// Copyright 2011 Google Inc. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // frame coding and analysis // // Author: Skal (pascal.massimino@gmail.com) #include #include #include #include "./vp8enci.h" #include "./cost.h" #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif #define SEGMENT_VISU 0 #define DEBUG_SEARCH 0 // useful to track search convergence // On-the-fly info about the current set of residuals. Handy to avoid // passing zillions of params. typedef struct { int first; int last; const int16_t* coeffs; int coeff_type; ProbaArray* prob; StatsArray* stats; CostArray* cost; } VP8Residual; //------------------------------------------------------------------------------ // Tables for level coding const uint8_t VP8EncBands[16 + 1] = { 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0 // sentinel }; static const uint8_t kCat3[] = { 173, 148, 140 }; static const uint8_t kCat4[] = { 176, 155, 140, 135 }; static const uint8_t kCat5[] = { 180, 157, 141, 134, 130 }; static const uint8_t kCat6[] = { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 }; //------------------------------------------------------------------------------ // Reset the statistics about: number of skips, token proba, level cost,... static void ResetStats(VP8Encoder* const enc, int precalc_cost) { VP8Proba* const proba = &enc->proba_; if (precalc_cost) VP8CalculateLevelCosts(proba); proba->nb_skip_ = 0; } //------------------------------------------------------------------------------ // Skip decision probability static int CalcSkipProba(uint64_t nb, uint64_t total) { return (int)(total ? (total - nb) * 255 / total : 255); } // Returns the bit-cost for coding the skip probability. static int FinalizeSkipProba(VP8Encoder* const enc) { VP8Proba* const proba = &enc->proba_; const int nb_mbs = enc->mb_w_ * enc->mb_h_; const int nb_events = proba->nb_skip_; int size; proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs); proba->use_skip_proba_ = (proba->skip_proba_ < 250); size = 256; // 'use_skip_proba' bit if (proba->use_skip_proba_) { size += nb_events * VP8BitCost(1, proba->skip_proba_) + (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_); size += 8 * 256; // cost of signaling the skip_proba_ itself. } return size; } //------------------------------------------------------------------------------ // Recording of token probabilities. static void ResetTokenStats(VP8Encoder* const enc) { VP8Proba* const proba = &enc->proba_; memset(proba->stats_, 0, sizeof(proba->stats_)); } // Record proba context used static int Record(int bit, uint64_t* const stats) { stats[0] += bit; stats[1] += 1; return bit; } // We keep the table free variant around for reference, in case. #define USE_LEVEL_CODE_TABLE // Simulate block coding, but only record statistics. // Note: no need to record the fixed probas. static int RecordCoeffs(int ctx, VP8Residual* res) { int n = res->first; uint64_t (*s)[2] = res->stats[VP8EncBands[n]][ctx]; if (!Record(res->last >= 0, s[0])) { return 0; } while (1) { int v = res->coeffs[n++]; if (!Record(v != 0, s[1])) { s = res->stats[VP8EncBands[n]][0]; continue; } if (!Record(2u < (unsigned int)(v + 1), s[2])) { // v = -1 or 1 s = res->stats[VP8EncBands[n]][1]; } else { v = abs(v); #if !defined(USE_LEVEL_CODE_TABLE) if (!Record(v > 4, s[3])) { if (Record(v != 2, s[4])) Record(v == 4, s[5]); } else if (!Record(v > 10, s[6])) { Record(v > 6, s[7]); } else if (!Record((v >= 3 + (8 << 2)), s[8])) { Record((v >= 3 + (8 << 1)), s[9]); } else { Record((v >= 3 + (8 << 3)), s[10]); } #else if (v > MAX_VARIABLE_LEVEL) v = MAX_VARIABLE_LEVEL; { const int bits = VP8LevelCodes[v - 1][1]; int pattern = VP8LevelCodes[v - 1][0]; int i; for (i = 0; (pattern >>= 1) != 0; ++i) { const int mask = 2 << i; if (pattern & 1) Record(!!(bits & mask), s[3 + i]); } } #endif s = res->stats[VP8EncBands[n]][2]; } if (n == 16 || !Record(n <= res->last, s[0])) { return 1; } } } // Collect statistics and deduce probabilities for next coding pass. // Return the total bit-cost for coding the probability updates. static int CalcTokenProba(uint64_t nb, uint64_t total) { return (int)(nb ? ((total - nb) * 255 + total / 2) / total : 255); } static int FinalizeTokenProbas(VP8Encoder* const enc) { VP8Proba* const proba = &enc->proba_; int size = 0; int t, b, c, p; for (t = 0; t < NUM_TYPES; ++t) { for (b = 0; b < NUM_BANDS; ++b) { for (c = 0; c < NUM_CTX; ++c) { for (p = 0; p < NUM_PROBAS; ++p) { const uint64_t* const cnt = proba->stats_[t][b][c][p]; const int update_proba = VP8CoeffsUpdateProba[t][b][c][p]; const int old_p = VP8CoeffsProba0[t][b][c][p]; const int new_p = CalcTokenProba(cnt[0], cnt[1]); const uint64_t old_cost = VP8BranchCost(cnt[0], cnt[1], old_p) + VP8BitCost(0, update_proba); const uint64_t new_cost = VP8BranchCost(cnt[0], cnt[1], new_p) + VP8BitCost(1, update_proba) + 8 * 256; const int use_new_p = (old_cost > new_cost); size += VP8BitCost(use_new_p, update_proba); if (use_new_p) { // only use proba that seem meaningful enough. proba->coeffs_[t][b][c][p] = new_p; size += 8 * 256; } else { proba->coeffs_[t][b][c][p] = old_p; } } } } } return size; } //------------------------------------------------------------------------------ // helper functions for residuals struct VP8Residual. static void InitResidual(int first, int coeff_type, VP8Encoder* const enc, VP8Residual* const res) { res->coeff_type = coeff_type; res->prob = enc->proba_.coeffs_[coeff_type]; res->stats = enc->proba_.stats_[coeff_type]; res->cost = enc->proba_.level_cost_[coeff_type]; res->first = first; } static void SetResidualCoeffs(const int16_t* const coeffs, VP8Residual* const res) { int n; res->last = -1; for (n = 15; n >= res->first; --n) { if (coeffs[n]) { res->last = n; break; } } res->coeffs = coeffs; } //------------------------------------------------------------------------------ // Mode costs static int GetResidualCost(int ctx, const VP8Residual* const res) { int n = res->first; const uint8_t* p = res->prob[VP8EncBands[n]][ctx]; const uint16_t *t = res->cost[VP8EncBands[n]][ctx]; int cost; cost = VP8BitCost(res->last >= 0, p[0]); if (res->last < 0) { return cost; } while (n <= res->last) { const int v = res->coeffs[n++]; if (v == 0) { cost += VP8LevelCost(t, 0); p = res->prob[VP8EncBands[n]][0]; t = res->cost[VP8EncBands[n]][0]; continue; } else if (2u >= (unsigned int)(v + 1)) { // v = -1 or 1 cost += VP8LevelCost(t, 1); p = res->prob[VP8EncBands[n]][1]; t = res->cost[VP8EncBands[n]][1]; } else { cost += VP8LevelCost(t, abs(v)); p = res->prob[VP8EncBands[n]][2]; t = res->cost[VP8EncBands[n]][2]; } if (n < 16) { cost += VP8BitCost(n <= res->last, p[0]); } } return cost; } int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]) { const int x = (it->i4_ & 3), y = (it->i4_ >> 2); VP8Residual res; int R = 0; int ctx; InitResidual(0, 3, it->enc_, &res); ctx = it->top_nz_[x] + it->left_nz_[y]; SetResidualCoeffs(levels, &res); R += GetResidualCost(ctx, &res); return R; } int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd) { VP8Residual res; int x, y; int R = 0; VP8IteratorNzToBytes(it); // re-import the non-zero context // DC InitResidual(0, 1, it->enc_, &res); SetResidualCoeffs(rd->y_dc_levels, &res); R += GetResidualCost(it->top_nz_[8] + it->left_nz_[8], &res); // AC InitResidual(1, 0, it->enc_, &res); for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { const int ctx = it->top_nz_[x] + it->left_nz_[y]; SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); R += GetResidualCost(ctx, &res); it->top_nz_[x] = it->left_nz_[y] = (res.last >= 0); } } return R; } int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd) { VP8Residual res; int ch, x, y; int R = 0; VP8IteratorNzToBytes(it); // re-import the non-zero context InitResidual(0, 2, it->enc_, &res); for (ch = 0; ch <= 2; ch += 2) { for (y = 0; y < 2; ++y) { for (x = 0; x < 2; ++x) { const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); R += GetResidualCost(ctx, &res); it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = (res.last >= 0); } } } return R; } //------------------------------------------------------------------------------ // Coefficient coding static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) { int n = res->first; const uint8_t* p = res->prob[VP8EncBands[n]][ctx]; if (!VP8PutBit(bw, res->last >= 0, p[0])) { return 0; } while (n < 16) { const int c = res->coeffs[n++]; const int sign = c < 0; int v = sign ? -c : c; if (!VP8PutBit(bw, v != 0, p[1])) { p = res->prob[VP8EncBands[n]][0]; continue; } if (!VP8PutBit(bw, v > 1, p[2])) { p = res->prob[VP8EncBands[n]][1]; } else { if (!VP8PutBit(bw, v > 4, p[3])) { if (VP8PutBit(bw, v != 2, p[4])) VP8PutBit(bw, v == 4, p[5]); } else if (!VP8PutBit(bw, v > 10, p[6])) { if (!VP8PutBit(bw, v > 6, p[7])) { VP8PutBit(bw, v == 6, 159); } else { VP8PutBit(bw, v >= 9, 165); VP8PutBit(bw, !(v & 1), 145); } } else { int mask; const uint8_t* tab; if (v < 3 + (8 << 1)) { // kCat3 (3b) VP8PutBit(bw, 0, p[8]); VP8PutBit(bw, 0, p[9]); v -= 3 + (8 << 0); mask = 1 << 2; tab = kCat3; } else if (v < 3 + (8 << 2)) { // kCat4 (4b) VP8PutBit(bw, 0, p[8]); VP8PutBit(bw, 1, p[9]); v -= 3 + (8 << 1); mask = 1 << 3; tab = kCat4; } else if (v < 3 + (8 << 3)) { // kCat5 (5b) VP8PutBit(bw, 1, p[8]); VP8PutBit(bw, 0, p[10]); v -= 3 + (8 << 2); mask = 1 << 4; tab = kCat5; } else { // kCat6 (11b) VP8PutBit(bw, 1, p[8]); VP8PutBit(bw, 1, p[10]); v -= 3 + (8 << 3); mask = 1 << 10; tab = kCat6; } while (mask) { VP8PutBit(bw, !!(v & mask), *tab++); mask >>= 1; } } p = res->prob[VP8EncBands[n]][2]; } VP8PutBitUniform(bw, sign); if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) { return 1; // EOB } } return 1; } static void CodeResiduals(VP8BitWriter* const bw, VP8EncIterator* const it, const VP8ModeScore* const rd) { int x, y, ch; VP8Residual res; uint64_t pos1, pos2, pos3; const int i16 = (it->mb_->type_ == 1); const int segment = it->mb_->segment_; VP8IteratorNzToBytes(it); pos1 = VP8BitWriterPos(bw); if (i16) { InitResidual(0, 1, it->enc_, &res); SetResidualCoeffs(rd->y_dc_levels, &res); it->top_nz_[8] = it->left_nz_[8] = PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res); InitResidual(1, 0, it->enc_, &res); } else { InitResidual(0, 3, it->enc_, &res); } // luma-AC for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { const int ctx = it->top_nz_[x] + it->left_nz_[y]; SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res); } } pos2 = VP8BitWriterPos(bw); // U/V InitResidual(0, 2, it->enc_, &res); for (ch = 0; ch <= 2; ch += 2) { for (y = 0; y < 2; ++y) { for (x = 0; x < 2; ++x) { const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = PutCoeffs(bw, ctx, &res); } } } pos3 = VP8BitWriterPos(bw); it->luma_bits_ = pos2 - pos1; it->uv_bits_ = pos3 - pos2; it->bit_count_[segment][i16] += it->luma_bits_; it->bit_count_[segment][2] += it->uv_bits_; VP8IteratorBytesToNz(it); } // Same as CodeResiduals, but doesn't actually write anything. // Instead, it just records the event distribution. static void RecordResiduals(VP8EncIterator* const it, const VP8ModeScore* const rd) { int x, y, ch; VP8Residual res; VP8IteratorNzToBytes(it); if (it->mb_->type_ == 1) { // i16x16 InitResidual(0, 1, it->enc_, &res); SetResidualCoeffs(rd->y_dc_levels, &res); it->top_nz_[8] = it->left_nz_[8] = RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res); InitResidual(1, 