// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE2 variant of methods for lossless decoder // // Author: Skal (pascal.massimino@gmail.com) #include "src/dsp/dsp.h" #if defined(WEBP_USE_SSE2) #include "src/dsp/common_sse2.h" #include "src/dsp/lossless.h" #include "src/dsp/lossless_common.h" #include //------------------------------------------------------------------------------ // Predictor Transform static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0, uint32_t c1, uint32_t c2) { const __m128i zero = _mm_setzero_si128(); const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); const __m128i V1 = _mm_add_epi16(C0, C1); const __m128i V2 = _mm_sub_epi16(V1, C2); const __m128i b = _mm_packus_epi16(V2, V2); const uint32_t output = _mm_cvtsi128_si32(b); return output; } static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0, uint32_t c1, uint32_t c2) { const __m128i zero = _mm_setzero_si128(); const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); const __m128i avg = _mm_add_epi16(C1, C0); const __m128i A0 = _mm_srli_epi16(avg, 1); const __m128i A1 = _mm_sub_epi16(A0, B0); const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); const __m128i A2 = _mm_sub_epi16(A1, BgtA); const __m128i A3 = _mm_srai_epi16(A2, 1); const __m128i A4 = _mm_add_epi16(A0, A3); const __m128i A5 = _mm_packus_epi16(A4, A4); const uint32_t output = _mm_cvtsi128_si32(A5); return output; } static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) { int pa_minus_pb; const __m128i zero = _mm_setzero_si128(); const __m128i A0 = _mm_cvtsi32_si128(a); const __m128i B0 = _mm_cvtsi32_si128(b); const __m128i C0 = _mm_cvtsi32_si128(c); const __m128i AC0 = _mm_subs_epu8(A0, C0); const __m128i CA0 = _mm_subs_epu8(C0, A0); const __m128i BC0 = _mm_subs_epu8(B0, C0); const __m128i CB0 = _mm_subs_epu8(C0, B0); const __m128i AC = _mm_or_si128(AC0, CA0); const __m128i BC = _mm_or_si128(BC0, CB0); const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| const __m128i diff = _mm_sub_epi16(pb, pa); { int16_t out[8]; _mm_storeu_si128((__m128i*)out, diff); pa_minus_pb = out[0] + out[1] + out[2] + out[3]; } return (pa_minus_pb <= 0) ? a : b; } static WEBP_INLINE void Average2_m128i(const __m128i* const a0, const __m128i* const a1, __m128i* const avg) { // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) const __m128i ones = _mm_set1_epi8(1); const __m128i avg1 = _mm_avg_epu8(*a0, *a1); const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); *avg = _mm_sub_epi8(avg1, one); } static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0, const uint32_t a1, __m128i* const avg) { // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) const __m128i ones = _mm_set1_epi8(1); const __m128i A0 = _mm_cvtsi32_si128(a0); const __m128i A1 = _mm_cvtsi32_si128(a1); const __m128i avg1 = _mm_avg_epu8(A0, A1); const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones); *avg = _mm_sub_epi8(avg1, one); } static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) { const __m128i zero = _mm_setzero_si128(); const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero); const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); const __m128i sum = _mm_add_epi16(A1, A0); return _mm_srli_epi16(sum, 1); } static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) { __m128i output; Average2_uint32_SSE2(a0, a1, &output); return _mm_cvtsi128_si32(output); } static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1, uint32_t a2) { const __m128i zero = _mm_setzero_si128(); const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2); const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); const __m128i sum = _mm_add_epi16(avg1, A1); const __m128i avg2 = _mm_srli_epi16(sum, 1); const __m128i A2 = _mm_packus_epi16(avg2, avg2); const uint32_t output = _mm_cvtsi128_si32(A2); return output; } static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) { const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1); const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3); const __m128i sum = _mm_add_epi16(avg2, avg1); const __m128i avg3 = _mm_srli_epi16(sum, 1); const __m128i A0 = _mm_packus_epi16(avg3, avg3); const uint32_t output = _mm_cvtsi128_si32(A0); return output; } static uint32_t Predictor5_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = Average3_SSE2(*left, top[0], top[1]); return pred; } static uint32_t Predictor6_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = Average2_SSE2(*left, top[-1]); return pred; } static uint32_t Predictor7_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = Average2_SSE2(*left, top[0]); return pred; } static uint32_t Predictor8_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = Average2_SSE2(top[-1], top[0]); (void)left; return pred; } static uint32_t Predictor9_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = Average2_SSE2(top[0], top[1]); (void)left; return pred; } static uint32_t Predictor10_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]); return pred; } static uint32_t Predictor11_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = Select_SSE2(top[0], *left, top[-1]); return pred; } static uint32_t Predictor12_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]); return pred; } static uint32_t Predictor13_SSE2(const uint32_t* const left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]); return pred; } // Batch versions of those functions. // Predictor0: ARGB_BLACK. static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; const __m128i black = _mm_set1_epi32((int)ARGB_BLACK); for (i = 0; i + 4 <= num_pixels; i += 4) { const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); const __m128i res = _mm_add_epi8(src, black); _mm_storeu_si128((__m128i*)&out[i], res); } if (i != num_pixels) { VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i); } (void)upper; } // Predictor1: left. static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; __m128i prev = _mm_set1_epi32((int)out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { // a | b | c | d const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); // 0 | a | b | c const __m128i shift0 = _mm_slli_si128(src, 4); // a | a + b | b + c | c + d const __m128i sum0 = _mm_add_epi8(src, shift0); // 0 | 0 | a | a + b const __m128i shift1 = _mm_slli_si128(sum0, 8); // a | a + b | a + b + c | a + b + c + d const __m128i sum1 = _mm_add_epi8(sum0, shift1); const __m128i res = _mm_add_epi8(sum1, prev); _mm_storeu_si128((__m128i*)&out[i], res); // replicate prev output on the four lanes prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6)); } if (i != num_pixels) { VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); } } // Macro that adds 32-bit integers from IN using mod 256 arithmetic // per 8 bit channel. #define GENERATE_PREDICTOR_1(X, IN) \ static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ int num_pixels, uint32_t* out) { \ int i; \ for (i = 0; i + 4 <= num_pixels; i += 4) { \ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \ const __m128i res = _mm_add_epi8(src, other); \ _mm_storeu_si128((__m128i*)&out[i], res); \ } \ if (i != num_pixels) { \ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ } \ } // Predictor2: Top. GENERATE_PREDICTOR_1(2, upper[i]) // Predictor3: Top-right. GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor4: Top-left. GENERATE_PREDICTOR_1(4, upper[i - 1]) #undef GENERATE_PREDICTOR_1 // Due to averages with integers, values cannot be accumulated in parallel for // predictors 5 to 7. GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2) GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2) GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2) #define GENERATE_PREDICTOR_2(X, IN) \ static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ int num_pixels, uint32_t* out) { \ int i; \ for (i = 0; i + 4 <= num_pixels; i += 4) { \ const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ __m128i avg, res; \ Average2_m128i(&T, &Tother, &avg); \ res = _mm_add_epi8(avg, src); \ _mm_storeu_si128((__m128i*)&out[i], res); \ } \ if (i != num_pixels) { \ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ } \ } // Predictor8: average TL T. GENERATE_PREDICTOR_2(8, upper[i - 1]) // Predictor9: average T TR. GENERATE_PREDICTOR_2(9, upper[i + 1]) #undef GENERATE_PREDICTOR_2 // Predictor10: average of (average of (L,TL), average of (T, TR)). #define DO_PRED10(OUT) do { \ __m128i avgLTL, avg; \ Average2_m128i(&L, &TL, &avgLTL); \ Average2_m128i(&avgTTR, &avgLTL, &avg); \ L = _mm_add_epi8(avg, src); \ out[i + (OUT)] = _mm_cvtsi128_si32(L); \ } while (0) #define DO_PRED10_SHIFT do { \ /* Rotate the pre-computed values for the next iteration.*/ \ avgTTR = _mm_srli_si128(avgTTR, 4); \ TL = _mm_srli_si128(TL, 4); \ src = _mm_srli_si128(src, 4); \ } while (0) static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; __m128i L = _mm_cvtsi32_si128(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); __m128i avgTTR; Average2_m128i(&T, &TR, &avgTTR); DO_PRED10(0); DO_PRED10_SHIFT; DO_PRED10(1); DO_PRED10_SHIFT; DO_PRED10(2); DO_PRED10_SHIFT; DO_PRED10(3); } if (i != num_pixels) { VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); } } #undef DO_PRED10 #undef DO_PRED10_SHIFT // Predictor11: select. #define DO_PRED11(OUT) do { \ const __m128i L_lo = _mm_unpacklo_epi32(L, T); \ const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \ const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \ const __m128i mask = _mm_cmpgt_epi32(pb, pa); \ const __m128i A = _mm_and_si128(mask, L); \ const __m128i B = _mm_andnot_si128(mask, T); \ const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \ L = _mm_add_epi8(src, pred); \ out[i + (OUT)] = _mm_cvtsi128_si32(L); \ } while (0) #define DO_PRED11_SHIFT do { \ /* Shift the pre-computed value for the next iteration.*/ \ T = _mm_srli_si128(T, 4); \ TL = _mm_srli_si128(TL, 4); \ src = _mm_srli_si128(src, 4); \ pa = _mm_srli_si128(pa, 4); \ } while (0) static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; __m128i pa; __m128i L = _mm_cvtsi32_si128(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); { // We can unpack with any value on the upper 32 bits, provided it's the // same on both operands (so that their sum of abs diff is zero). Here we // use T. const __m128i T_lo = _mm_unpacklo_epi32(T, T); const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); const __m128i T_hi = _mm_unpackhi_epi32(T, T); const __m128i TL_hi = _mm_unpackhi_epi32(TL, T); const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo); const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi); pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL| } DO_PRED11(0); DO_PRED11_SHIFT; DO_PRED11(1); DO_PRED11_SHIFT; DO_PRED11(2); DO_PRED11_SHIFT; DO_PRED11(3); } if (i != num_pixels) { VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); } } #undef DO_PRED11 #undef DO_PRED11_SHIFT // Predictor12: ClampedAddSubtractFull. #define DO_PRED12(DIFF, LANE, OUT) do { \ const __m128i all = _mm_add_epi16(L, (DIFF)); \ const __m128i alls = _mm_packus_epi16(all, all); \ const __m128i res = _mm_add_epi8(src, alls); \ out[i + (OUT)] = _mm_cvtsi128_si32(res); \ L = _mm_unpacklo_epi8(res, zero); \ } while (0) #define DO_PRED12_SHIFT(DIFF, LANE) do { \ /* Shift the pre-computed value for the next iteration.*/ \ if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \ src = _mm_srli_si128(src, 4); \ } while (0) static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; const __m128i zero = _mm_setzero_si128(); const __m128i L8 = _mm_cvtsi32_si128(out[-1]); __m128i L = _mm_unpacklo_epi8(L8, zero); for (i = 0; i + 4 <= num_pixels; i += 4) { // Load 4 pixels at a time. __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); const __m128i T_lo = _mm_unpacklo_epi8(T, zero); const __m128i T_hi = _mm_unpackhi_epi8(T, zero); const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); DO_PRED12(diff_lo, 0, 0); DO_PRED12_SHIFT(diff_lo, 0); DO_PRED12(diff_lo, 1, 1); DO_PRED12_SHIFT(diff_lo, 1); DO_PRED12(diff_hi, 0, 2); DO_PRED12_SHIFT(diff_hi, 0); DO_PRED12(diff_hi, 1, 3); } if (i != num_pixels) { VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); } } #undef DO_PRED12 #undef DO_PRED12_SHIFT // Due to averages with integers, values cannot be accumulated in parallel for // predictors 13. GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2) //------------------------------------------------------------------------------ // Subtract-Green Transform static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels, uint32_t* dst) { int i; for (i = 0; i + 4 <= num_pixels; i += 4) { const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g const __m128i out = _mm_add_epi8(in, C); _mm_storeu_si128((__m128i*)&dst[i], out); } // fallthrough and finish off with plain-C if (i != num_pixels) { VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i); } } //------------------------------------------------------------------------------ // Color Transform static void TransformColorInverse_SSE2(const VP8LMultipliers* const m, const uint32_t* const src, int num_pixels, uint32_t* dst) { // sign-extended multiplying constants, pre-shifted by 5. #define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend #define MK_CST_16(HI, LO) \ _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_)); const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0); #undef MK_CST_16 #undef CST const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks int i; for (i = 0; i + 4 <= num_pixels; i += 4) { const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 const __m128i E = _mm_add_epi8(in, D); // x r' x b' const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0 const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0 const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0 const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0 const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b'' const __m128i out = _mm_or_si128(J, A); _mm_storeu_si128((__m128i*)&dst[i], out); } // Fall-back to C-version for left-overs. if (i != num_pixels) { VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); } } //------------------------------------------------------------------------------ // Color-space conversion functions static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i* in = (const __m128i*)src; __m128i* out = (__m128i*)dst; while (num_pixels >= 32) { // Load the BGRA buffers. __m128i in0 = _mm_loadu_si128(in + 0); __m128i in1 = _mm_loadu_si128(in + 1); __m128i in2 = _mm_loadu_si128(in + 2); __m128i in3 = _mm_loadu_si128(in + 3); __m128i in4 = _mm_loadu_si128(in + 4); __m128i in5 = _mm_loadu_si128(in + 5); __m128i in6 = _mm_loadu_si128(in + 6); __m128i in7 = _mm_loadu_si128(in + 7); VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3); VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7); // At this points, in1/in5 contains red only, in2/in6 green only ... // Pack the colors in 24b RGB. VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7); _mm_storeu_si128(out + 0, in1); _mm_storeu_si128(out + 1, in5); _mm_storeu_si128(out + 2, in2); _mm_storeu_si128(out + 3, in6); _mm_storeu_si128(out + 4, in3); _mm_storeu_si128(out + 5, in7); in += 8; out += 6; num_pixels -= 32; } // left-overs if (num_pixels > 0) { VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); } } static void ConvertBGRAToRGBA_SSE2(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff); const __m128i* in = (const __m128i*)src; __m128i* out = (__m128i*)dst; while (num_pixels >= 8) { const __m128i A1 = _mm_loadu_si128(in++); const __m128i A2 = _mm_loadu_si128(in++); const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0 const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0 const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1)); const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1)); const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1)); const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1)); const __m128i F1 = _mm_or_si128(E1, C1); const __m128i F2 = _mm_or_si128(E2, C2); _mm_storeu_si128(out++, F1); _mm_storeu_si128(out++, F2); num_pixels -= 8; } // left-overs if (num_pixels > 0) { VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); } } static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i mask_0x0f = _mm_set1_epi8(0x0f); const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0); const __m128i* in = (const __m128i*)src; __m128i* out = (__m128i*)dst; while (num_pixels >= 8) { const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 #if (WEBP_SWAP_16BIT_CSP == 1) const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 #else const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 #endif _mm_storeu_si128(out++, rgba); num_pixels -= 8; } // left-overs if (num_pixels > 0) { VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); } } static void ConvertBGRAToRGB565_SSE2(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0); const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8); const __m128i mask_0x07 = _mm_set1_epi8(0x07); const __m128i* in = (const __m128i*)src; __m128i* out = (__m128i*)dst; while (num_pixels >= 8) { const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx const __m128i b1 = _mm_srli_epi16(b0, 3); const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx #if (WEBP_SWAP_16BIT_CSP == 1) const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 #else const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 #endif _mm_storeu_si128(out++, rgba); num_pixels -= 8; } // left-overs if (num_pixels > 0) { VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); } } static void ConvertBGRAToBGR_SSE2(const uint32_t* src, int num_pixels, uint8_t* dst) { const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); const __m128i* in = (const __m128i*)src; const uint8_t* const end = dst + num_pixels * 3; // the last storel_epi64 below writes 8 bytes starting at offset 18 while (dst + 26 <= end) { const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 const __m128i c2 = _mm_srli_si128(c0, 8); const __m128i c6 = _mm_srli_si128(c4, 8); _mm_storel_epi64((__m128i*)(dst + 0), c0); _mm_storel_epi64((__m128i*)(dst + 6), c2); _mm_storel_epi64((__m128i*)(dst + 12), c4); _mm_storel_epi64((__m128i*)(dst + 18), c6); dst += 24; num_pixels -= 8; } // left-overs if (num_pixels > 0) { VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); } } //------------------------------------------------------------------------------ // Entry point extern void VP8LDspInitSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) { VP8LPredictors[5] = Predictor5_SSE2; VP8LPredictors[6] = Predictor6_SSE2; VP8LPredictors[7] = Predictor7_SSE2; VP8LPredictors[8] = Predictor8_SSE2; VP8LPredictors[9] = Predictor9_SSE2; VP8LPredictors[10] = Predictor10_SSE2; VP8LPredictors[11] = Predictor11_SSE2; VP8LPredictors[12] = Predictor12_SSE2; VP8LPredictors[13] = Predictor13_SSE2; VP8LPredictorsAdd[0] = PredictorAdd0_SSE2; VP8LPredictorsAdd[1] = PredictorAdd1_SSE2; VP8LPredictorsAdd[2] = PredictorAdd2_SSE2; VP8LPredictorsAdd[3] = PredictorAdd3_SSE2; VP8LPredictorsAdd[4] = PredictorAdd4_SSE2; VP8LPredictorsAdd[5] = PredictorAdd5_SSE2; VP8LPredictorsAdd[6] = PredictorAdd6_SSE2; VP8LPredictorsAdd[7] = PredictorAdd7_SSE2; VP8LPredictorsAdd[8] = PredictorAdd8_SSE2; VP8LPredictorsAdd[9] = PredictorAdd9_SSE2; VP8LPredictorsAdd[10] = PredictorAdd10_SSE2; VP8LPredictorsAdd[11] = PredictorAdd11_SSE2; VP8LPredictorsAdd[12] = PredictorAdd12_SSE2; VP8LPredictorsAdd[13] = PredictorAdd13_SSE2; VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2; VP8LTransformColorInverse = TransformColorInverse_SSE2; VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2; VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2; VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2; VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2; VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(VP8LDspInitSSE2) #endif // WEBP_USE_SSE2