// Copyright 2010 Google Inc. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // main entry for the decoder // // Author: Skal (pascal.massimino@gmail.com) #include #include "vp8i.h" //----------------------------------------------------------------------------- // VP8Decoder static void SetOk(VP8Decoder* const dec) { dec->status_ = VP8_STATUS_OK; dec->error_msg_ = "OK"; } void VP8InitIo(VP8Io* const io) { if (io) { memset(io, 0, sizeof(*io)); } } VP8Decoder* VP8New() { VP8Decoder* dec = (VP8Decoder*)calloc(1, sizeof(VP8Decoder)); if (dec) { SetOk(dec); dec->ready_ = 0; } return dec; } VP8StatusCode VP8Status(VP8Decoder* const dec) { if (!dec) return VP8_STATUS_INVALID_PARAM; return dec->status_; } const char* VP8StatusMessage(VP8Decoder* const dec) { if (!dec) return "no object"; if (!dec->error_msg_) return "OK"; return dec->error_msg_; } void VP8Delete(VP8Decoder* const dec) { if (dec) { VP8Clear(dec); free(dec); } } int VP8SetError(VP8Decoder* const dec, VP8StatusCode error, const char * const msg) { dec->status_ = error; dec->error_msg_ = msg; dec->ready_ = 0; return 0; } //----------------------------------------------------------------------------- // Header parsing static void ResetSegmentHeader(VP8SegmentHeader* const hdr) { assert(hdr); hdr->use_segment_ = 0; hdr->update_map_ = 0; hdr->absolute_delta_ = 1; memset(hdr->quantizer_, 0, sizeof(hdr->quantizer_)); memset(hdr->filter_strength_, 0, sizeof(hdr->filter_strength_)); } // Paragraph 9.3 static int ParseSegmentHeader(VP8BitReader* br, VP8SegmentHeader* hdr, VP8Proba* proba) { assert(br); assert(hdr); hdr->use_segment_ = VP8Get(br); if (hdr->use_segment_) { hdr->update_map_ = VP8Get(br); if (VP8Get(br)) { // update data int s; hdr->absolute_delta_ = VP8Get(br); for (s = 0; s < NUM_MB_SEGMENTS; ++s) { hdr->quantizer_[s] = VP8Get(br) ? VP8GetSignedValue(br, 7) : 0; } for (s = 0; s < NUM_MB_SEGMENTS; ++s) { hdr->filter_strength_[s] = VP8Get(br) ? VP8GetSignedValue(br, 6) : 0; } } if (hdr->update_map_) { int s; for (s = 0; s < MB_FEATURE_TREE_PROBS; ++s) { proba->segments_[s] = VP8Get(br) ? VP8GetValue(br, 8) : 255u; } } } else { hdr->update_map_ = 0; } return 1; } // Paragraph 9.5 static int ParsePartitions(VP8Decoder* const dec, const uint8_t* buf, uint32_t size) { VP8BitReader* const br = &dec->br_; const uint8_t* sz = buf; int last_part; uint32_t offset; int p; dec->num_parts_ = 1 << VP8GetValue(br, 2); last_part = dec->num_parts_ - 1; offset = last_part * 3; if (size <= offset) { return 0; } for (p = 0; p < last_part; ++p) { const uint32_t psize = sz[0] | (sz[1] << 8) | (sz[2] << 16); if (offset + psize > size) { return 0; } VP8Init(dec->parts_ + p, buf + offset, psize); offset += psize; sz += 3; } size -= offset; VP8Init(dec->parts_ + last_part, buf + offset, size); return 1; } // Paragraph 9.4 static int ParseFilterHeader(VP8BitReader* br, VP8Decoder* const dec) { VP8FilterHeader* const hdr = &dec->filter_hdr_; hdr->simple_ = VP8Get(br); hdr->level_ = VP8GetValue(br, 6); hdr->sharpness_ = VP8GetValue(br, 3); hdr->use_lf_delta_ = VP8Get(br); if (hdr->use_lf_delta_) { if (VP8Get(br)) { // update lf-delta? int i; for (i = 0; i < NUM_REF_LF_DELTAS; ++i) { if (VP8Get(br)) { hdr->ref_lf_delta_[i] = VP8GetSignedValue(br, 6); } } for (i = 0; i < NUM_MODE_LF_DELTAS; ++i) { if (VP8Get(br)) { hdr->mode_lf_delta_[i] = VP8GetSignedValue(br, 6); } } } } dec->filter_type_ = (hdr->level_ == 0) ? 0 : hdr->simple_ ? 1 : 2; if (dec->filter_type_ > 0) { // precompute filter levels per segment if (dec->segment_hdr_.use_segment_) { int s; for (s = 0; s < NUM_MB_SEGMENTS; ++s) { int strength = dec->segment_hdr_.filter_strength_[s]; if (!dec->segment_hdr_.absolute_delta_) { strength += hdr->level_; } dec->filter_levels_[s] = strength; } } else { dec->filter_levels_[0] = hdr->level_; } } return 1; } static inline uint32_t get_le32(const uint8_t* const data) { return data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24); } // Topmost call int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) { uint8_t* buf; uint32_t buf_size; VP8FrameHeader* frm_hdr; VP8PictureHeader* pic_hdr; VP8BitReader* br; if (dec == NULL) { return 0; } SetOk(dec); if (io == NULL) { return VP8SetError(dec, VP8_STATUS_INVALID_PARAM, "null VP8Io passed to VP8GetHeaders()"); } buf = (uint8_t *)io->data; buf_size = io->data_size; if (buf == NULL || buf_size <= 4) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "Not enough data to parse frame header"); } // Skip over valid RIFF headers if (!memcmp(buf, "RIFF", 4)) { uint32_t riff_size; uint32_t chunk_size; if (buf_size < 20 + 4) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "RIFF: Truncated header."); } if (memcmp(buf + 8, "WEBP", 4)) { // wrong image file signature return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "RIFF: WEBP signature not found."); } riff_size = get_le32(buf + 4); if (memcmp(buf + 12, "VP8 ", 4)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "RIFF: Invalid compression format."); } chunk_size = get_le32(buf + 16); if ((chunk_size > riff_size + 8) || (chunk_size & 1)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "RIFF: Inconsistent size information."); } buf += 20; buf_size -= 20; } // Paragraph 9.1 { const uint32_t bits = buf[0] | (buf[1] << 8) | (buf[2] << 16); frm_hdr = &dec->frm_hdr_; frm_hdr->key_frame_ = !(bits & 1); frm_hdr->profile_ = (bits >> 1) & 7; frm_hdr->show_ = (bits >> 4) & 1; frm_hdr->partition_length_ = (bits >> 5); buf += 3; buf_size -= 3; } pic_hdr = &dec->pic_hdr_; if (frm_hdr->key_frame_) { // Paragraph 9.2 if (buf_size < 7) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "cannot parse picture header"); } if (buf[0] != 0x9d || buf[1] != 0x01 || buf[2] != 0x2a) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "Bad code word"); } pic_hdr->width_ = ((buf[4] << 8) | buf[3]) & 0x3fff; pic_hdr->xscale_ = buf[4] >> 6; // ratio: 1, 5/4 5/3 or 2 pic_hdr->height_ = ((buf[6] << 8) | buf[5]) & 0x3fff; pic_hdr->yscale_ = buf[6] >> 6; buf += 7; buf_size -= 7; dec->mb_w_ = (pic_hdr->width_ + 15) >> 4; dec->mb_h_ = (pic_hdr->height_ + 15) >> 4; io->width = pic_hdr->width_; io->height = pic_hdr->height_; VP8ResetProba(&dec->proba_); ResetSegmentHeader(&dec->segment_hdr_); dec->segment_ = 0; // default for intra } br = &dec->br_; VP8Init(br, buf, buf_size); if (frm_hdr->partition_length_ > buf_size) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "bad partition length"); } buf += frm_hdr->partition_length_; buf_size -= frm_hdr->partition_length_; if (frm_hdr->key_frame_) { pic_hdr->colorspace_ = VP8Get(br); pic_hdr->clamp_type_ = VP8Get(br); } if (!ParseSegmentHeader(br, &dec->segment_hdr_, &dec->proba_)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "cannot parse segment header"); } // Filter specs if (!ParseFilterHeader(br, dec)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "cannot parse filter header"); } if (!ParsePartitions(dec, buf, buf_size)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "cannot parse partitions"); } // quantizer change VP8ParseQuant(dec); // Frame buffer marking if (!frm_hdr->key_frame_) { // Paragraph 9.7 #ifndef ONLY_KEYFRAME_CODE dec->buffer_flags_ = VP8Get(br) << 0; // update golden dec->buffer_flags_ |= VP8Get(br) << 1; // update alt ref if (!(dec->buffer_flags_ & 1)) { dec->buffer_flags_ |= VP8GetValue(br, 2) << 2; } if (!(dec->buffer_flags_ & 2)) { dec->buffer_flags_ |= VP8GetValue(br, 2) << 4; } dec->buffer_flags_ |= VP8Get(br) << 6; // sign bias golden dec->buffer_flags_ |= VP8Get(br) << 7; // sign bias alt ref #else return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE, "Not a key frame."); #endif } else { dec->buffer_flags_ = 0x003 | 0x100; } // Paragraph 9.8 #ifndef ONLY_KEYFRAME_CODE dec->update_proba_ = VP8Get(br); if (!dec->update_proba_) { // save for later restore dec->proba_saved_ = dec->proba_; } dec->buffer_flags_ &= 1 << 8; dec->buffer_flags_ |= (frm_hdr->key_frame_ || VP8Get(br)) << 8; // refresh last frame #else VP8Get(br); // just ignore the value of update_proba_ #endif VP8ParseProba(br, dec); // sanitized state dec->ready_ = 1; return 1; } //----------------------------------------------------------------------------- // Residual decoding (Paragraph 13.2 / 13.3) static const uint8_t kBands[16 + 1] = { 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0 // extra entry as sentinel }; static const uint8_t kCat3[] = { 173, 148, 140, 0 }; static const uint8_t kCat4[] = { 176, 155, 140, 135, 0 }; static const uint8_t kCat5[] = { 180, 157, 141, 134, 130, 0 }; static const uint8_t kCat6[] = { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0 }; static const uint8_t * const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 }; static const uint8_t kZigzag[16] = { 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 }; typedef const uint8_t (*ProbaArray)[NUM_CTX][NUM_PROBAS]; // for const-casting // Returns 1 if there's non-zero coeffs, 0 otherwise static int GetCoeffs(VP8BitReader* const br, ProbaArray prob, int ctx, const uint16_t dq[2], int n, int16_t* out) { const uint8_t* p = prob[kBands[n]][ctx]; if (!VP8GetBit(br, p[0])) { // first EOB is more a 'CBP' bit. return 0; } while (1) { ++n; if (!VP8GetBit(br, p[1])) { p = prob[kBands[n]][0]; } else { // non zero coeff int v, j; if (!VP8GetBit(br, p[2])) { p = prob[kBands[n]][1]; v = 1; } else { if (!VP8GetBit(br, p[3])) { if (!VP8GetBit(br, p[4])) { v = 2; } else { v = 3 + VP8GetBit(br, p[5]); } } else { if (!VP8GetBit(br, p[6])) { if (!VP8GetBit(br, p[7])) { v = 5 + VP8GetBit(br, 159); } else { v = 7 + 2 * VP8GetBit(br, 165) + VP8GetBit(br, 145); } } else { const uint8_t* tab; const int bit1 = VP8GetBit(br, p[8]); const int bit0 = VP8GetBit(br, p[9 + bit1]); const int cat = 2 * bit1 + bit0; v = 0; for (tab = kCat3456[cat]; *tab; ++tab) { v += v + VP8GetBit(br, *tab); } v += 3 + (8 << cat); } } p = prob[kBands[n]][2]; } j = kZigzag[n - 1]; out[j] = VP8GetSigned(br, v) * dq[j > 0]; if (n == 16 || !VP8GetBit(br, p[0])) { // EOB return 1; } } if (n == 16) { return 1; } } return 0; } // Table to unpack four bits into four bytes static const uint8_t kUnpackTab[16][4] = { {0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {1, 1, 0, 0}, {0, 0, 1, 0}, {1, 0, 1, 0}, {0, 1, 1, 0}, {1, 1, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 1}, {0, 1, 0, 1}, {1, 1, 0, 1}, {0, 0, 1, 1}, {1, 0, 1, 1}, {0, 1, 1, 1}, {1, 1, 1, 1} }; // Macro to pack four LSB of four bytes into four bits. #if defined(__PPC__) || defined(_M_PPC) || defined(_ARCH_PPC) || \ defined(__BIG_ENDIAN__) #define PACK_CST 0x08040201U #else #define PACK_CST 0x01020408U #endif #define PACK(X, S) ((((*(uint32_t*)(X)) * PACK_CST) & 0xff000000) >> (S)) static int ParseResiduals(VP8Decoder* const dec, VP8MB* const mb, VP8BitReader* const token_br) { int out_t_nz, out_l_nz, first; ProbaArray ac_prob; const VP8QuantMatrix* q = &dec->dqm_[dec->segment_]; int16_t* dst = dec->coeffs_; VP8MB* const left_mb = dec->mb_info_ - 1; uint8_t nz_ac[4], nz_dc[4]; uint32_t non_zero_ac = 0; uint32_t non_zero_dc = 0; uint8_t tnz[4], lnz[4]; int x, y, ch; memset(dst, 0, 384 * sizeof(*dst)); if (!dec->is_i4x4_) { // parse DC int16_t dc[16] = { 0 }; const int ctx = mb->dc_nz_ + left_mb->dc_nz_; mb->dc_nz_ = left_mb->dc_nz_ = GetCoeffs(token_br, (ProbaArray)dec->proba_.coeffs_[1], ctx, q->y2_mat_, 0, dc); first = 1; ac_prob = (ProbaArray)dec->proba_.coeffs_[0]; VP8TransformWHT(dc, dst); } else { first = 0; ac_prob = (ProbaArray)dec->proba_.coeffs_[3]; } memcpy(tnz, kUnpackTab[mb->nz_ & 0xf], sizeof(tnz)); memcpy(lnz, kUnpackTab[left_mb->nz_ & 0xf], sizeof(lnz)); for (y = 0; y < 4; ++y) { int l = lnz[y]; for (x = 0; x < 4; ++x) { const int ctx = l + tnz[x]; l = GetCoeffs(token_br, ac_prob, ctx, q->y1_mat_, first, dst); nz_dc[x] = (dst[0] != 0); nz_ac[x] = tnz[x] = l; dst += 16; } lnz[y] = l; non_zero_dc |= PACK(nz_dc, 24 - y * 4); non_zero_ac |= PACK(nz_ac, 24 - y * 4); } out_t_nz = PACK(tnz, 24); out_l_nz = PACK(lnz, 24); memcpy(tnz, kUnpackTab[mb->nz_ >> 4], sizeof(tnz)); memcpy(lnz, kUnpackTab[left_mb->nz_ >> 4], sizeof(lnz)); for (ch = 0; ch < 4; ch += 2) { for (y = 0; y < 2; ++y) { int l = lnz[ch + y]; for (x = 0; x < 2; ++x) { const int ctx = l + tnz[ch + x]; l = GetCoeffs(token_br, (ProbaArray)dec->proba_.coeffs_[2], ctx, q->uv_mat_, 0, dst); nz_dc[y * 2 + x] = (dst[0] != 0); nz_ac[y * 2 + x] = tnz[ch + x] = l; dst += 16; } lnz[ch + y] = l; } non_zero_dc |= PACK(nz_dc, 8 - ch * 2); non_zero_ac |= PACK(nz_ac, 8 - ch * 2); } out_t_nz |= PACK(tnz, 20); out_l_nz |= PACK(lnz, 20); mb->nz_ = out_t_nz; left_mb->nz_ = out_l_nz; dec->non_zero_ac_ = non_zero_ac; dec->non_zero_ = non_zero_ac | non_zero_dc; mb->skip_ = !dec->non_zero_; return 1; } #undef PACK //----------------------------------------------------------------------------- // Main loop static int ParseFrame(VP8Decoder* const dec, VP8Io* io) { VP8BitReader* const br = &dec->br_; VP8BitReader* token_br; for (dec->mb_y_ = 0; dec->mb_y_ < dec->mb_h_; ++dec->mb_y_) { VP8MB* const left = dec->mb_info_ - 1; memset(dec->intra_l_, B_DC_PRED, sizeof(dec->intra_l_)); left->nz_ = 0; left->dc_nz_ = 0; token_br = &dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)]; for (dec->mb_x_ = 0; dec->mb_x_ < dec->mb_w_; dec->mb_x_++) { VP8MB* const info = dec->mb_info_ + dec->mb_x_; // Note: we don't save segment map (yet), as we don't expect // to decode more than 1 keyframe. if (dec->segment_hdr_.update_map_) { // Hardcoded tree parsing dec->segment_ = !VP8GetBit(br, dec->proba_.segments_[0]) ? VP8GetBit(br, dec->proba_.segments_[1]) : 2 + VP8GetBit(br, dec->proba_.segments_[2]); } info->skip_ = dec->use_skip_proba_ ? VP8GetBit(br, dec->skip_p_) : 0; VP8ParseIntraMode(br, dec); if (!info->skip_) { if (!ParseResiduals(dec, info, token_br)) { return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, "Residual parsing failed."); } } else { left->nz_ = info->nz_ = 0; if (!dec->is_i4x4_) { left->dc_nz_ = info->dc_nz_ = 0; } dec->non_zero_ = 0; dec->non_zero_ac_ = 0; } VP8ReconstructBlock(dec); // Store data and save block's filtering params VP8StoreBlock(dec); } if (!VP8FinishRow(dec, io)) { return VP8SetError(dec, VP8_STATUS_USER_ABORT, "Output aborted."); } if (dec->br_.eof_ || token_br->eof_) { return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA, "Premature end-of-file encountered."); } } // Finish #ifndef ONLY_KEYFRAME_CODE if (!dec->update_proba_) { dec->proba_ = dec->proba_saved_; } #endif return 1; } // Main entry point int VP8Decode(VP8Decoder* const dec, VP8Io* const io) { if (dec == NULL) { return 0; } if (io == NULL) { return VP8SetError(dec, VP8_STATUS_INVALID_PARAM, "NULL VP8Io parameter in VP8Decode()."); } if (!dec->ready_) { if (!VP8GetHeaders(dec, io)) { return 0; } } assert(dec->ready_); // will allocate memory and prepare everything. if (!VP8InitFrame(dec, io)) { VP8Clear(dec); return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, "Allocation failed"); } if (io->setup && !io->setup(io)) { VP8Clear(dec); return VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); } // Main decoding loop { const int ret = ParseFrame(dec, io); if (io->teardown) { io->teardown(io); } if (!ret) { VP8Clear(dec); return 0; } } dec->ready_ = 0; return 1; } void VP8Clear(VP8Decoder* const dec) { if (dec == NULL) { return; } if (dec->mem_) { free(dec->mem_); } dec->mem_ = NULL; dec->mem_size_ = 0; memset(&dec->br_, 0, sizeof(dec->br_)); dec->ready_ = 0; }