// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // functions for sample output. // // Author: Skal (pascal.massimino@gmail.com) #include #include #include "../dec/vp8i.h" #include "./webpi.h" #include "../dsp/dsp.h" #include "../dsp/yuv.h" #include "../utils/utils.h" //------------------------------------------------------------------------------ // Main YUV<->RGB conversion functions static int EmitYUV(const VP8Io* const io, WebPDecParams* const p) { WebPDecBuffer* output = p->output; const WebPYUVABuffer* const buf = &output->u.YUVA; uint8_t* const y_dst = buf->y + io->mb_y * buf->y_stride; uint8_t* const u_dst = buf->u + (io->mb_y >> 1) * buf->u_stride; uint8_t* const v_dst = buf->v + (io->mb_y >> 1) * buf->v_stride; const int mb_w = io->mb_w; const int mb_h = io->mb_h; const int uv_w = (mb_w + 1) / 2; const int uv_h = (mb_h + 1) / 2; int j; for (j = 0; j < mb_h; ++j) { memcpy(y_dst + j * buf->y_stride, io->y + j * io->y_stride, mb_w); } for (j = 0; j < uv_h; ++j) { memcpy(u_dst + j * buf->u_stride, io->u + j * io->uv_stride, uv_w); memcpy(v_dst + j * buf->v_stride, io->v + j * io->uv_stride, uv_w); } return io->mb_h; } // Point-sampling U/V sampler. static int EmitSampledRGB(const VP8Io* const io, WebPDecParams* const p) { WebPDecBuffer* const output = p->output; WebPRGBABuffer* const buf = &output->u.RGBA; uint8_t* const dst = buf->rgba + io->mb_y * buf->stride; WebPSamplerProcessPlane(io->y, io->y_stride, io->u, io->v, io->uv_stride, dst, buf->stride, io->mb_w, io->mb_h, WebPSamplers[output->colorspace]); return io->mb_h; } //------------------------------------------------------------------------------ // Fancy upsampling #ifdef FANCY_UPSAMPLING static int EmitFancyRGB(const VP8Io* const io, WebPDecParams* const p) { int num_lines_out = io->mb_h; // a priori guess const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* dst = buf->rgba + io->mb_y * buf->stride; WebPUpsampleLinePairFunc upsample = WebPUpsamplers[p->output->colorspace]; const uint8_t* cur_y = io->y; const uint8_t* cur_u = io->u; const uint8_t* cur_v = io->v; const uint8_t* top_u = p->tmp_u; const uint8_t* top_v = p->tmp_v; int y = io->mb_y; const int y_end = io->mb_y + io->mb_h; const int mb_w = io->mb_w; const int uv_w = (mb_w + 1) / 2; if (y == 0) { // First line is special cased. We mirror the u/v samples at boundary. upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, mb_w); } else { // We can finish the left-over line from previous call. upsample(p->tmp_y, cur_y, top_u, top_v, cur_u, cur_v, dst - buf->stride, dst, mb_w); ++num_lines_out; } // Loop over each output pairs of row. for (; y + 2 < y_end; y += 2) { top_u = cur_u; top_v = cur_v; cur_u += io->uv_stride; cur_v += io->uv_stride; dst += 2 * buf->stride; cur_y += 2 * io->y_stride; upsample(cur_y - io->y_stride, cur_y, top_u, top_v, cur_u, cur_v, dst - buf->stride, dst, mb_w); } // move to last row cur_y += io->y_stride; if (io->crop_top + y_end < io->crop_bottom) { // Save the unfinished samples for next call (as we're not done yet). memcpy(p->tmp_y, cur_y, mb_w * sizeof(*p->tmp_y)); memcpy(p->tmp_u, cur_u, uv_w * sizeof(*p->tmp_u)); memcpy(p->tmp_v, cur_v, uv_w * sizeof(*p->tmp_v)); // The fancy upsampler leaves a row unfinished behind // (except for the very last row) num_lines_out--; } else { // Process the very last row of even-sized picture if (!(y_end & 1)) { upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst + buf->stride, NULL, mb_w); } } return num_lines_out; } #endif /* FANCY_UPSAMPLING */ //------------------------------------------------------------------------------ static int EmitAlphaYUV(const VP8Io* const io, WebPDecParams* const p, int expected_num_lines_out) { const uint8_t* alpha = io->a; const WebPYUVABuffer* const buf = &p->output->u.YUVA; const int mb_w = io->mb_w; const int mb_h = io->mb_h; uint8_t* dst = buf->a + io->mb_y * buf->a_stride; int j; (void)expected_num_lines_out; assert(expected_num_lines_out == mb_h); if (alpha != NULL) { for (j = 0; j < mb_h; ++j) { memcpy(dst, alpha, mb_w * sizeof(*dst)); alpha += io->width; dst += buf->a_stride; } } else if (buf->a != NULL) { // the user requested alpha, but there is none, set it to opaque. for (j = 0; j < mb_h; ++j) { memset(dst, 0xff, mb_w * sizeof(*dst)); dst += buf->a_stride; } } return 0; } static int GetAlphaSourceRow(const VP8Io* const io, const uint8_t** alpha, int* const num_rows) { int start_y = io->mb_y; *num_rows = io->mb_h; // Compensate for the 1-line delay of the fancy upscaler. // This is similar to EmitFancyRGB(). if (io->fancy_upsampling) { if (start_y == 0) { // We don't process the last row yet. It'll be done during the next call. --*num_rows; } else { --start_y; // Fortunately, *alpha data is persistent, so we can go back // one row and finish alpha blending, now that the fancy upscaler // completed the YUV->RGB interpolation. *alpha -= io->width; } if (io->crop_top + io->mb_y + io->mb_h == io->crop_bottom) { // If it's the very last call, we process all the remaining rows! *num_rows = io->crop_bottom - io->crop_top - start_y; } } return start_y; } static int EmitAlphaRGB(const VP8Io* const io, WebPDecParams* const p, int expected_num_lines_out) { const uint8_t* alpha = io->a; if (alpha != NULL) { const int mb_w = io->mb_w; const WEBP_CSP_MODE colorspace = p->output->colorspace; const int alpha_first = (colorspace == MODE_ARGB || colorspace == MODE_Argb); const WebPRGBABuffer* const buf = &p->output->u.RGBA; int num_rows; const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows); uint8_t* const base_rgba = buf->rgba + start_y * buf->stride; uint8_t* const dst = base_rgba + (alpha_first ? 0 : 3); const int has_alpha = WebPDispatchAlpha(alpha, io->width, mb_w, num_rows, dst, buf->stride); (void)expected_num_lines_out; assert(expected_num_lines_out == num_rows); // has_alpha is true if there's non-trivial alpha to premultiply with. if (has_alpha && WebPIsPremultipliedMode(colorspace)) { WebPApplyAlphaMultiply(base_rgba, alpha_first, mb_w, num_rows, buf->stride); } } return 0; } static int EmitAlphaRGBA4444(const VP8Io* const io, WebPDecParams* const p, int expected_num_lines_out) { const uint8_t* alpha = io->a; if (alpha != NULL) { const int mb_w = io->mb_w; const WEBP_CSP_MODE colorspace = p->output->colorspace; const WebPRGBABuffer* const buf = &p->output->u.RGBA; int num_rows; const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows); uint8_t* const base_rgba = buf->rgba + start_y * buf->stride; #ifdef WEBP_SWAP_16BIT_CSP uint8_t* alpha_dst = base_rgba; #else uint8_t* alpha_dst = base_rgba + 1; #endif uint32_t alpha_mask = 0x0f; int i, j; for (j = 0; j < num_rows; ++j) { for (i = 0; i < mb_w; ++i) { // Fill in the alpha value (converted to 4 bits). const uint32_t alpha_value = alpha[i] >> 4; alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value; alpha_mask &= alpha_value; } alpha += io->width; alpha_dst += buf->stride; } (void)expected_num_lines_out; assert(expected_num_lines_out == num_rows); if (alpha_mask != 0x0f && WebPIsPremultipliedMode(colorspace)) { WebPApplyAlphaMultiply4444(base_rgba, mb_w, num_rows, buf->stride); } } return 0; } //------------------------------------------------------------------------------ // YUV rescaling (no final RGB conversion needed) static int Rescale(const uint8_t* src, int src_stride, int new_lines, WebPRescaler* const wrk) { int num_lines_out = 0; while (new_lines > 0) { // import new contributions of source rows. const int lines_in = WebPRescalerImport(wrk, new_lines, src, src_stride); src += lines_in * src_stride; new_lines -= lines_in; num_lines_out += WebPRescalerExport(wrk); // emit output row(s) } return num_lines_out; } static int EmitRescaledYUV(const VP8Io* const io, WebPDecParams* const p) { const int mb_h = io->mb_h; const int uv_mb_h = (mb_h + 1) >> 1; WebPRescaler* const scaler = &p->scaler_y; int num_lines_out = 0; if (WebPIsAlphaMode(p->output->colorspace) && io->a != NULL) { // Before rescaling, we premultiply the luma directly into the io->y // internal buffer. This is OK since these samples are not used for // intra-prediction (the top samples are saved in cache_y_/u_/v_). // But we need to cast the const away, though. WebPMultRows((uint8_t*)io->y, io->y_stride, io->a, io->width, io->mb_w, mb_h, 0); } num_lines_out = Rescale(io->y, io->y_stride, mb_h, scaler); Rescale(io->u, io->uv_stride, uv_mb_h, &p->scaler_u); Rescale(io->v, io->uv_stride, uv_mb_h, &p->scaler_v); return num_lines_out; } static int EmitRescaledAlphaYUV(const VP8Io* const io, WebPDecParams* const p, int expected_num_lines_out) { if (io->a != NULL) { const WebPYUVABuffer* const buf = &p->output->u.YUVA; uint8_t* dst_y = buf->y + p->last_y * buf->y_stride; const uint8_t* src_a = buf->a + p->last_y * buf->a_stride; const int num_lines_out = Rescale(io->a, io->width, io->mb_h, &p->scaler_a); (void)expected_num_lines_out; assert(expected_num_lines_out == num_lines_out); if (num_lines_out > 0) { // unmultiply the Y WebPMultRows(dst_y, buf->y_stride, src_a, buf->a_stride, p->scaler_a.dst_width, num_lines_out, 1); } } return 0; } static int InitYUVRescaler(const VP8Io* const io, WebPDecParams* const p) { const int has_alpha = WebPIsAlphaMode(p->output->colorspace); const WebPYUVABuffer* const buf = &p->output->u.YUVA; const int out_width = io->scaled_width; const int out_height = io->scaled_height; const int uv_out_width = (out_width + 1) >> 1; const int uv_out_height = (out_height + 1) >> 1; const int uv_in_width = (io->mb_w + 1) >> 1; const int uv_in_height = (io->mb_h + 1) >> 1; const size_t work_size = 2 * out_width; // scratch memory for luma rescaler const size_t uv_work_size = 2 * uv_out_width; // and for each u/v ones size_t tmp_size; rescaler_t* work; tmp_size = (work_size + 2 * uv_work_size) * sizeof(*work); if (has_alpha) { tmp_size += work_size * sizeof(*work); } p->memory = WebPSafeMalloc(1ULL, tmp_size); if (p->memory == NULL) { return 0; // memory error } work = (rescaler_t*)p->memory; WebPRescalerInit(&p->scaler_y, io->mb_w, io->mb_h, buf->y, out_width, out_height, buf->y_stride, 1, work); WebPRescalerInit(&p->scaler_u, uv_in_width, uv_in_height, buf->u, uv_out_width, uv_out_height, buf->u_stride, 1, work + work_size); WebPRescalerInit(&p->scaler_v, uv_in_width, uv_in_height, buf->v, uv_out_width, uv_out_height, buf->v_stride, 1, work + work_size + uv_work_size); p->emit = EmitRescaledYUV; if (has_alpha) { WebPRescalerInit(&p->scaler_a, io->mb_w, io->mb_h, buf->a, out_width, out_height, buf->a_stride, 1, work + work_size + 2 * uv_work_size); p->emit_alpha = EmitRescaledAlphaYUV; WebPInitAlphaProcessing(); } return 1; } //------------------------------------------------------------------------------ // RGBA rescaling static int ExportRGB(WebPDecParams* const p, int y_pos) { const WebPYUV444Converter convert = WebPYUV444Converters[p->output->colorspace]; const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* dst = buf->rgba + y_pos * buf->stride; int num_lines_out = 0; // For RGB rescaling, because of the YUV420, current scan position // U/V can be +1/-1 line from the Y one. Hence the double test. while (WebPRescalerHasPendingOutput(&p->scaler_y) && WebPRescalerHasPendingOutput(&p->scaler_u)) { assert(y_pos + num_lines_out < p->output->height); assert(p->scaler_u.y_accum == p->scaler_v.y_accum); WebPRescalerExportRow(&p->scaler_y); WebPRescalerExportRow(&p->scaler_u); WebPRescalerExportRow(&p->scaler_v); convert(p->scaler_y.dst, p->scaler_u.dst, p->scaler_v.dst, dst, p->scaler_y.dst_width); dst += buf->stride; ++num_lines_out; } return num_lines_out; } static int EmitRescaledRGB(const VP8Io* const io, WebPDecParams* const p) { const int mb_h = io->mb_h; const int uv_mb_h = (mb_h + 1) >> 1; int j = 0, uv_j = 0; int num_lines_out = 0; while (j < mb_h) { const int y_lines_in = WebPRescalerImport(&p->scaler_y, mb_h - j, io->y + j * io->y_stride, io->y_stride); j += y_lines_in; if (WebPRescaleNeededLines(&p->scaler_u, uv_mb_h - uv_j)) { const int u_lines_in = WebPRescalerImport(&p->scaler_u, uv_mb_h - uv_j, io->u + uv_j * io->uv_stride, io->uv_stride); const int v_lines_in = WebPRescalerImport(&p->scaler_v, uv_mb_h - uv_j, io->v + uv_j * io->uv_stride, io->uv_stride); (void)v_lines_in; // remove a gcc warning assert(u_lines_in == v_lines_in); uv_j += u_lines_in; } num_lines_out += ExportRGB(p, p->last_y + num_lines_out); } return num_lines_out; } static int ExportAlpha(WebPDecParams* const p, int y_pos, int max_lines_out) { const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* const base_rgba = buf->rgba + y_pos * buf->stride; const WEBP_CSP_MODE colorspace = p->output->colorspace; const int alpha_first = (colorspace == MODE_ARGB || colorspace == MODE_Argb); uint8_t* dst = base_rgba + (alpha_first ? 0 : 3); int num_lines_out = 0; const int is_premult_alpha = WebPIsPremultipliedMode(colorspace); uint32_t non_opaque = 0; const int width = p->scaler_a.dst_width; while (WebPRescalerHasPendingOutput(&p->scaler_a) && num_lines_out < max_lines_out) { assert(y_pos + num_lines_out < p->output->height); WebPRescalerExportRow(&p->scaler_a); non_opaque |= WebPDispatchAlpha(p->scaler_a.dst, 0, width, 1, dst, 0); dst += buf->stride; ++num_lines_out; } if (is_premult_alpha && non_opaque) { WebPApplyAlphaMultiply(base_rgba, alpha_first, width, num_lines_out, buf->stride); } return num_lines_out; } static int ExportAlphaRGBA4444(WebPDecParams* const p, int y_pos, int max_lines_out) { const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* const base_rgba = buf->rgba + y_pos * buf->stride; #ifdef WEBP_SWAP_16BIT_CSP uint8_t* alpha_dst = base_rgba; #else uint8_t* alpha_dst = base_rgba + 1; #endif int num_lines_out = 0; const WEBP_CSP_MODE colorspace = p->output->colorspace; const int width = p->scaler_a.dst_width; const int is_premult_alpha = WebPIsPremultipliedMode(colorspace); uint32_t alpha_mask = 0x0f; while (WebPRescalerHasPendingOutput(&p->scaler_a) && num_lines_out < max_lines_out) { int i; assert(y_pos + num_lines_out < p->output->height); WebPRescalerExportRow(&p->scaler_a); for (i = 0; i < width; ++i) { // Fill in the alpha value (converted to 4 bits). const uint32_t alpha_value = p->scaler_a.dst[i] >> 4; alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value; alpha_mask &= alpha_value; } alpha_dst += buf->stride; ++num_lines_out; } if (is_premult_alpha && alpha_mask != 0x0f) { WebPApplyAlphaMultiply4444(base_rgba, width, num_lines_out, buf->stride); } return num_lines_out; } static int EmitRescaledAlphaRGB(const VP8Io* const io, WebPDecParams* const p, int expected_num_out_lines) { if (io->a != NULL) { WebPRescaler* const scaler = &p->scaler_a; int lines_left = expected_num_out_lines; const int y_end = p->last_y + lines_left; while (lines_left > 0) { const int row_offset = scaler->src_y - io->mb_y; WebPRescalerImport(scaler, io->mb_h + io->mb_y - scaler->src_y, io->a + row_offset * io->width, io->width); lines_left -= p->emit_alpha_row(p, y_end - lines_left, lines_left); } } return 0; } static int InitRGBRescaler(const VP8Io* const io, WebPDecParams* const p) { const int has_alpha = WebPIsAlphaMode(p->output->colorspace); const int out_width = io->scaled_width; const int out_height = io->scaled_height; const int uv_in_width = (io->mb_w + 1) >> 1; const int uv_in_height = (io->mb_h + 1) >> 1; const size_t work_size = 2 * out_width; // scratch memory for one rescaler rescaler_t* work; // rescalers work area uint8_t* tmp; // tmp storage for scaled YUV444 samples before RGB conversion size_t tmp_size1, tmp_size2, total_size; tmp_size1 = 3 * work_size; tmp_size2 = 3 * out_width; if (has_alpha) { tmp_size1 += work_size; tmp_size2 += out_width; } total_size = tmp_size1 * sizeof(*work) + tmp_size2 * sizeof(*tmp); p->memory = WebPSafeMalloc(1ULL, total_size); if (p->memory == NULL) { return 0; // memory error } work = (rescaler_t*)p->memory; tmp = (uint8_t*)(work + tmp_size1); WebPRescalerInit(&p->scaler_y, io->mb_w, io->mb_h, tmp + 0 * out_width, out_width, out_height, 0, 1, work + 0 * work_size); WebPRescalerInit(&p->scaler_u, uv_in_width, uv_in_height, tmp + 1 * out_width, out_width, out_height, 0, 1, work + 1 * work_size); WebPRescalerInit(&p->scaler_v, uv_in_width, uv_in_height, tmp + 2 * out_width, out_width, out_height, 0, 1, work + 2 * work_size); p->emit = EmitRescaledRGB; WebPInitYUV444Converters(); if (has_alpha) { WebPRescalerInit(&p->scaler_a, io->mb_w, io->mb_h, tmp + 3 * out_width, out_width, out_height, 0, 1, work + 3 * work_size); p->emit_alpha = EmitRescaledAlphaRGB; if (p->output->colorspace == MODE_RGBA_4444 || p->output->colorspace == MODE_rgbA_4444) { p->emit_alpha_row = ExportAlphaRGBA4444; } else { p->emit_alpha_row = ExportAlpha; } WebPInitAlphaProcessing(); } return 1; } //------------------------------------------------------------------------------ // Default custom functions static int CustomSetup(VP8Io* io) { WebPDecParams* const p = (WebPDecParams*)io->opaque; const WEBP_CSP_MODE colorspace = p->output->colorspace; const int is_rgb = WebPIsRGBMode(colorspace); const int is_alpha = WebPIsAlphaMode(colorspace); p->memory = NULL; p->emit = NULL; p->emit_alpha = NULL; p->emit_alpha_row = NULL; if (!WebPIoInitFromOptions(p->options, io, is_alpha ? MODE_YUV : MODE_YUVA)) { return 0; } if (is_alpha && WebPIsPremultipliedMode(colorspace)) { WebPInitUpsamplers(); } if (io->use_scaling) { const int ok = is_rgb ? InitRGBRescaler(io, p) : InitYUVRescaler(io, p); if (!ok) { return 0; // memory error } } else { if (is_rgb) { p->emit = EmitSampledRGB; // default if (io->fancy_upsampling) { #ifdef FANCY_UPSAMPLING const int uv_width = (io->mb_w + 1) >> 1; p->memory = WebPSafeMalloc(1ULL, (size_t)(io->mb_w + 2 * uv_width)); if (p->memory == NULL) { return 0; // memory error. } p->tmp_y = (uint8_t*)p->memory; p->tmp_u = p->tmp_y + io->mb_w; p->tmp_v = p->tmp_u + uv_width; p->emit = EmitFancyRGB; WebPInitUpsamplers(); #endif } else { WebPInitSamplers(); } } else { p->emit = EmitYUV; } if (is_alpha) { // need transparency output p->emit_alpha = (colorspace == MODE_RGBA_4444 || colorspace == MODE_rgbA_4444) ? EmitAlphaRGBA4444 : is_rgb ? EmitAlphaRGB : EmitAlphaYUV; if (is_rgb) { WebPInitAlphaProcessing(); } } } if (is_rgb) { VP8YUVInit(); } return 1; } //------------------------------------------------------------------------------ static int CustomPut(const VP8Io* io) { WebPDecParams* const p = (WebPDecParams*)io->opaque; const int mb_w = io->mb_w; const int mb_h = io->mb_h; int num_lines_out; assert(!(io->mb_y & 1)); if (mb_w <= 0 || mb_h <= 0) { return 0; } num_lines_out = p->emit(io, p); if (p->emit_alpha != NULL) { p->emit_alpha(io, p, num_lines_out); } p->last_y += num_lines_out; return 1; } //------------------------------------------------------------------------------ static void CustomTeardown(const VP8Io* io) { WebPDecParams* const p = (WebPDecParams*)io->opaque; WebPSafeFree(p->memory); p->memory = NULL; } //------------------------------------------------------------------------------ // Main entry point void WebPInitCustomIo(WebPDecParams* const params, VP8Io* const io) { io->put = CustomPut; io->setup = CustomSetup; io->teardown = CustomTeardown; io->opaque = params; } //------------------------------------------------------------------------------