0, it->enc_, &res); } else { InitResidual(0, 3, it->enc_, &res); } // luma-AC for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { const int ctx = it->top_nz_[x] + it->left_nz_[y]; SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); it->top_nz_[x] = it->left_nz_[y] = RecordCoeffs(ctx, &res); } } // U/V InitResidual(0, 2, it->enc_, &res); for (ch = 0; ch <= 2; ch += 2) { for (y = 0; y < 2; ++y) { for (x = 0; x < 2; ++x) { const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = RecordCoeffs(ctx, &res); } } } VP8IteratorBytesToNz(it); } //------------------------------------------------------------------------------ // ExtraInfo map / Debug function #if SEGMENT_VISU static void SetBlock(uint8_t* p, int value, int size) { int y; for (y = 0; y < size; ++y) { memset(p, value, size); p += BPS; } } #endif static void ResetSSE(VP8Encoder* const enc) { memset(enc->sse_, 0, sizeof(enc->sse_)); enc->sse_count_ = 0; } static void StoreSSE(const VP8EncIterator* const it) { VP8Encoder* const enc = it->enc_; const uint8_t* const in = it->yuv_in_; const uint8_t* const out = it->yuv_out_; // Note: not totally accurate at boundary. And doesn't include in-loop filter. enc->sse_[0] += VP8SSE16x16(in + Y_OFF, out + Y_OFF); enc->sse_[1] += VP8SSE8x8(in + U_OFF, out + U_OFF); enc->sse_[2] += VP8SSE8x8(in + V_OFF, out + V_OFF); enc->sse_count_ += 16 * 16; } static void StoreSideInfo(const VP8EncIterator* const it) { VP8Encoder* const enc = it->enc_; const VP8MBInfo* const mb = it->mb_; WebPPicture* const pic = enc->pic_; if (pic->stats) { StoreSSE(it); enc->block_count_[0] += (mb->type_ == 0); enc->block_count_[1] += (mb->type_ == 1); enc->block_count_[2] += (mb->skip_ != 0); } if (pic->extra_info) { uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_]; switch(pic->extra_info_type) { case 1: *info = mb->type_; break; case 2: *info = mb->segment_; break; case 3: *info = enc->dqm_[mb->segment_].quant_; break; case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break; case 5: *info = mb->uv_mode_; break; case 6: { const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3); *info = (b > 255) ? 255 : b; break; } default: *info = 0; break; }; } #if SEGMENT_VISU // visualize segments and prediction modes SetBlock(it->yuv_out_ + Y_OFF, mb->segment_ * 64, 16); SetBlock(it->yuv_out_ + U_OFF, it->preds_[0] * 64, 8); SetBlock(it->yuv_out_ + V_OFF, mb->uv_mode_ * 64, 8); #endif } //------------------------------------------------------------------------------ // Main loops // // VP8EncLoop(): does the final bitstream coding. static void ResetAfterSkip(VP8EncIterator* const it) { if (it->mb_->type_ == 1) { *it->nz_ = 0; // reset all predictors it->left_nz_[8] = 0; } else { *it->nz_ &= (1 << 24); // preserve the dc_nz bit } } int VP8EncLoop(VP8Encoder* const enc) { int i, s, p; int ok = 1; VP8EncIterator it; VP8ModeScore info; const int dont_use_skip = !enc->proba_.use_skip_proba_; const int rd_opt = enc->rd_opt_level_; const int kAverageBytesPerMB = 5; // TODO: have a kTable[quality/10] const int bytes_per_parts = enc->mb_w_ * enc->mb_h_ * kAverageBytesPerMB / enc->num_parts_; // Initialize the bit-writers for (p = 0; p < enc->num_parts_; ++p) { VP8BitWriterInit(enc->parts_ + p, bytes_per_parts); } ResetStats(enc, rd_opt != 0); ResetSSE(enc); VP8IteratorInit(enc, &it); VP8InitFilter(&it); do { VP8IteratorImport(&it); // Warning! order is important: first call VP8Decimate() and // *then* decide how to code the skip decision if there's one. if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) { CodeResiduals(it.bw_, &it, &info); } else { // reset predictors after a skip ResetAfterSkip(&it); } #ifdef WEBP_EXPERIMENTAL_FEATURES if (enc->use_layer_) { VP8EncCodeLayerBlock(&it); } #endif StoreSideInfo(&it); VP8StoreFilterStats(&it); VP8IteratorExport(&it); ok = VP8IteratorProgress(&it, 20); } while (ok && VP8IteratorNext(&it, it.yuv_out_)); if (ok) { VP8AdjustFilterStrength(&it); } // Finalize the partitions for (p = 0; p < enc->num_parts_; ++p) { VP8BitWriterFinish(enc->parts_ + p); ok &= !enc->parts_[p].error_; } // and byte counters if (enc->pic_->stats) { for (i = 0; i <= 2; ++i) { for (s = 0; s < NUM_MB_SEGMENTS; ++s) { enc->residual_bytes_[i][s] = (int)((it.bit_count_[s][i] + 7) >> 3); } } } if (!ok) { // need to do some memory cleanup VP8EncFreeBitWriters(enc); } return ok; } //------------------------------------------------------------------------------ // VP8StatLoop(): only collect statistics (number of skips, token usage, ...) // This is used for deciding optimal probabilities. It also // modifies the quantizer value if some target (size, PNSR) // was specified. #define kHeaderSizeEstimate (15 + 20 + 10) // TODO: fix better static int OneStatPass(VP8Encoder* const enc, float q, int rd_opt, int nb_mbs, float* const PSNR, int percent_delta) { VP8EncIterator it; uint64_t size = 0; uint64_t distortion = 0; const uint64_t pixel_count = nb_mbs * 384; // Make sure the quality parameter is inside valid bounds if (q < 0.) { q = 0; } else if (q > 100.) { q = 100; } VP8SetSegmentParams(enc, q); // setup segment quantizations and filters ResetStats(enc, rd_opt != 0); ResetTokenStats(enc); VP8IteratorInit(enc, &it); do { VP8ModeScore info; VP8IteratorImport(&it); if (VP8Decimate(&it, &info, rd_opt)) { // Just record the number of skips and act like skip_proba is not used. enc->proba_.nb_skip_++; } RecordResiduals(&it, &info); size += info.R; distortion += info.D; if (percent_delta && !VP8IteratorProgress(&it, percent_delta)) return 0; } while (VP8IteratorNext(&it, it.yuv_out_) && --nb_mbs > 0); size += FinalizeSkipProba(enc); size += FinalizeTokenProbas(enc); size += enc->segment_hdr_.size_; size = ((size + 1024) >> 11) + kHeaderSizeEstimate; if (PSNR) { *PSNR = (float)(10.* log10(255. * 255. * pixel_count / distortion)); } return (int)size; } // successive refinement increments. static const int dqs[] = { 20, 15, 10, 8, 6, 4, 2, 1, 0 }; int VP8StatLoop(VP8Encoder* const enc) { const int do_search = (enc->config_->target_size > 0 || enc->config_->target_PSNR > 0); const int fast_probe = (enc->method_ < 2 && !do_search); float q = enc->config_->quality; const int max_passes = enc->config_->pass; const int task_percent = 20; const int percent_per_pass = (task_percent + max_passes / 2) / max_passes; const int final_percent = enc->percent_ + task_percent; int pass; int nb_mbs; // Fast mode: quick analysis pass over few mbs. Better than nothing. nb_mbs = enc->mb_w_ * enc->mb_h_; if (fast_probe && nb_mbs > 100) nb_mbs = 100; // No target size: just do several pass without changing 'q' if (!do_search) { for (pass = 0; pass < max_passes; ++pass) { const int rd_opt = (enc->method_ > 2); if (!OneStatPass(enc, q, rd_opt, nb_mbs, NULL, percent_per_pass)) { return 0; } } } else { // binary search for a size close to target for (pass = 0; pass < max_passes && (dqs[pass] > 0); ++pass) { const int rd_opt = 1; float PSNR; int criterion; const int size = OneStatPass(enc, q, rd_opt, nb_mbs, &PSNR, percent_per_pass); #if DEBUG_SEARCH printf("#%d size=%d PSNR=%.2f q=%.2f\n", pass, size, PSNR, q); #endif if (!size) return 0; if (enc->config_->target_PSNR > 0) { criterion = (PSNR < enc->config_->target_PSNR); } else { criterion = (size < enc->config_->target_size); } // dichotomize if (criterion) { q += dqs[pass]; } else { q -= dqs[pass]; } } } return WebPReportProgress(enc, final_percent); } //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif