; // predict and add residues for all 4x4 blocks in turn. for (n = 0; n < 16; n++) { uint8_t* const dst = y_dst + kScan[n]; VP8PredLuma4[dec->imodes_[n]](dst); if (dec->non_zero_ac_ & (1 << n)) { VP8Transform(coeffs + n * 16, dst); } else if (dec->non_zero_ & (1 << n)) { // only DC is present VP8TransformDC(coeffs + n * 16, dst); } } } else { // 16x16 const int pred_func = CheckMode(dec, dec->imodes_[0]); VP8PredLuma16[pred_func](y_dst); if (dec->non_zero_) { for (n = 0; n < 16; n++) { uint8_t* const dst = y_dst + kScan[n]; if (dec->non_zero_ac_ & (1 << n)) { VP8Transform(coeffs + n * 16, dst); } else if (dec->non_zero_ & (1 << n)) { // only DC is present VP8TransformDC(coeffs + n * 16, dst); } } } } { // Chroma const int pred_func = CheckMode(dec, dec->uvmode_); VP8PredChroma8[pred_func](u_dst); VP8PredChroma8[pred_func](v_dst); if (dec->non_zero_ & 0x0f0000) { // chroma-U const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16; if (dec->non_zero_ac_ & 0x0f0000) { VP8TransformUV(u_coeffs, u_dst); } else { VP8TransformDCUV(u_coeffs, u_dst); } } if (dec->non_zero_ & 0xf00000) { // chroma-V const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16; if (dec->non_zero_ac_ & 0xf00000) { VP8TransformUV(v_coeffs, v_dst); } else { VP8TransformDCUV(v_coeffs, v_dst); } } // stash away top samples for next block if (dec->mb_y_ < dec->mb_h_ - 1) { memcpy(top_y, y_dst + 15 * BPS, 16); memcpy(top_u, u_dst + 7 * BPS, 8); memcpy(top_v, v_dst + 7 * BPS, 8); } } } } //----------------------------------------------------------------------------- #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif