// Copyright 2011 Google Inc. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // functions for sample output. // // Author: Skal (pascal.massimino@gmail.com) #include #include #include "vp8i.h" #include "webpi.h" #include "yuv.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif #define FANCY_UPSAMPLING // undefined to remove fancy upsampling support // mask to apply to WEBP_CSP_MODE, to know if there's alpha channel or not. #define MODE_ALPHA_MASK 1 //------------------------------------------------------------------------------ // Fancy upsampler #ifdef FANCY_UPSAMPLING // Given samples laid out in a square as: // [a b] // [c d] // we interpolate u/v as: // ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16 // ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16 // We process u and v together stashed into 32bit (16bit each). #define LOAD_UV(u,v) ((u) | ((v) << 16)) #define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \ static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \ const uint8_t* top_u, const uint8_t* top_v, \ const uint8_t* cur_u, const uint8_t* cur_v, \ uint8_t* top_dst, uint8_t* bottom_dst, int len) { \ int x; \ const int last_pixel_pair = (len - 1) >> 1; \ uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \ uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \ if (top_y) { \ const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \ FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \ } \ if (bottom_y) { \ const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \ FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \ } \ for (x = 1; x <= last_pixel_pair; ++x) { \ const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \ const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \ /* precompute invariant values associated with first and second diagonals*/\ const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \ const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \ const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \ if (top_y) { \ const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \ const uint32_t uv1 = (diag_03 + t_uv) >> 1; \ FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \ top_dst + (2 * x - 1) * XSTEP); \ FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \ top_dst + (2 * x - 0) * XSTEP); \ } \ if (bottom_y) { \ const uint32_t uv0 = (diag_03 + l_uv) >> 1; \ const uint32_t uv1 = (diag_12 + uv) >> 1; \ FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \ bottom_dst + (2 * x - 1) * XSTEP); \ FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \ bottom_dst + (2 * x + 0) * XSTEP); \ } \ tl_uv = t_uv; \ l_uv = uv; \ } \ if (!(len & 1)) { \ if (top_y) { \ const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \ FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \ top_dst + (len - 1) * XSTEP); \ } \ if (bottom_y) { \ const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \ FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \ bottom_dst + (len - 1) * XSTEP); \ } \ } \ } // All variants implemented. UPSAMPLE_FUNC(UpsampleRgbLinePair, VP8YuvToRgb, 3) UPSAMPLE_FUNC(UpsampleBgrLinePair, VP8YuvToBgr, 3) UPSAMPLE_FUNC(UpsampleRgbaLinePair, VP8YuvToRgba, 4) UPSAMPLE_FUNC(UpsampleBgraLinePair, VP8YuvToBgra, 4) // These two don't erase the alpha value UPSAMPLE_FUNC(UpsampleRgbKeepAlphaLinePair, VP8YuvToRgb, 4) UPSAMPLE_FUNC(UpsampleBgrKeepAlphaLinePair, VP8YuvToBgr, 4) #undef LOAD_UV #undef UPSAMPLE_FUNC // Fancy upsampling functions to convert YUV to RGB WebPUpsampleLinePairFunc WebPUpsamplers[MODE_BGRA + 1]; WebPUpsampleLinePairFunc WebPUpsamplersKeepAlpha[MODE_BGRA + 1]; static void InitUpsamplers(void) { WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair; WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair; WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair; WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair; WebPUpsamplersKeepAlpha[MODE_RGB] = UpsampleRgbLinePair; WebPUpsamplersKeepAlpha[MODE_RGBA] = UpsampleRgbKeepAlphaLinePair; WebPUpsamplersKeepAlpha[MODE_BGR] = UpsampleBgrLinePair; WebPUpsamplersKeepAlpha[MODE_BGRA] = UpsampleBgrKeepAlphaLinePair; // If defined, use CPUInfo() to overwrite some pointers with faster versions. if (VP8DecGetCPUInfo) { if (VP8DecGetCPUInfo(kSSE2)) { #if defined(__SSE2__) || defined(_MSC_VER) WebPInitUpsamplersSSE2(); #endif } } } #endif // FANCY_UPSAMPLING //------------------------------------------------------------------------------ // simple point-sampling #define SAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \ static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \ const uint8_t* u, const uint8_t* v, \ uint8_t* top_dst, uint8_t* bottom_dst, int len) { \ int i; \ for (i = 0; i < len - 1; i += 2) { \ FUNC(top_y[0], u[0], v[0], top_dst); \ FUNC(top_y[1], u[0], v[0], top_dst + XSTEP); \ FUNC(bottom_y[0], u[0], v[0], bottom_dst); \ FUNC(bottom_y[1], u[0], v[0], bottom_dst + XSTEP); \ top_y += 2; \ bottom_y += 2; \ u++; \ v++; \ top_dst += 2 * XSTEP; \ bottom_dst += 2 * XSTEP; \ } \ if (i == len - 1) { /* last one */ \ FUNC(top_y[0], u[0], v[0], top_dst); \ FUNC(bottom_y[0], u[0], v[0], bottom_dst); \ } \ } // All variants implemented. SAMPLE_FUNC(SampleRgbLinePair, VP8YuvToRgb, 3) SAMPLE_FUNC(SampleBgrLinePair, VP8YuvToBgr, 3) SAMPLE_FUNC(SampleRgbaLinePair, VP8YuvToRgba, 4) SAMPLE_FUNC(SampleBgraLinePair, VP8YuvToBgra, 4) #undef SAMPLE_FUNC // Main methods. typedef void (*SampleLinePairFunc)( const uint8_t* top_y, const uint8_t* bottom_y, const uint8_t* u, const uint8_t* v, uint8_t* top_dst, uint8_t* bottom_dst, int len); static const SampleLinePairFunc kSamplers[MODE_BGRA + 1] = { SampleRgbLinePair, // MODE_RGB SampleRgbaLinePair, // MODE_RGBA SampleBgrLinePair, // MODE_BGR SampleBgraLinePair // MODE_BGRA }; //------------------------------------------------------------------------------ // YUV444 converter #define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \ static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ uint8_t* dst, int len) { \ int i; \ for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * XSTEP]); \ } YUV444_FUNC(Yuv444ToRgb, VP8YuvToRgb, 3) YUV444_FUNC(Yuv444ToBgr, VP8YuvToBgr, 3) YUV444_FUNC(Yuv444ToRgba, VP8YuvToRgba, 4) YUV444_FUNC(Yuv444ToBgra, VP8YuvToBgra, 4) #undef YUV444_FUNC typedef void (*YUV444Func)(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len); static const YUV444Func kYUV444Converters[MODE_BGRA + 1] = { Yuv444ToRgb, // MODE_RGB Yuv444ToRgba, // MODE_RGBA Yuv444ToBgr, // MODE_BGR Yuv444ToBgra // MODE_BGRA }; //------------------------------------------------------------------------------ // Main YUV<->RGB conversion functions static int EmitYUV(const VP8Io* const io, WebPDecParams* const p) { WebPDecBuffer* output = p->output; const WebPYUVABuffer* const buf = &output->u.YUVA; uint8_t* const y_dst = buf->y + io->mb_y * buf->y_stride; uint8_t* const u_dst = buf->u + (io->mb_y >> 1) * buf->u_stride; uint8_t* const v_dst = buf->v + (io->mb_y >> 1) * buf->v_stride; const int mb_w = io->mb_w; const int mb_h = io->mb_h; const int uv_w = (mb_w + 1) / 2; int j; for (j = 0; j < mb_h; ++j) { memcpy(y_dst + j * buf->y_stride, io->y + j * io->y_stride, mb_w); } for (j = 0; j < (mb_h + 1) / 2; ++j) { memcpy(u_dst + j * buf->u_stride, io->u + j * io->uv_stride, uv_w); memcpy(v_dst + j * buf->v_stride, io->v + j * io->uv_stride, uv_w); } return io->mb_h; } // Point-sampling U/V sampler. static int EmitSampledRGB(const VP8Io* const io, WebPDecParams* const p) { WebPDecBuffer* output = p->output; const WebPRGBABuffer* const buf = &output->u.RGBA; uint8_t* dst = buf->rgba + io->mb_y * buf->stride; const uint8_t* y_src = io->y; const uint8_t* u_src = io->u; const uint8_t* v_src = io->v; const SampleLinePairFunc sample = kSamplers[output->colorspace]; const int mb_w = io->mb_w; const int last = io->mb_h - 1; int j; for (j = 0; j < last; j += 2) { sample(y_src, y_src + io->y_stride, u_src, v_src, dst, dst + buf->stride, mb_w); y_src += 2 * io->y_stride; u_src += io->uv_stride; v_src += io->uv_stride; dst += 2 * buf->stride; } if (j == last) { // Just do the last line twice sample(y_src, y_src, u_src, v_src, dst, dst, mb_w); } return io->mb_h; } //------------------------------------------------------------------------------ // YUV444 -> RGB conversion #if 0 // TODO(skal): this is for future rescaling. static int EmitRGB(const VP8Io* const io, WebPDecParams* const p) { WebPDecBuffer* output = p->output; const WebPRGBABuffer* const buf = &output->u.RGBA; uint8_t* dst = buf->rgba + io->mb_y * buf->stride; const uint8_t* y_src = io->y; const uint8_t* u_src = io->u; const uint8_t* v_src = io->v; const YUV444Func convert = kYUV444Converters[output->colorspace]; const int mb_w = io->mb_w; const int last = io->mb_h; int j; for (j = 0; j < last; ++j) { convert(y_src, u_src, v_src, dst, mb_w); y_src += io->y_stride; u_src += io->uv_stride; v_src += io->uv_stride; dst += buf->stride; } return io->mb_h; } #endif //------------------------------------------------------------------------------ // Fancy upsampling #ifdef FANCY_UPSAMPLING static int EmitFancyRGB(const VP8Io* const io, WebPDecParams* const p) { int num_lines_out = io->mb_h; // a priori guess const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* dst = buf->rgba + io->mb_y * buf->stride; const WebPUpsampleLinePairFunc upsample = io->a ? WebPUpsamplersKeepAlpha[p->output->colorspace] : WebPUpsamplers[p->output->colorspace]; const uint8_t* cur_y = io->y; const uint8_t* cur_u = io->u; const uint8_t* cur_v = io->v; const uint8_t* top_u = p->tmp_u; const uint8_t* top_v = p->tmp_v; int y = io->mb_y; int y_end = io->mb_y + io->mb_h; const int mb_w = io->mb_w; const int uv_w = (mb_w + 1) / 2; if (y == 0) { // First line is special cased. We mirror the u/v samples at boundary. upsample(NULL, cur_y, cur_u, cur_v, cur_u, cur_v, NULL, dst, mb_w); } else { // We can finish the left-over line from previous call. // Warning! Don't overwrite the alpha values (if any), as they // are not lagging one line behind but are already written. upsample(p->tmp_y, cur_y, top_u, top_v, cur_u, cur_v, dst - buf->stride, dst, mb_w); num_lines_out++; } // Loop over each output pairs of row. for (; y + 2 < y_end; y += 2) { top_u = cur_u; top_v = cur_v; cur_u += io->uv_stride; cur_v += io->uv_stride; dst += 2 * buf->stride; cur_y += 2 * io->y_stride; upsample(cur_y - io->y_stride, cur_y, top_u, top_v, cur_u, cur_v, dst - buf->stride, dst, mb_w); } // move to last row cur_y += io->y_stride; if (io->crop_top + y_end < io->crop_bottom) { // Save the unfinished samples for next call (as we're not done yet). memcpy(p->tmp_y, cur_y, mb_w * sizeof(*p->tmp_y)); memcpy(p->tmp_u, cur_u, uv_w * sizeof(*p->tmp_u)); memcpy(p->tmp_v, cur_v, uv_w * sizeof(*p->tmp_v)); // The fancy upsampler leaves a row unfinished behind // (except for the very last row) num_lines_out--; } else { // Process the very last row of even-sized picture if (!(y_end & 1)) { upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst + buf->stride, NULL, mb_w); } } return num_lines_out; } #endif /* FANCY_UPSAMPLING */ //------------------------------------------------------------------------------ #ifdef WEBP_EXPERIMENTAL_FEATURES static int EmitAlphaYUV(const VP8Io* const io, WebPDecParams* const p) { const int mb_w = io->mb_w; const int mb_h = io->mb_h; int j; const WebPYUVABuffer* const buf = &p->output->u.YUVA; uint8_t* dst = buf->a + io->mb_y * buf->a_stride; const uint8_t* alpha = io->a; if (alpha) { for (j = 0; j < mb_h; ++j) { memcpy(dst, alpha, mb_w * sizeof(*dst)); alpha += io->width; dst += buf->a_stride; } } return 0; } static int EmitAlphaRGB(const VP8Io* const io, WebPDecParams* const p) { const int mb_w = io->mb_w; const int mb_h = io->mb_h; int i, j; const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* dst = buf->rgba + io->mb_y * buf->stride; const uint8_t* alpha = io->a; if (alpha) { for (j = 0; j < mb_h; ++j) { for (i = 0; i < mb_w; ++i) { dst[4 * i + 3] = alpha[i]; } alpha += io->width; dst += buf->stride; } } return 0; } #endif /* WEBP_EXPERIMENTAL_FEATURES */ //------------------------------------------------------------------------------ // Simple picture rescaler // TODO(skal): start a common library for encoder and decoder, and factorize // this code in. #define RFIX 30 #define MULT(x,y) (((int64_t)(x) * (y) + (1 << (RFIX - 1))) >> RFIX) static void InitRescaler(WebPRescaler* const wrk, int src_width, int src_height, uint8_t* dst, int dst_width, int dst_height, int dst_stride, int x_add, int x_sub, int y_add, int y_sub, int32_t* work) { wrk->x_expand = (src_width < dst_width); wrk->src_width = src_width; wrk->src_height = src_height; wrk->dst_width = dst_width; wrk->dst_height = dst_height; wrk->dst = dst; wrk->dst_stride = dst_stride; // for 'x_expand', we use bilinear interpolation wrk->x_add = wrk->x_expand ? (x_sub - 1) : x_add - x_sub; wrk->x_sub = wrk->x_expand ? (x_add - 1) : x_sub; wrk->y_accum = y_add; wrk->y_add = y_add; wrk->y_sub = y_sub; wrk->fx_scale = (1 << RFIX) / x_sub; wrk->fy_scale = (1 << RFIX) / y_sub; wrk->fxy_scale = wrk->x_expand ? ((int64_t)dst_height << RFIX) / (x_sub * src_height) : ((int64_t)dst_height << RFIX) / (x_add * src_height); wrk->irow = work; wrk->frow = work + dst_width; } static inline void ImportRow(const uint8_t* const src, WebPRescaler* const wrk) { int x_in = 0; int x_out; int accum = 0; if (!wrk->x_expand) { int sum = 0; for (x_out = 0; x_out < wrk->dst_width; ++x_out) { accum += wrk->x_add; for (; accum > 0; accum -= wrk->x_sub) { sum += src[x_in++]; } { // Emit next horizontal pixel. const int32_t base = src[x_in++]; const int32_t frac = base * (-accum); wrk->frow[x_out] = (sum + base) * wrk->x_sub - frac; // fresh fractional start for next pixel sum = MULT(frac, wrk->fx_scale); } } } else { // simple bilinear interpolation int left = src[0], right = src[0]; for (x_out = 0; x_out < wrk->dst_width; ++x_out) { if (accum < 0) { left = right; right = src[++x_in]; accum += wrk->x_add; } wrk->frow[x_out] = right * wrk->x_add + (left - right) * accum; accum -= wrk->x_sub; } } // Accumulate the new row's contribution for (x_out = 0; x_out < wrk->dst_width; ++x_out) { wrk->irow[x_out] += wrk->frow[x_out]; } } static void ExportRow(WebPRescaler* const wrk) { int x_out; const int yscale = wrk->fy_scale * (-wrk->y_accum); assert(wrk->y_accum <= 0); for (x_out = 0; x_out < wrk->dst_width; ++x_out) { const int frac = MULT(wrk->frow[x_out], yscale); const int v = MULT(wrk->irow[x_out] - frac, wrk->fxy_scale); wrk->dst[x_out] = (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255; wrk->irow[x_out] = frac; // new fractional start } wrk->y_accum += wrk->y_add; wrk->dst += wrk->dst_stride; } #undef MULT #undef RFIX //------------------------------------------------------------------------------ // YUV rescaling (no final RGB conversion needed) static int Rescale(const uint8_t* src, int src_stride, int new_lines, WebPRescaler* const wrk) { int num_lines_out = 0; while (new_lines-- > 0) { // import new contribution of one source row. ImportRow(src, wrk); src += src_stride; wrk->y_accum -= wrk->y_sub; while (wrk->y_accum <= 0) { // emit output row(s) ExportRow(wrk); num_lines_out++; } } return num_lines_out; } static int EmitRescaledYUV(const VP8Io* const io, WebPDecParams* const p) { const int mb_h = io->mb_h; const int uv_mb_h = (mb_h + 1) >> 1; const int num_lines_out = Rescale(io->y, io->y_stride, mb_h, &p->scaler_y); Rescale(io->u, io->uv_stride, uv_mb_h, &p->scaler_u); Rescale(io->v, io->uv_stride, uv_mb_h, &p->scaler_v); return num_lines_out; } static int EmitRescaledAlphaYUV(const VP8Io* const io, WebPDecParams* const p) { if (io->a) { Rescale(io->a, io->width, io->mb_h, &p->scaler_a); } return 0; } static int InitYUVRescaler(const VP8Io* const io, WebPDecParams* const p) { const int has_alpha = (p->output->colorspace & MODE_ALPHA_MASK); const WebPYUVABuffer* const buf = &p->output->u.YUVA; const int out_width = io->scaled_width; const int out_height = io->scaled_height; const int uv_out_width = (out_width + 1) >> 1; const int uv_out_height = (out_height + 1) >> 1; const int uv_in_width = (io->mb_w + 1) >> 1; const int uv_in_height = (io->mb_h + 1) >> 1; const size_t work_size = 2 * out_width; // scratch memory for luma rescaler const size_t uv_work_size = 2 * uv_out_width; // and for each u/v ones size_t tmp_size; int32_t* work; tmp_size = work_size + 2 * uv_work_size; if (has_alpha) { tmp_size += work_size; } p->memory = calloc(1, tmp_size * sizeof(*work)); if (p->memory == NULL) { return 0; // memory error } work = (int32_t*)p->memory; InitRescaler(&p->scaler_y, io->mb_w, io->mb_h, buf->y, out_width, out_height, buf->y_stride, io->mb_w, out_width, io->mb_h, out_height, work); InitRescaler(&p->scaler_u, uv_in_width, uv_in_height, buf->u, uv_out_width, uv_out_height, buf->u_stride, uv_in_width, uv_out_width, uv_in_height, uv_out_height, work + work_size); InitRescaler(&p->scaler_v, uv_in_width, uv_in_height, buf->v, uv_out_width, uv_out_height, buf->v_stride, uv_in_width, uv_out_width, uv_in_height, uv_out_height, work + work_size + uv_work_size); p->emit = EmitRescaledYUV; if (has_alpha) { InitRescaler(&p->scaler_a, io->mb_w, io->mb_h, buf->a, out_width, out_height, buf->a_stride, io->mb_w, out_width, io->mb_h, out_height, work + work_size + 2 * uv_work_size); p->emit_alpha = EmitRescaledAlphaYUV; } return 1; } //------------------------------------------------------------------------------ // RGBA rescaling // import new contributions until one row is ready to be output, or all input // is consumed. static int Import(const uint8_t* src, int src_stride, int new_lines, WebPRescaler* const wrk) { int num_lines_in = 0; while (num_lines_in < new_lines && wrk->y_accum > 0) { ImportRow(src, wrk); src += src_stride; ++num_lines_in; wrk->y_accum -= wrk->y_sub; } return num_lines_in; } static int ExportRGB(WebPDecParams* const p, int y_pos) { const YUV444Func convert = kYUV444Converters[p->output->colorspace]; const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* dst = buf->rgba + (p->last_y + y_pos) * buf->stride; int num_lines_out = 0; // For RGB rescaling, because of the YUV420, current scan position // U/V can be +1/-1 line from the Y one. Hence the double test. while (p->scaler_y.y_accum <= 0 && p->scaler_u.y_accum <= 0) { assert(p->last_y + y_pos + num_lines_out < p->output->height); assert(p->scaler_u.y_accum == p->scaler_v.y_accum); ExportRow(&p->scaler_y); ExportRow(&p->scaler_u); ExportRow(&p->scaler_v); convert(p->scaler_y.dst, p->scaler_u.dst, p->scaler_v.dst, dst, p->scaler_y.dst_width); dst += buf->stride; num_lines_out++; } return num_lines_out; } static int EmitRescaledRGB(const VP8Io* const io, WebPDecParams* const p) { const int mb_h = io->mb_h; const int uv_mb_h = (mb_h + 1) >> 1; int j = 0, uv_j = 0; int num_lines_out = 0; while (j < mb_h) { const int y_lines_in = Import(io->y + j * io->y_stride, io->y_stride, mb_h - j, &p->scaler_y); const int u_lines_in = Import(io->u + uv_j * io->uv_stride, io->uv_stride, uv_mb_h - uv_j, &p->scaler_u); const int v_lines_in = Import(io->v + uv_j * io->uv_stride, io->uv_stride, uv_mb_h - uv_j, &p->scaler_v); (void)v_lines_in; // remove a gcc warning assert(u_lines_in == v_lines_in); j += y_lines_in; uv_j += u_lines_in; num_lines_out += ExportRGB(p, num_lines_out); } return num_lines_out; } static int ExportAlpha(WebPDecParams* const p, int y_pos) { const WebPRGBABuffer* const buf = &p->output->u.RGBA; uint8_t* dst = buf->rgba + (p->last_y + y_pos) * buf->stride; int num_lines_out = 0; while (p->scaler_a.y_accum <= 0) { int i; assert(p->last_y + y_pos + num_lines_out < p->output->height); ExportRow(&p->scaler_a); for (i = 0; i < p->scaler_a.dst_width; ++i) { dst[4 * i + 3] = p->scaler_a.dst[i]; } dst += buf->stride; num_lines_out++; } return num_lines_out; } static int EmitRescaledAlphaRGB(const VP8Io* const io, WebPDecParams* const p) { if (io->a) { int j = 0, pos = 0; while (j < io->mb_h) { j += Import(io->a + j * io->width, io->width, io->mb_h - j, &p->scaler_a); pos += ExportAlpha(p, pos); } } return 0; } static int InitRGBRescaler(const VP8Io* const io, WebPDecParams* const p) { const int has_alpha = (p->output->colorspace & MODE_ALPHA_MASK); const int out_width = io->scaled_width; const int out_height = io->scaled_height; const int uv_in_width = (io->mb_w + 1) >> 1; const int uv_in_height = (io->mb_h + 1) >> 1; const size_t work_size = 2 * out_width; // scratch memory for one rescaler int32_t* work; // rescalers work area uint8_t* tmp; // tmp storage for scaled YUV444 samples before RGB conversion size_t tmp_size1, tmp_size2; tmp_size1 = 3 * work_size; tmp_size2 = 3 * out_width; if (has_alpha) { tmp_size1 += work_size; tmp_size2 += out_width; } p->memory = calloc(1, tmp_size1 * sizeof(*work) + tmp_size2 * sizeof(*tmp)); if (p->memory == NULL) { return 0; // memory error } work = (int32_t*)p->memory; tmp = (uint8_t*)(work + tmp_size1); InitRescaler(&p->scaler_y, io->mb_w, io->mb_h, tmp + 0 * out_width, out_width, out_height, 0, io->mb_w, out_width, io->mb_h, out_height, work + 0 * work_size); InitRescaler(&p->scaler_u, uv_in_width, uv_in_height, tmp + 1 * out_width, out_width, out_height, 0, io->mb_w, 2 * out_width, io->mb_h, 2 * out_height, work + 1 * work_size); InitRescaler(&p->scaler_v, uv_in_width, uv_in_height, tmp + 2 * out_width, out_width, out_height, 0, io->mb_w, 2 * out_width, io->mb_h, 2 * out_height, work + 2 * work_size); p->emit = EmitRescaledRGB; if (has_alpha) { InitRescaler(&p->scaler_a, io->mb_w, io->mb_h, tmp + 3 * out_width, out_width, out_height, 0, io->mb_w, out_width, io->mb_h, out_height, work + 3 * work_size); p->emit_alpha = EmitRescaledAlphaRGB; } return 1; } //------------------------------------------------------------------------------ // Default custom functions // Setup crop_xxx fields, mb_w and mb_h static int InitFromOptions(const WebPDecoderOptions* const options, VP8Io* const io) { const int W = io->width; const int H = io->height; int x = 0, y = 0, w = W, h = H; // Cropping io->use_cropping = (options != NULL) && (options->use_cropping > 0); if (io->use_cropping) { w = options->crop_width; h = options->crop_height; // TODO(skal): take colorspace into account. Don't assume YUV420. x = options->crop_left & ~1; y = options->crop_top & ~1; if (x < 0 || y < 0 || w <= 0 || h <= 0 || x + w > W || y + h > H) { return 0; // out of frame boundary error } } io->crop_left = x; io->crop_top = y; io->crop_right = x + w; io->crop_bottom = y + h; io->mb_w = w; io->mb_h = h; // Scaling io->use_scaling = (options != NULL) && (options->use_scaling > 0); if (io->use_scaling) { if (options->scaled_width <= 0 || options->scaled_height <= 0) { return 0; } io->scaled_width = options->scaled_width; io->scaled_height = options->scaled_height; } // Filter io->bypass_filtering = options && options->bypass_filtering; // Fancy upsampler #ifdef FANCY_UPSAMPLING io->fancy_upsampling = (options == NULL) || (!options->no_fancy_upsampling); #endif if (io->use_scaling) { // disable filter (only for large downscaling ratio). io->bypass_filtering = (io->scaled_width < W * 3 / 4) && (io->scaled_height < H * 3 / 4); io->fancy_upsampling = 0; } return 1; } static int CustomSetup(VP8Io* io) { WebPDecParams* const p = (WebPDecParams*)io->opaque; const int is_rgb = (p->output->colorspace < MODE_YUV); p->memory = NULL; p->emit = NULL; p->emit_alpha = NULL; if (!InitFromOptions(p->options, io)) { return 0; } if (io->use_scaling) { const int ok = is_rgb ? InitRGBRescaler(io, p) : InitYUVRescaler(io, p); if (!ok) { return 0; // memory error } } else { if (is_rgb) { p->emit = EmitSampledRGB; // default #ifdef FANCY_UPSAMPLING if (io->fancy_upsampling) { const int uv_width = (io->mb_w + 1) >> 1; p->memory = malloc(io->mb_w + 2 * uv_width); if (p->memory == NULL) { return 0; // memory error. } p->tmp_y = (uint8_t*)p->memory; p->tmp_u = p->tmp_y + io->mb_w; p->tmp_v = p->tmp_u + uv_width; p->emit = EmitFancyRGB; InitUpsamplers(); } #endif } else { p->emit = EmitYUV; } #ifdef WEBP_EXPERIMENTAL_FEATURES if (p->output->colorspace & MODE_ALPHA_MASK) { // We need transparency output p->emit_alpha = is_rgb ? EmitAlphaRGB : EmitAlphaYUV; } #endif } if (is_rgb) { VP8YUVInit(); } return 1; } //------------------------------------------------------------------------------ static int CustomPut(const VP8Io* io) { WebPDecParams* p = (WebPDecParams*)io->opaque; const int mb_w = io->mb_w; const int mb_h = io->mb_h; int num_lines_out; assert(!(io->mb_y & 1)); if (mb_w <= 0 || mb_h <= 0) { return 0; } num_lines_out = p->emit(io, p); if (p->emit_alpha) { p->emit_alpha(io, p); } p->last_y += num_lines_out; return 1; } //------------------------------------------------------------------------------ static void CustomTeardown(const VP8Io* io) { WebPDecParams* const p = (WebPDecParams*)io->opaque; free(p->memory); p->memory = NULL; } //------------------------------------------------------------------------------ // Main entry point void WebPInitCustomIo(WebPDecParams* const params, VP8Io* const io) { io->put = CustomPut; io->setup = CustomSetup; io->teardown = CustomTeardown; io->opaque = params; } //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif