// Copyright 2012 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Image transforms and color space conversion methods for lossless decoder. // // Authors: Vikas Arora (vikaas.arora@gmail.com) // jyrki@google.com (Jyrki Alakuijala) // Urvang Joshi (urvang@google.com) #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif #include #include #include "./lossless.h" #include "../dec/vp8li.h" #ifdef USE_LOSSLESS_ENCODER #include "../enc/histogram.h" // A lookup table for small values of log(int) to be used in entropy // computation. // // ", ".join(["%.16ff" % x for x in [0.0]+[log(x) for x in range(1, 256)]]) static const float kLogTable[] = { 0.0000000000000000f, 0.0000000000000000f, 0.6931471805599453f, 1.0986122886681098f, 1.3862943611198906f, 1.6094379124341003f, 1.7917594692280550f, 1.9459101490553132f, 2.0794415416798357f, 2.1972245773362196f, 2.3025850929940459f, 2.3978952727983707f, 2.4849066497880004f, 2.5649493574615367f, 2.6390573296152584f, 2.7080502011022101f, 2.7725887222397811f, 2.8332133440562162f, 2.8903717578961645f, 2.9444389791664403f, 2.9957322735539909f, 3.0445224377234230f, 3.0910424533583161f, 3.1354942159291497f, 3.1780538303479458f, 3.2188758248682006f, 3.2580965380214821f, 3.2958368660043291f, 3.3322045101752038f, 3.3672958299864741f, 3.4011973816621555f, 3.4339872044851463f, 3.4657359027997265f, 3.4965075614664802f, 3.5263605246161616f, 3.5553480614894135f, 3.5835189384561099f, 3.6109179126442243f, 3.6375861597263857f, 3.6635616461296463f, 3.6888794541139363f, 3.7135720667043080f, 3.7376696182833684f, 3.7612001156935624f, 3.7841896339182610f, 3.8066624897703196f, 3.8286413964890951f, 3.8501476017100584f, 3.8712010109078911f, 3.8918202981106265f, 3.9120230054281460f, 3.9318256327243257f, 3.9512437185814275f, 3.9702919135521220f, 3.9889840465642745f, 4.0073331852324712f, 4.0253516907351496f, 4.0430512678345503f, 4.0604430105464191f, 4.0775374439057197f, 4.0943445622221004f, 4.1108738641733114f, 4.1271343850450917f, 4.1431347263915326f, 4.1588830833596715f, 4.1743872698956368f, 4.1896547420264252f, 4.2046926193909657f, 4.2195077051761070f, 4.2341065045972597f, 4.2484952420493594f, 4.2626798770413155f, 4.2766661190160553f, 4.2904594411483910f, 4.3040650932041702f, 4.3174881135363101f, 4.3307333402863311f, 4.3438054218536841f, 4.3567088266895917f, 4.3694478524670215f, 4.3820266346738812f, 4.3944491546724391f, 4.4067192472642533f, 4.4188406077965983f, 4.4308167988433134f, 4.4426512564903167f, 4.4543472962535073f, 4.4659081186545837f, 4.4773368144782069f, 4.4886363697321396f, 4.4998096703302650f, 4.5108595065168497f, 4.5217885770490405f, 4.5325994931532563f, 4.5432947822700038f, 4.5538768916005408f, 4.5643481914678361f, 4.5747109785033828f, 4.5849674786705723f, 4.5951198501345898f, 4.6051701859880918f, 4.6151205168412597f, 4.6249728132842707f, 4.6347289882296359f, 4.6443908991413725f, 4.6539603501575231f, 4.6634390941120669f, 4.6728288344619058f, 4.6821312271242199f, 4.6913478822291435f, 4.7004803657924166f, 4.7095302013123339f, 4.7184988712950942f, 4.7273878187123408f, 4.7361984483944957f, 4.7449321283632502f, 4.7535901911063645f, 4.7621739347977563f, 4.7706846244656651f, 4.7791234931115296f, 4.7874917427820458f, 4.7957905455967413f, 4.8040210447332568f, 4.8121843553724171f, 4.8202815656050371f, 4.8283137373023015f, 4.8362819069514780f, 4.8441870864585912f, 4.8520302639196169f, 4.8598124043616719f, 4.8675344504555822f, 4.8751973232011512f, 4.8828019225863706f, 4.8903491282217537f, 4.8978397999509111f, 4.9052747784384296f, 4.9126548857360524f, 4.9199809258281251f, 4.9272536851572051f, 4.9344739331306915f, 4.9416424226093039f, 4.9487598903781684f, 4.9558270576012609f, 4.9628446302599070f, 4.9698132995760007f, 4.9767337424205742f, 4.9836066217083363f, 4.9904325867787360f, 4.9972122737641147f, 5.0039463059454592f, 5.0106352940962555f, 5.0172798368149243f, 5.0238805208462765f, 5.0304379213924353f, 5.0369526024136295f, 5.0434251169192468f, 5.0498560072495371f, 5.0562458053483077f, 5.0625950330269669f, 5.0689042022202315f, 5.0751738152338266f, 5.0814043649844631f, 5.0875963352323836f, 5.0937502008067623f, 5.0998664278241987f, 5.1059454739005803f, 5.1119877883565437f, 5.1179938124167554f, 5.1239639794032588f, 5.1298987149230735f, 5.1357984370502621f, 5.1416635565026603f, 5.1474944768134527f, 5.1532915944977793f, 5.1590552992145291f, 5.1647859739235145f, 5.1704839950381514f, 5.1761497325738288f, 5.1817835502920850f, 5.1873858058407549f, 5.1929568508902104f, 5.1984970312658261f, 5.2040066870767951f, 5.2094861528414214f, 5.2149357576089859f, 5.2203558250783244f, 5.2257466737132017f, 5.2311086168545868f, 5.2364419628299492f, 5.2417470150596426f, 5.2470240721604862f, 5.2522734280466299f, 5.2574953720277815f, 5.2626901889048856f, 5.2678581590633282f, 5.2729995585637468f, 5.2781146592305168f, 5.2832037287379885f, 5.2882670306945352f, 5.2933048247244923f, 5.2983173665480363f, 5.3033049080590757f, 5.3082676974012051f, 5.3132059790417872f, 5.3181199938442161f, 5.3230099791384085f, 5.3278761687895813f, 5.3327187932653688f, 5.3375380797013179f, 5.3423342519648109f, 5.3471075307174685f, 5.3518581334760666f, 5.3565862746720123f, 5.3612921657094255f, 5.3659760150218512f, 5.3706380281276624f, 5.3752784076841653f, 5.3798973535404597f, 5.3844950627890888f, 5.3890717298165010f, 5.3936275463523620f, 5.3981627015177525f, 5.4026773818722793f, 5.4071717714601188f, 5.4116460518550396f, 5.4161004022044201f, 5.4205349992722862f, 5.4249500174814029f, 5.4293456289544411f, 5.4337220035542400f, 5.4380793089231956f, 5.4424177105217932f, 5.4467373716663099f, 5.4510384535657002f, 5.4553211153577017f, 5.4595855141441589f, 5.4638318050256105f, 5.4680601411351315f, 5.4722706736714750f, 5.4764635519315110f, 5.4806389233419912f, 5.4847969334906548f, 5.4889377261566867f, 5.4930614433405482f, 5.4971682252932021f, 5.5012582105447274f, 5.5053315359323625f, 5.5093883366279774f, 5.5134287461649825f, 5.5174528964647074f, 5.5214609178622460f, 5.5254529391317835f, 5.5294290875114234f, 5.5333894887275203f, 5.5373342670185366f, 5.5412635451584258f }; double VP8LFastLog(int v) { if (v < (int)(sizeof(kLogTable) / sizeof(kLogTable[0]))) { return kLogTable[v]; } return log(v); } #endif //------------------------------------------------------------------------------ // Image transforms. // In-place sum of each component with mod 256. static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) { const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u); const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu); *a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); } static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1); } static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { return Average2(Average2(a0, a2), a1); } static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) { return Average2(Average2(a0, a1), Average2(a2, a3)); } static WEBP_INLINE uint32_t Clip255(uint32_t a) { if (a < NUM_LITERAL_CODES) { return a; } // return 0, when a is a negative integer. // return 255, when a is positive. return ~a >> 24; } static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { return Clip255(a + b - c); } static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, uint32_t c2) { const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, (c1 >> 16) & 0xff, (c2 >> 16) & 0xff); const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, (c1 >> 8) & 0xff, (c2 >> 8) & 0xff); const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); return (a << 24) | (r << 16) | (g << 8) | b; } static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { return Clip255(a + (a - b) / 2); } static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, uint32_t c2) { const uint32_t ave = Average2(c0, c1); const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); return (a << 24) | (r << 16) | (g << 8) | b; } static WEBP_INLINE int Sub3(int a, int b, int c) { const int pa = b - c; const int pb = a - c; return abs(pa) - abs(pb); } static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { const int pa_minus_pb = Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); return (pa_minus_pb <= 0) ? a : b; } //------------------------------------------------------------------------------ // Predictors static uint32_t Predictor0(uint32_t left, const uint32_t* const top) { (void)top; (void)left; return ARGB_BLACK; } static uint32_t Predictor1(uint32_t left, const uint32_t* const top) { (void)top; return left; } static uint32_t Predictor2(uint32_t left, const uint32_t* const top) { (void)left; return top[0]; } static uint32_t Predictor3(uint32_t left, const uint32_t* const top) { (void)left; return top[1]; } static uint32_t Predictor4(uint32_t left, const uint32_t* const top) { (void)left; return top[-1]; } static uint32_t Predictor5(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average3(left, top[0], top[1]); return pred; } static uint32_t Predictor6(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(left, top[-1]); return pred; } static uint32_t Predictor7(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(left, top[0]); return pred; } static uint32_t Predictor8(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(top[-1], top[0]); (void)left; return pred; } static uint32_t Predictor9(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(top[0], top[1]); (void)left; return pred; } static uint32_t Predictor10(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average4(left, top[-1], top[0], top[1]); return pred; } static uint32_t Predictor11(uint32_t left, const uint32_t* const top) { const uint32_t pred = Select(top[0], left, top[-1]); return pred; } static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); return pred; } static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); return pred; } typedef uint32_t (*PredictorFunc)(uint32_t left, const uint32_t* const top); static const PredictorFunc kPredictors[16] = { Predictor0, Predictor1, Predictor2, Predictor3, Predictor4, Predictor5, Predictor6, Predictor7, Predictor8, Predictor9, Predictor10, Predictor11, Predictor12, Predictor13, Predictor0, Predictor0 // <- padding security sentinels }; #ifdef USE_LOSSLESS_ENCODER // TODO(vikasa): Replace 256 etc with defines. static double PredictionCostSpatial(const int* counts, int weight_0, double exp_val) { const int significant_symbols = 16; const double exp_decay_factor = 0.6; double bits = weight_0 * counts[0]; int i; for (i = 1; i < significant_symbols; ++i) { bits += exp_val * (counts[i] + counts[256 - i]); exp_val *= exp_decay_factor; } return -0.1 * bits; } // Compute the Shanon's entropy: Sum(p*log2(p)) static double ShannonEntropy(const int* const array, int n) { int i; double retval = 0; int sum = 0; for (i = 0; i < n; ++i) { if (array[i] != 0) { sum += array[i]; retval += array[i] * VP8LFastLog(array[i]); } } retval -= sum * VP8LFastLog(sum); retval *= -1.4426950408889634; // 1.0 / -FastLog(2); return retval; } static double PredictionCostSpatialHistogram(int accumulated[4][256], int tile[4][256]) { int i; int k; int combo[256]; double retval = 0; for (i = 0; i < 4; ++i) { const double exp_val = 0.94; retval += PredictionCostSpatial(&tile[i][0], 1, exp_val); retval += ShannonEntropy(&tile[i][0], 256); for (k = 0; k < 256; ++k) { combo[k] = accumulated[i][k] + tile[i][k]; } retval += ShannonEntropy(&combo[0], 256); } return retval; } static int GetBestPredictorForTile(int width, int height, int tile_x, int tile_y, int bits, int accumulated[4][256], const uint32_t* const argb) { const int kNumPredModes = 14; const int col_start = tile_x << bits; const int row_start = tile_y << bits; const int tile_size = 1 << bits; const int ymax = (tile_size <= height - row_start) ? tile_size : height - row_start; const int xmax = (tile_size <= width - col_start) ? tile_size : width - col_start; int histo[4][256]; double best_diff = 1e99; int best_mode = 0; int mode; for (mode = 0; mode < kNumPredModes; ++mode) { const PredictorFunc pred_func = kPredictors[mode]; double cur_diff; int y; memset(&histo[0][0], 0, sizeof(histo)); for (y = 0; y < ymax; ++y) { int x; const int row = row_start + y; for (x = 0; x < xmax; ++x) { const int col = col_start + x; const int pix = row * width + col; uint32_t predict; uint32_t predict_diff; if (row == 0) { predict = (col == 0) ? ARGB_BLACK : argb[pix - 1]; // Left. } else if (col == 0) { predict = argb[pix - width]; // Top. } else { predict = pred_func(argb[pix - 1], argb + pix - width); } predict_diff = VP8LSubPixels(argb[pix], predict); ++histo[0][predict_diff >> 24]; ++histo[1][((predict_diff >> 16) & 0xff)]; ++histo[2][((predict_diff >> 8) & 0xff)]; ++histo[3][(predict_diff & 0xff)]; } } cur_diff = PredictionCostSpatialHistogram(accumulated, histo); if (cur_diff < best_diff) { best_diff = cur_diff; best_mode = mode; } } return best_mode; } static void CopyTileWithPrediction(int width, int height, int tile_x, int tile_y, int bits, int mode, uint32_t* const argb_scratch, uint32_t* const argb) { const int col_start = tile_x << bits; const int row_start = tile_y << bits; const int tile_size = 1 << bits; const int ymax = (tile_size <= height - row_start) ? tile_size : height - row_start; const int xmax = (tile_size <= width - col_start) ? tile_size : width - col_start; const PredictorFunc pred_func = kPredictors[mode]; int y; // Apply prediction filter to tile and save it in argb_scratch. for (y = 0; y < ymax; ++y) { const int row = row_start + y; int x; for (x = 0; x < xmax; ++x) { const int col = col_start + x; const int pix = row * width + col; const int idx = y * tile_size + x; uint32_t predict; if (row == 0) { predict = (col == 0) ? ARGB_BLACK : argb[pix - 1]; // Left. } else if (col == 0) { predict = argb[pix - width]; // Top. } else { predict = pred_func(argb[pix - 1], argb + pix - width); } argb_scratch[idx] = VP8LSubPixels(argb[pix], predict); } } // Copy back predicted tile to argb. // Note: There may be a possibility of reducing argb_scratch size by // integrating this loop with the previous one, but that would make the code // much more complicated. for (y = 0; y < ymax; ++y) { const int row = row_start + y; const uint32_t* const src = argb_scratch + y * tile_size; uint32_t* const dst = argb + row * width + col_start; memcpy(dst, src, xmax * sizeof(*dst)); } } void VP8LResidualImage(int width, int height, int bits, uint32_t* const argb, uint32_t* const argb_scratch, uint32_t* const image) { const int max_tile_size = 1 << bits; const int tiles_per_row = VP8LSubSampleSize(width, bits); const int tiles_per_col = VP8LSubSampleSize(height, bits); int tile_y; int histo[4][256]; memset(histo, 0, sizeof(histo)); // We perform prediction in reverse scan-line order. for (tile_y = tiles_per_col - 1; tile_y >= 0; --tile_y) { const int tile_y_offset = tile_y * max_tile_size; int tile_x; for (tile_x = tiles_per_row - 1; tile_x >= 0; --tile_x) { int pred; int y; const int tile_x_offset = tile_x * max_tile_size; int all_x_max = tile_x_offset + max_tile_size; if (all_x_max > width) { all_x_max = width; } pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, histo, argb); image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8); CopyTileWithPrediction(width, height, tile_x, tile_y, bits, pred, argb_scratch, argb); for (y = 0; y < max_tile_size; ++y) { int ix; int all_x; int all_y = tile_y_offset + y; if (all_y >= height) { break; } ix = all_y * width + tile_x_offset; for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { const uint32_t a = argb[ix]; ++histo[0][a >> 24]; ++histo[1][((a >> 16) & 0xff)]; ++histo[2][((a >> 8) & 0xff)]; ++histo[3][(a & 0xff)]; } } } } } #endif // Inverse prediction. static void PredictorInverseTransform(const VP8LTransform* const transform, int y_start, int y_end, uint32_t* data) { const int width = transform->xsize_; if (y_start == 0) { // First Row follows the L (mode=1) mode. int x; const uint32_t pred = Predictor0(data[-1], NULL); AddPixelsEq(data, pred); for (x = 1; x < width; ++x) { const uint32_t pred = Predictor1(data[x - 1], NULL); AddPixelsEq(data + x, pred); } data += width; ++y_start; } { int y = y_start; const int mask = (1 << transform->bits_) - 1; const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); const uint32_t* pred_mode_base = transform->data_ + (y >> transform->bits_) * tiles_per_row; while (y < y_end) { int x; uint32_t pred; const uint32_t* pred_mode_src = pred_mode_base; PredictorFunc pred_func; // First pixel follows the T (mode=2) mode. pred = Predictor2(data[-1], data - width); AddPixelsEq(data, pred); // .. the rest: pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf]; for (x = 1; x < width; ++x) { uint32_t pred; if ((x & mask) == 0) { // start of tile. Read predictor function. pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf]; } pred = pred_func(data[x - 1], data + x - width); AddPixelsEq(data + x, pred); } data += width; ++y; if ((y & mask) == 0) { // Use the same mask, since tiles are squares. pred_mode_base += tiles_per_row; } } } } #ifdef USE_LOSSLESS_ENCODER void VP8LSubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixs) { int i; for (i = 0; i < num_pixs; ++i) { const uint32_t argb = argb_data[i]; const uint32_t green = (argb >> 8) & 0xff; const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff; const uint32_t new_b = ((argb & 0xff) - green) & 0xff; argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b; } } #endif // Add green to blue and red channels (i.e. perform the inverse transform of // 'subtract green'). static void AddGreenToBlueAndRed(const VP8LTransform* const transform, int y_start, int y_end, uint32_t* data) { const int width = transform->xsize_; const uint32_t* const data_end = data + (y_end - y_start) * width; while (data < data_end) { const uint32_t argb = *data; // "* 0001001u" is equivalent to "(green << 16) + green)" const uint32_t green = ((argb >> 8) & 0xff); uint32_t red_blue = (argb & 0x00ff00ffu); red_blue += (green << 16) | green; red_blue &= 0x00ff00ffu; *data++ = (argb & 0xff00ff00u) | red_blue; } } typedef struct { // Note: the members are uint8_t, so that any negative values are // automatically converted to "mod 256" values. uint8_t green_to_red_; uint8_t green_to_blue_; uint8_t red_to_blue_; } Multipliers; static WEBP_INLINE void MultipliersClear(Multipliers* m) { m->green_to_red_ = 0; m->green_to_blue_ = 0; m->red_to_blue_ = 0; } static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred, int8_t color) { return (uint32_t)((int)(color_pred) * color) >> 5; } static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, Multipliers* const m) { m->green_to_red_ = (color_code >> 0) & 0xff; m->green_to_blue_ = (color_code >> 8) & 0xff; m->red_to_blue_ = (color_code >> 16) & 0xff; } static WEBP_INLINE uint32_t MultipliersToColorCode(Multipliers* const m) { return 0xff000000u | ((uint32_t)(m->red_to_blue_) << 16) | ((uint32_t)(m->green_to_blue_) << 8) | m->green_to_red_; } static WEBP_INLINE uint32_t TransformColor(const Multipliers* const m, uint32_t argb, int inverse) { const uint32_t green = argb >> 8; const uint32_t red = argb >> 16; uint32_t new_red = red; uint32_t new_blue = argb; if (inverse) { new_red += ColorTransformDelta(m->green_to_red_, green); new_red &= 0xff; new_blue += ColorTransformDelta(m->green_to_blue_, green); new_blue += ColorTransformDelta(m->red_to_blue_, new_red); new_blue &= 0xff; } else { new_red -= ColorTransformDelta(m->green_to_red_, green); new_red &= 0xff; new_blue -= ColorTransformDelta(m->green_to_blue_, green); new_blue -= ColorTransformDelta(m->red_to_blue_, red); new_blue &= 0xff; } return (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); } #ifdef USE_LOSSLESS_ENCODER static WEBP_INLINE int SkipRepeatedPixels(const uint32_t* const argb, int ix, int xsize) { const uint32_t v = argb[ix]; if (ix >= xsize + 3) { if (v == argb[ix - xsize] && argb[ix - 1] == argb[ix - xsize - 1] && argb[ix - 2] == argb[ix - xsize - 2] && argb[ix - 3] == argb[ix - xsize - 3]) { return 1; } return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1]; } else if (ix >= 3) { return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1]; } return 0; } static double PredictionCostCrossColor(const int accumulated[256], const int counts[256]) { // Favor low entropy, locally and globally. int i; int combo[256]; for (i = 0; i < 256; ++i) { combo[i] = accumulated[i] + counts[i]; } return ShannonEntropy(combo, 256) + ShannonEntropy(counts, 256) + PredictionCostSpatial(counts, 3, 2.4); // Favor small absolute values. } static Multipliers GetBestColorTransformForTile( int tile_x, int tile_y, int bits, Multipliers prevX, Multipliers prevY, int step, int xsize, int ysize, int* accumulated_red_histo, int* accumulated_blue_histo, const uint32_t* const argb) { double best_diff = 1e99; double cur_diff; const int halfstep = step / 2; const int max_tile_size = 1 << bits; const int tile_y_offset = tile_y * max_tile_size; const int tile_x_offset = tile_x * max_tile_size; int green_to_red; int green_to_blue; int red_to_blue; int all_x_max = tile_x_offset + max_tile_size; int all_y_max = tile_y_offset + max_tile_size; Multipliers best_tx; MultipliersClear(&best_tx); if (all_x_max > xsize) { all_x_max = xsize; } if (all_y_max > ysize) { all_y_max = ysize; } for (green_to_red = -64; green_to_red <= 64; green_to_red += halfstep) { int histo[256] = { 0 }; int all_y; Multipliers tx; MultipliersClear(&tx); tx.green_to_red_ = green_to_red & 0xff; for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { uint32_t predict; int ix = all_y * xsize + tile_x_offset; int all_x; for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { if (SkipRepeatedPixels(argb, ix, xsize)) { continue; } predict = TransformColor(&tx, argb[ix], 0); ++histo[(predict >> 16) & 0xff]; // red. } } cur_diff = PredictionCostCrossColor(&accumulated_red_histo[0], &histo[0]); if (tx.green_to_red_ == prevX.green_to_red_) { cur_diff -= 3; // favor keeping the areas locally similar } if (tx.green_to_red_ == prevY.green_to_red_) { cur_diff -= 3; // favor keeping the areas locally similar } if (tx.green_to_red_ == 0) { cur_diff -= 3; } if (cur_diff < best_diff) { best_diff = cur_diff; best_tx = tx; } } best_diff = 1e99; green_to_red = best_tx.green_to_red_; for (green_to_blue = -32; green_to_blue <= 32; green_to_blue += step) { for (red_to_blue = -32; red_to_blue <= 32; red_to_blue += step) { int all_y; int histo[256] = { 0 }; Multipliers tx; tx.green_to_red_ = green_to_red; tx.green_to_blue_ = green_to_blue; tx.red_to_blue_ = red_to_blue; for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { uint32_t predict; int all_x; int ix = all_y * xsize + tile_x_offset; for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { if (SkipRepeatedPixels(argb, ix, xsize)) { continue; } predict = TransformColor(&tx, argb[ix], 0); ++histo[predict & 0xff]; // blue. } } cur_diff = PredictionCostCrossColor(&accumulated_blue_histo[0], &histo[0]); if (tx.green_to_blue_ == prevX.green_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if (tx.green_to_blue_ == prevY.green_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if (tx.red_to_blue_ == prevX.red_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if (tx.red_to_blue_ == prevY.red_to_blue_) { cur_diff -= 3; // favor keeping the areas locally similar } if (tx.green_to_blue_ == 0) { cur_diff -= 3; } if (tx.red_to_blue_ == 0) { cur_diff -= 3; } if (cur_diff < best_diff) { best_diff = cur_diff; best_tx = tx; } } } return best_tx; } static void CopyTileWithColorTransform(int xsize, int ysize, int tile_x, int tile_y, int bits, Multipliers color_transform, uint32_t* const argb) { int y; int xscan = 1 << bits; int yscan = 1 << bits; tile_x <<= bits; tile_y <<= bits; if (xscan > xsize - tile_x) { xscan = xsize - tile_x; } if (yscan > ysize - tile_y) { yscan = ysize - tile_y; } yscan += tile_y; for (y = tile_y; y < yscan; ++y) { int ix = y * xsize + tile_x; const int end_ix = ix + xscan; for (; ix < end_ix; ++ix) { argb[ix] = TransformColor(&color_transform, argb[ix], 0); } } } void VP8LColorSpaceTransform(int width, int height, int bits, int step, uint32_t* const argb, uint32_t* image) { const int max_tile_size = 1 << bits; int tile_xsize = VP8LSubSampleSize(width, bits); int tile_ysize = VP8LSubSampleSize(height, bits); int accumulated_red_histo[256] = { 0 }; int accumulated_blue_histo[256] = { 0 }; int tile_y; int tile_x; Multipliers prevX; Multipliers prevY; MultipliersClear(&prevY); MultipliersClear(&prevX); for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { Multipliers color_transform; int all_x_max; int y; const int tile_y_offset = tile_y * max_tile_size; const int tile_x_offset = tile_x * max_tile_size; if (tile_y != 0) { ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX); ColorCodeToMultipliers(image[(tile_y - 1) * tile_xsize + tile_x], &prevY); } else if (tile_x != 0) { ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX); } color_transform = GetBestColorTransformForTile(tile_x, tile_y, bits, prevX, prevY, step, width, height, &accumulated_red_histo[0], &accumulated_blue_histo[0], argb); image[tile_y * tile_xsize + tile_x] = MultipliersToColorCode(&color_transform); CopyTileWithColorTransform(width, height, tile_x, tile_y, bits, color_transform, argb); // Gather accumulated histogram data. all_x_max = tile_x_offset + max_tile_size; if (all_x_max > width) { all_x_max = width; } for (y = 0; y < max_tile_size; ++y) { int ix; int all_x; int all_y = tile_y_offset + y; if (all_y >= height) { break; } ix = all_y * width + tile_x_offset; for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { if (ix >= 2 && argb[ix] == argb[ix - 2] && argb[ix] == argb[ix - 1]) { continue; // repeated pixels are handled by backward references } if (ix >= width + 2 && argb[ix - 2] == argb[ix - width - 2] && argb[ix - 1] == argb[ix - width - 1] && argb[ix] == argb[ix - width]) { continue; // repeated pixels are handled by backward references } ++accumulated_red_histo[(argb[ix] >> 16) & 0xff]; ++accumulated_blue_histo[argb[ix] & 0xff]; } } } } } #endif // Color space inverse transform. static void ColorSpaceInverseTransform(const VP8LTransform* const transform, int y_start, int y_end, uint32_t* data) { const int width = transform->xsize_; const int mask = (1 << transform->bits_) - 1; const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); int y = y_start; const uint32_t* pred_row = transform->data_ + (y >> transform->bits_) * tiles_per_row; while (y < y_end) { const uint32_t* pred = pred_row; Multipliers m = { 0, 0, 0 }; int x; for (x = 0; x < width; ++x) { if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m); data[x] = TransformColor(&m, data[x], 1); } data += width; ++y; if ((y & mask) == 0) pred_row += tiles_per_row;; } } // Separate out pixels packed together using pixel-bundling. static void ColorIndexInverseTransform( const VP8LTransform* const transform, int y_start, int y_end, uint32_t* const data_in, uint32_t* const data_out) { int y; const int bits_per_pixel = 8 >> transform->bits_; const int width = transform->xsize_; const uint32_t* const color_map = transform->data_; uint32_t* dst = data_out; const uint32_t* src = data_in; if (bits_per_pixel < 8) { const int pixels_per_byte = 1 << transform->bits_; const int count_mask = pixels_per_byte - 1; const uint32_t bit_mask = (1 << bits_per_pixel) - 1; for (y = y_start; y < y_end; ++y) { uint32_t packed_pixels = 0; int x; for (x = 0; x < width; ++x) { // We need to load fresh 'packed_pixels' once every 'bytes_per_pixels' // increments of x. Fortunately, pixels_per_byte is a power of 2, so // can just use a mask for that, instead of decrementing a counter. if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff; *dst++ = color_map[packed_pixels & bit_mask]; packed_pixels >>= bits_per_pixel; } } } else { for (y = y_start; y < y_end; ++y) { int x; for (x = 0; x < width; ++x) { *dst++ = color_map[((*src++) >> 8) & 0xff]; } } } } void VP8LInverseTransform(const VP8LTransform* const transform, int row_start, int row_end, uint32_t* const data_in, uint32_t* const data_out) { assert(row_start < row_end); assert(row_end <= transform->ysize_); switch (transform->type_) { case SUBTRACT_GREEN: AddGreenToBlueAndRed(transform, row_start, row_end, data_out); break; case PREDICTOR_TRANSFORM: PredictorInverseTransform(transform, row_start, row_end, data_out); if (row_end != transform->ysize_) { // The last predicted row in this iteration will be the top-pred row // for the first row in next iteration. const int width = transform->xsize_; memcpy(data_out - width, data_out + (row_end - row_start - 1) * width, width * sizeof(*data_out)); } break; case CROSS_COLOR_TRANSFORM: ColorSpaceInverseTransform(transform, row_start, row_end, data_out); break; case COLOR_INDEXING_TRANSFORM: ColorIndexInverseTransform(transform, row_start, row_end, data_in, data_out); break; } } //------------------------------------------------------------------------------ // Color space conversion. static int is_big_endian(void) { static const union { uint16_t w; uint8_t b[2]; } tmp = { 1 }; return (tmp.b[0] != 1); } static void ConvertBGRAToRGB(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; } } static void ConvertBGRAToRGBA(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; *dst++ = (argb >> 24) & 0xff; } } static void ConvertBGRAToBGR(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 0) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 16) & 0xff; } } static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, int swap_on_big_endian) { if (is_big_endian() == swap_on_big_endian) { const uint32_t* src_end = src + num_pixels; while (src < src_end) { uint32_t argb = *src++; #if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__)) __asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb)); *(uint32_t*)dst = argb; dst += sizeof(argb); #elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER) argb = _byteswap_ulong(argb); *(uint32_t*)dst = argb; dst += sizeof(argb); #else *dst++ = (argb >> 24) & 0xff; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; #endif } } else { memcpy(dst, src, num_pixels * sizeof(*src)); } } void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { switch (out_colorspace) { case MODE_RGB: ConvertBGRAToRGB(in_data, num_pixels, rgba); break; case MODE_RGBA: ConvertBGRAToRGBA(in_data, num_pixels, rgba); break; case MODE_BGR: ConvertBGRAToBGR(in_data, num_pixels, rgba); break; case MODE_BGRA: CopyOrSwap(in_data, num_pixels, rgba, 1); break; case MODE_ARGB: CopyOrSwap(in_data, num_pixels, rgba, 0); break; default: assert(0); // Code flow should not reach here. } } //------------------------------------------------------------------------------ #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif