// Copyright 2010 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // YUV->RGB conversion functions // // Author: Skal (pascal.massimino@gmail.com) #include "./yuv.h" #include #if defined(WEBP_YUV_USE_TABLE) static int done = 0; static WEBP_INLINE uint8_t clip(int v, int max_value) { return v < 0 ? 0 : v > max_value ? max_value : v; } int16_t VP8kVToR[256], VP8kUToB[256]; int32_t VP8kVToG[256], VP8kUToG[256]; uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInit(void) { int i; if (done) { return; } #ifndef USE_YUVj for (i = 0; i < 256; ++i) { VP8kVToR[i] = (89858 * (i - 128) + YUV_HALF) >> YUV_FIX; VP8kUToG[i] = -22014 * (i - 128) + YUV_HALF; VP8kVToG[i] = -45773 * (i - 128); VP8kUToB[i] = (113618 * (i - 128) + YUV_HALF) >> YUV_FIX; } for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) { const int k = ((i - 16) * 76283 + YUV_HALF) >> YUV_FIX; VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255); VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15); } #else for (i = 0; i < 256; ++i) { VP8kVToR[i] = (91881 * (i - 128) + YUV_HALF) >> YUV_FIX; VP8kUToG[i] = -22554 * (i - 128) + YUV_HALF; VP8kVToG[i] = -46802 * (i - 128); VP8kUToB[i] = (116130 * (i - 128) + YUV_HALF) >> YUV_FIX; } for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) { const int k = i; VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255); VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15); } #endif done = 1; } #else WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInit(void) {} #endif // WEBP_YUV_USE_TABLE //----------------------------------------------------------------------------- // Plain-C version #define ROW_FUNC(FUNC_NAME, FUNC, XSTEP) \ static void FUNC_NAME(const uint8_t* y, \ const uint8_t* u, const uint8_t* v, \ uint8_t* dst, int len) { \ const uint8_t* const end = dst + (len & ~1) * XSTEP; \ while (dst != end) { \ FUNC(y[0], u[0], v[0], dst); \ FUNC(y[1], u[0], v[0], dst + XSTEP); \ y += 2; \ ++u; \ ++v; \ dst += 2 * XSTEP; \ } \ if (len & 1) { \ FUNC(y[0], u[0], v[0], dst); \ } \ } \ // All variants implemented. ROW_FUNC(YuvToRgbRow, VP8YuvToRgb, 3) ROW_FUNC(YuvToBgrRow, VP8YuvToBgr, 3) ROW_FUNC(YuvToRgbaRow, VP8YuvToRgba, 4) ROW_FUNC(YuvToBgraRow, VP8YuvToBgra, 4) ROW_FUNC(YuvToArgbRow, VP8YuvToArgb, 4) ROW_FUNC(YuvToRgba4444Row, VP8YuvToRgba4444, 2) ROW_FUNC(YuvToRgb565Row, VP8YuvToRgb565, 2) #undef ROW_FUNC // Main call for processing a plane with a WebPSamplerRowFunc function: void WebPSamplerProcessPlane(const uint8_t* y, int y_stride, const uint8_t* u, const uint8_t* v, int uv_stride, uint8_t* dst, int dst_stride, int width, int height, WebPSamplerRowFunc func) { int j; for (j = 0; j < height; ++j) { func(y, u, v, dst, width); y += y_stride; if (j & 1) { u += uv_stride; v += uv_stride; } dst += dst_stride; } } //----------------------------------------------------------------------------- // Main call WebPSamplerRowFunc WebPSamplers[MODE_LAST]; extern void WebPInitSamplersSSE2(void); extern void WebPInitSamplersMIPS32(void); extern void WebPInitSamplersMIPSdspR2(void); static volatile VP8CPUInfo yuv_last_cpuinfo_used = (VP8CPUInfo)&yuv_last_cpuinfo_used; WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplers(void) { if (yuv_last_cpuinfo_used == VP8GetCPUInfo) return; WebPSamplers[MODE_RGB] = YuvToRgbRow; WebPSamplers[MODE_RGBA] = YuvToRgbaRow; WebPSamplers[MODE_BGR] = YuvToBgrRow; WebPSamplers[MODE_BGRA] = YuvToBgraRow; WebPSamplers[MODE_ARGB] = YuvToArgbRow; WebPSamplers[MODE_RGBA_4444] = YuvToRgba4444Row; WebPSamplers[MODE_RGB_565] = YuvToRgb565Row; WebPSamplers[MODE_rgbA] = YuvToRgbaRow; WebPSamplers[MODE_bgrA] = YuvToBgraRow; WebPSamplers[MODE_Argb] = YuvToArgbRow; WebPSamplers[MODE_rgbA_4444] = YuvToRgba4444Row; // If defined, use CPUInfo() to overwrite some pointers with faster versions. if (VP8GetCPUInfo != NULL) { #if defined(WEBP_USE_SSE2) if (VP8GetCPUInfo(kSSE2)) { WebPInitSamplersSSE2(); } #endif // WEBP_USE_SSE2 #if defined(WEBP_USE_MIPS32) if (VP8GetCPUInfo(kMIPS32)) { WebPInitSamplersMIPS32(); } #endif // WEBP_USE_MIPS32 #if defined(WEBP_USE_MIPS_DSP_R2) if (VP8GetCPUInfo(kMIPSdspR2)) { WebPInitSamplersMIPSdspR2(); } #endif // WEBP_USE_MIPS_DSP_R2 } yuv_last_cpuinfo_used = VP8GetCPUInfo; } //----------------------------------------------------------------------------- // ARGB -> YUV converters static void ConvertARGBToY(const uint32_t* argb, uint8_t* y, int width) { int i; for (i = 0; i < width; ++i) { const uint32_t p = argb[i]; y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, YUV_HALF); } } void WebPConvertARGBToUV_C(const uint32_t* argb, uint8_t* u, uint8_t* v, int src_width, int do_store) { // No rounding. Last pixel is dealt with separately. const int uv_width = src_width >> 1; int i; for (i = 0; i < uv_width; ++i) { const uint32_t v0 = argb[2 * i + 0]; const uint32_t v1 = argb[2 * i + 1]; // VP8RGBToU/V expects four accumulated pixels. Hence we need to // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less. const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe); const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe); const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe); const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); if (do_store) { u[i] = tmp_u; v[i] = tmp_v; } else { // Approximated average-of-four. But it's an acceptable diff. u[i] = (u[i] + tmp_u + 1) >> 1; v[i] = (v[i] + tmp_v + 1) >> 1; } } if (src_width & 1) { // last pixel const uint32_t v0 = argb[2 * i + 0]; const int r = (v0 >> 14) & 0x3fc; const int g = (v0 >> 6) & 0x3fc; const int b = (v0 << 2) & 0x3fc; const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); if (do_store) { u[i] = tmp_u; v[i] = tmp_v; } else { u[i] = (u[i] + tmp_u + 1) >> 1; v[i] = (v[i] + tmp_v + 1) >> 1; } } } //----------------------------------------------------------------------------- static void ConvertRGB24ToY(const uint8_t* rgb, uint8_t* y, int width) { int i; for (i = 0; i < width; ++i, rgb += 3) { y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); } } static void ConvertBGR24ToY(const uint8_t* bgr, uint8_t* y, int width) { int i; for (i = 0; i < width; ++i, bgr += 3) { y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); } } void WebPConvertRGBA32ToUV_C(const uint16_t* rgb, uint8_t* u, uint8_t* v, int width) { int i; for (i = 0; i < width; i += 1, rgb += 4) { const int r = rgb[0], g = rgb[1], b = rgb[2]; u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); } } //----------------------------------------------------------------------------- #define MAX_Y ((1 << 10) - 1) // 10b precision over 16b-arithmetic static uint16_t clip_y(int v) { return (v < 0) ? 0 : (v > MAX_Y) ? MAX_Y : (uint16_t)v; } static uint64_t SmartYUVUpdateY_C(const uint16_t* ref, const uint16_t* src, uint16_t* dst, int len) { uint64_t diff = 0; int i; for (i = 0; i < len; ++i) { const int diff_y = ref[i] - src[i]; const int new_y = (int)dst[i] + diff_y; dst[i] = clip_y(new_y); diff += (uint64_t)abs(diff_y); } return diff; } static void SmartYUVUpdateRGB_C(const int16_t* ref, const int16_t* src, int16_t* dst, int len) { int i; for (i = 0; i < len; ++i) { const int diff_uv = ref[i] - src[i]; dst[i] += diff_uv; } } static void SmartYUVFilterRow_C(const int16_t* A, const int16_t* B, int len, const uint16_t* best_y, uint16_t* out) { int i; for (i = 0; i < len; ++i, ++A, ++B) { const int v0 = (A[0] * 9 + A[1] * 3 + B[0] * 3 + B[1] + 8) >> 4; const int v1 = (A[1] * 9 + A[0] * 3 + B[1] * 3 + B[0] + 8) >> 4; out[2 * i + 0] = clip_y(best_y[2 * i + 0] + v0); out[2 * i + 1] = clip_y(best_y[2 * i + 1] + v1); } } #undef MAX_Y //----------------------------------------------------------------------------- void (*WebPConvertRGB24ToY)(const uint8_t* rgb, uint8_t* y, int width); void (*WebPConvertBGR24ToY)(const uint8_t* bgr, uint8_t* y, int width); void (*WebPConvertRGBA32ToUV)(const uint16_t* rgb, uint8_t* u, uint8_t* v, int width); void (*WebPConvertARGBToY)(const uint32_t* argb, uint8_t* y, int width); void (*WebPConvertARGBToUV)(const uint32_t* argb, uint8_t* u, uint8_t* v, int src_width, int do_store); uint64_t (*WebPSmartYUVUpdateY)(const uint16_t* ref, const uint16_t* src, uint16_t* dst, int len); void (*WebPSmartYUVUpdateRGB)(const int16_t* ref, const int16_t* src, int16_t* dst, int len); void (*WebPSmartYUVFilterRow)(const int16_t* A, const int16_t* B, int len, const uint16_t* best_y, uint16_t* out); static volatile VP8CPUInfo rgba_to_yuv_last_cpuinfo_used = (VP8CPUInfo)&rgba_to_yuv_last_cpuinfo_used; extern void WebPInitConvertARGBToYUVSSE2(void); extern void WebPInitSmartYUVSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUV(void) { if (rgba_to_yuv_last_cpuinfo_used == VP8GetCPUInfo) return; WebPConvertARGBToY = ConvertARGBToY; WebPConvertARGBToUV = WebPConvertARGBToUV_C; WebPConvertRGB24ToY = ConvertRGB24ToY; WebPConvertBGR24ToY = ConvertBGR24ToY; WebPConvertRGBA32ToUV = WebPConvertRGBA32ToUV_C; WebPSmartYUVUpdateY = SmartYUVUpdateY_C; WebPSmartYUVUpdateRGB = SmartYUVUpdateRGB_C; WebPSmartYUVFilterRow = SmartYUVFilterRow_C; if (VP8GetCPUInfo != NULL) { #if defined(WEBP_USE_SSE2) if (VP8GetCPUInfo(kSSE2)) { WebPInitConvertARGBToYUVSSE2(); WebPInitSmartYUVSSE2(); } #endif // WEBP_USE_SSE2 } rgba_to_yuv_last_cpuinfo_used = VP8GetCPUInfo; }